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Abstract

In this paper we propose a weighted supervised pooling
method for visual recognition systems. We combine a stan-
dard Spatial Pyramid Representation which is commonly
adopted to encode spatial information, with an appropriate
Feature Space Representation favoring semantic informa-
tion in an appropriate feature space. For the latter, we pro-
pose a weighted pooling strategy exploiting data supervi-
sion to weigh each local descriptor coherently with its like-
lihood to belong to a given object class. The two represen-
tations are then combined adaptively with Multiple Kernel
Learning. Experiments on common benchmarks (Caltech-
256 and PASCAL VOC-2007) show that our image repre-
sentation improves the current visual recognition pipeline
and it is competitive with similar state-of-art pooling meth-
ods. We also evaluate our method on a real Human-Robot
Interaction setting, where the pure Spatial Pyramid Repre-
sentation does not provide sufficient discriminative power,
obtaining a remarkable improvement.

1. Introduction

Most recent visual recognition systems find their roots in
the Bag of Words (BoWs) paradigm [7], that significantly
evolved over the last 10 years. In its original formulation,
images are seen as unordered collection of descriptors quan-
tized into visual words (during the coding stage). These
quantizations are then mapped into a histogram represen-
tation (in the pooling stage) used as an input for an image
classifier. This basic approach has been extended by the
work of Lazebnik et al. [22], which introduces the so called
Spatial Pyramid Representation (SPR) to preserve the spa-
tial configuration in images.
In classification tasks, it has been shown that the sparsity of
the data representations improves the overall classification
accuracy – see for instance [13, 31, 19, 8] and references
therein. Thus, Yang et al. [34] improves the SPR pipeline

Figure 1. Spatial bias on different datasets. Left: an image from
Caltech-101 is wrongly classified because of an unusual position
of the object (too far on a side). Center: a standard configuration
for the PASCAL VOC dataset. Right: an example of the iCub-
World 1.0 that does not present any spatial bias.

by replacing the vector quantization procedure with a sparse
coding step. More recently this approach has been extended
in different directions, improving the data representation
[21], designing mid-level features [2], or increasing the ro-
bustness of the pooling stage [3, 15, 20, 26, 4]. Our work
falls within the latter group, since we argue that the weaker
step of the current pipeline is indeed pooling.

Common pooling operations, such as max or average on
image regions, may produce an unrecoverable loss of spa-
tial information if the regions are not designed appropri-
ately. Usually, in the SPR framework, pooling is performed
on handcrafted subregions of the image which are strongly
dependent on the particular dataset used. For instance, in
the Caltech-101 objects appear at different scales, but tend
to occupy the center of the images, thus a partition in 2l×2l

segments is appropriate [22]. In PASCAL VOC [10] the ob-
ject of interest is usually placed in the upper, center or lower
regions of the image, thus a common partition is with 3× 1
segments [24, 36, 35]. Fig. 1 shows different spatial bias on
three datasets for image categorization. The image on the
left, from Caltech-101, is rather interesting: in such image
the object is not positioned in accordance with the majority
of images of the same dataset, and it is wrongly classified
by a standard spatial pyramid approach. As soon as we crop
a part of the image (highlighted with the red square), bring-
ing the object towards the image center, the same algorithm
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Figure 2. Another image from the iCubWorld 1.0 (A) correctly
classified by our pooling method (with a combination of spatial
pooling (B) and supervised semantic pooling (C)) and erroneously
classified by approaches that rely solely on spatial pyramids.

produces a correct categorization. We can infer that pooling
on hand crafted regions is effective if we have a prior on
objects position as in close-up photos and portrays. Instead,
in natural images in general this information is not available
or is not reliable. An example is provided in Fig. 2.

This problem has been addressed in the recent past, with
discriminative approaches that learn the appropriate spa-
tial distribution (or partitioning) of features for a given
class[15, 27, 9] or with unsupervised methods that take into
account the similarity of the features by pooling in a joint
space and feature domain [3]. Our work builds on these
observations and proposes a novel procedure that combines
a standard max pooling on the image domain with a su-
pervised weighted pooling in the feature domain. Unlike
[15, 27, 9] our goal is to learn an appropriate partitioning
for a given image, in such a way that we do not incorpo-
rate in our learned partitions the possible training set bias.
We define a “semantic” feature space where features com-
mon to a given object class are close to one another. In this
space pooling is performed with a soft assignment, mean-
ing that a given feature may participate to different groups
with different weights. Such weights are estimated from the
data via a mid-level classification process that determines
how related is a given feature code to a specific class. Un-
like other methods in the literature [3] the two contributions
of pooling in the image and in the feature domain are kept
separated as they are conceptually very different. They are
combined only at the end of a process, by means of multi-
ple kernel learning [32], and they provide a convincing and
more compact final representation.

This paper proposes the following contributions. First,
it offers a new perspective on discriminative pooling, tak-
ing into account the affinity of each local feature to indi-
vidual classes. The proposed soft assignment on the feature
space allows us to balance the mid-level features locality
with their semantical meaning. Second, it proposes a com-
bination of complementary pooling approaches which leads
to a more compact image description than previously pro-
posed methods. Finally, this combination adapts to the spe-
cific set of data or task, thanks to multiple kernel learning.

We assess our method and compare it with the state of the
art on benchmark datasets (PASCAL VOC and Caltech-
256). Furthermore, we show the effectiveness of the pro-
posed approach on a dataset acquired in Human-Robot
Interaction (HRI) scenario (the iCubWorld 1.0 Dataset1)
which allows us to test our image descriptor on data not
affected by any spatial bias.
The remainder of the paper is organized as follows. Sec. 2
reviews the current visual recognition pipeline, setting the
basis to present the contributions of our approach, in Sec. 3.
Sec. 4 is devoted to the experimental analysis, while Sec. 5
is left to final discussions.

2. Preliminaries
In this section we review the state-of-art classification

pipeline based on the coding-pooling scheme. This will set
the notation to introduce and discuss our contributions.

2.1. General Classification Framework

Fig. 3 depicts the visual recognition pipeline commonly
adopted by state-of-the-art methods. It can be divided in
four main stages:

Features Extraction. A set of local descriptors x1, . . . ,xM

are extracted from an image. Examples are image patches,
SIFT [23], or SURF [1]. According to [14], in categoriza-
tion tasks a dense regular grid is to be preferred, thus we
adopt a dense grid of SIFT.

Coding Stage. The coding stage maps x1, . . . ,xM into a
new representation u1, . . . ,uM , where ui ∈ RK with K
the dictionary size. The codes ui are obtained by minimiz-
ing the reconstruction error

ui =argmin
u
‖x−Du‖2F + λR(u)

s.t. C(u)
(1)

where D is a dictionary (fixed or learned from the data),
‖· ‖F is the Frobenius norm, and C is a (possible) con-
straint. Coding methods differ in the regularization term
R(u) and the constraints C(u). Examples are Vector
Quantization (VQ) [22], Sparse Coding (SC) [34] and
Locality-constrained Linear Coding (LLC) [33]. We rely
on LLC as a good compromise between performances and
a reduced computational cost.

Pooling Stage. The codes ui are local by definition, failing
to capture higher level image statistics. A pooling opera-
tor g is thus required, which gathers the codes located in S
overlapping regions Ys, s = 1...S, within a single vector

1The iCubWorld 1.0 Dataset can be downloaded from http://www.
iit.it/en/projects/data-sets.html
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Figure 3. General pipeline for a visual recognition system, where we contribute with a novel supervised pooling.

φs ∈ RK . Formally

φs = g(i∈Ys)(ui). (2)

Examples of simple pooling operators are average pooling
and max pooling. It has been shown that the latter obtains
the highest performances in classification tasks [2]. The fi-
nal descriptor of the image z ∈ RKS is the concatenation
of all the descriptors φs.

Max pooling on the spatial domain can be enriched by
taking into account the similarity of local features. In [3]
feature vectors from a given region s are clustered with K-
means, with a number of clustersK = P common to all the
regions. Features codes ui are pooled jointly considering
each spatial region s and each feature cluster p, so that

ωs,p = g(i∈Ys,j∈Xp)(ui,j). (3)

The final image descriptor z is the concatenation of all the
bin descriptors, thus reaches a considerable size z ∈ RKSP .

Classification. The final description is fed to a classifier. A
standard choice are SVMs [29] because of their computa-
tional efficiency in the classification stage. Codes obtained
through vector quantization usually require ad-hoc kernels
to obtain good performances, whereas sparse coding ap-
proaches have shown to be effectively combined with linear
classifiers, also ensuring real-time performances [34].

3. Combined pooling in image and feature
spaces

In this section we present our approach to pooling as a
combination of a standard max pooling over a spatial pyra-
mid and of a supervised weighted pooling on the feature
space. In the reminder of the section we first describe how
we formulate the two different pooling procedures, and then
concentrate on the feature space representation, which is the

main contribution of the paper. We conclude the section
with a description of the way we combined the two obtained
representations.

3.1. Separating the Image and Feature Domains

The image descriptor proposed in [3] is advantageous in
that it accounts for relevant configurations in the feature
space. However, it forces all the S spatial regions to be
partitioned in an equal number P of states within the fea-
ture space, leading to representations of equal length but
very different information content. In addition, semanti-
cally proximal features (e.g. features lying on a given ob-
ject) might be separated due to the regular grid of the spa-
tial pyramid. This is undesirable since such an adjacency in
feature space would not be reflected by the final description.
The image shown in Fig. 2 is an example of such a failure.

Here we slightly change perspective and propose a dif-
ferent combination of pooling in the image and feature
space, that leads also to a remarkable reduction in the image
descriptor dimension. Indeed notice that, while being true
that spatial cells and feature space bins are both designed to
capture the geometric properties of the objects, they oper-
ate on two very different domains, image and feature space
respectively. Therefore it seems more natural to perform
pooling separately. We propose to extract two distinct de-
scriptors, the first one Φ ∈ RKS derived by a standard SPR
on the image domain, the second one Ψ ∈ RKP encod-
ing the Feature Space Representation (FSR). These two de-
scriptors are obtained by concatenating vectors φs ∈ RK

and ψp ∈ RK separately:

Φ = [φ1, ..., φS ] (4)
Ψ = [ψ1, ..., ψP ] (5)



where

φs = g1(i∈Ys)
(ui) ∀s = 1, . . . , S (6)

ψp = g2(i∈Xp)
(ui) ∀p = 1, . . . , P. (7)

In our method g1 is the usual max pooling operator, while
g2 will be described in details later in the section. The final
image representation is then obtained by concatenating the
two descriptors z = [Φ,Ψ] ∈ RK(S+P ).

Notice that if we consider a standard dictionary sizeK =
1024, a spatial pyramid composed of 2l × 2l segments with
3 layers (S = 21) and P = 64 the image representation
proposed in [3] has a size 1.3E06, while our size would be
87040 (corresponding to a 6% of the descriptor proposed by
[3]).

3.2. Supervised pooling

In our approach the Feature Space Representation (FSR)
is built in a supervised way, taking into account the likeli-
hood of a given feature to be observed in an image belong-
ing to a given class. In other words, the representation is
aware of the statistically relevant properties of each class
individually.

Formally, we consider P = N bins, where N is the
number of classes of the problem under exam, and define
a weighted version of the max-pooling operator as follows

g2(i∈Xp)
(ui) = max

i
(wp

i ui) ∀p = 1, . . . , N (8)

and thus, according to Eq. 7,

ψp(j) = max
i
wp

i ui(j) ∀j = 1, . . . ,K. (9)

The weights wp
i have a natural interpretation as confi-

dence values reflecting how likely it is to observe the code
ui in an image depicting class p. Therefore, in princi-
ple, it would be ideal to set for each ui the weight wp

i =
P(Class = p|ui). However, since we do not have access to
such latent distribution, here we introduce a mid-level clas-
sification stage to estimate it.

The underlying idea is to train N classifiers able to rec-
ognize subregions of the image and then use their scores
as weights wp

i . Indeed, most classification algorithms are
somewhat related to the Bayes rule. For instance in bi-
nary settings, the predictor provided by Regularized Least
Squares (RLS) converges asymptotically to the target func-
tion E(y|x), that is the expectation of the class label, given
the input x [11]. In the multi-class case, by adopting a one-
vs-all approach to learn the label associated with each ui,
RLS would (asymptotically) provide the N score functions
fp(ui) = E(yp|ui) = P(yp = 1|ui), where we have associ-
ated label yp = 1 or 0 according to the presence or absence
of class p in the image.

From the discussion above, it is clear that RLS is exactly
recovering the desired value for the wp

i s. However in
this work we used a Support Vector Machine (SVM) [29]
algorithm to perform this mid-level classification, after we
empirically observed that the two algorithms lead to com-
parable performances (see [5] for exhaustive comparisons).
Indeed, such evaluation needs to be performed several
times for each image, causing a demanding computation.
One advantage of SVM is that it reduces the computational
effort in classification due to the sparse set of support
vectors identified during training.

Mid-Level Classification Weights (MLCW). We now de-
scribe in details how we estimate the weights. Similarly to
[2] we consider mid-level features, pooling together coded
SIFTs belonging to a small spatial neighborhood into a sin-
gle descriptor φs ∈ RK . This descriptor is more robust to
noise than considering single codes independently, and it
gives invariance for small changes in the images.

More in details we consider a single level l from the
SPR – with small cell size – and decompose the images in
the corresponding 2l × 2l cells. The codes in each cell s
are pooled together with max pooling obtaining a mid-level
(or object part) descriptor φs ∈ RK which is then fed to
N classifiers (linear SVMs in our case). They produce N
scores for each descriptor: fp(φs) p = 1, . . . , N which we
use as weights w1

s , . . . , w
N
s for all the codes ui belonging

to the cell s. Fig. 4 provides a visual intuition of the method.

Combining SPR & FSR. The simplest way to combine the
descriptors Φ ∈ RKS for the SPR and Ψ ∈ RKP for
the FSR is to concatenate them. However, depending on
the type of data, one part could be more useful than an-
other. A more effective method to combine heterogeneous
features is Multiple Kernel Learning (MKL) based on the
idea of comparing each feature with an appropriate kernel
independently. Then a global kernel Kopt is obtained as a
weighted sum of such contributions, where the weights are
learnt from data. We use a linear combination of kernels:

Kopt(zi, zj) = dSKS(Φi,Φj) + dPKP (Ψi,Ψj) (10)

with KS and KP linear kernels on SPR and FSR respec-
tively. The weights are learned using the work of Varma
and Ray [30]. We refer the reader to [30, 32] for all the
details on the method adopted.

4. Experiments
In this section we experimentally validate the proposed

method on visual recognition tasks. We compare our results
with the most recent state-of-art works, with specific refer-
ence to approaches using the coding-pooling classification
pipeline we also consider.



Figure 4. A visual intuition of the mid-level classification stage for the weighted pooling in the feature space (see text for the details). The
estimated weights are associated with the various semantic classes and give an impression of what a certain classifier is able to see in the
image. In the example, higher weights correspond to a higher alpha channel values: the class Accordion “can see” the input image better
that the class Airplane.

We evaluate our method on three datasets – PASCAL
VOC 2007 [10], Caltech-256 [17] and the iCubWorld 1.0
Dataset, that respond to different challenges typical of vi-
sual recognition problems. The PASCAL and Caltech-256
are two popular reference benchmarks for image categoriza-
tion, characterized by a relevant intra-class variability. On
the contrary, the iCubWorld refers to the problem of recog-
nizing specific objects instances. iCubWorld images have a
strong structured background that does not favor the use of
context information within the recognition problem. More-
over, the demonstrator’s or robot’s hands are always present
and act as distractors when building the representation. Fi-
nally, the iCubWorld dataset has no spatial bias: objects can
occupy different parts of the image of different size and pro-
portion. In the remainder of the section we describe in detail
the experimental analysis.

4.1. Implementation Details

We provide here all the system parameters to favor the
reproducibility of the presented results. We denote with N
the number of classes (categories or objects), K is the size of
the dictionary, S the number of states on the spatial layout
of the image, while P is the number of states of the feature
space. As for the local feature extraction, we use a dense
grid of SIFTs located every 8 pixels and extracted from 16×
16 image patches. In the coding stage we set the dictionary
size K = 4096 for Caltech-256 and PASCAL VOC 2007,
while K = 1024 for the iCubWorld 1.0 Dataset.

For the spatial layout we use standard 2l × 2l segments
with scales l = 0, 1, 2 (S = 21) for the Caltech-256 and
iCubWorld 1.0, whereas in the PASCAL Benchmarks we
use the layout suggested by the winner of the VOC 2007

[24] (S=8). Mid-level object classifiers of Sec. 3.2 have
been trained on the scale pyramid level l = 4. Our partition
within the feature space is induced by the membership of
codes to the class, thus P = N .

4.2. PASCAL VOC 2007

PASCAL is a challenging dataset composed by images
of 20 object categories gathered from Flickr and character-
ized by a high variability of viewing angle, illumination, ob-
jects size, pose and appearance. Also, occlusions are quite
frequent. The classification performance is evaluated using
the Average Precision (AP) measure, the standard metric
used by PASCAL challenge [10].
We start off by evaluating the benefit of our weighted su-
pervised pooling and compare in Table 1 our approach with
two reference methods. The first one is max pooling on a
standard SPR [33]. To allow for a fair comparison, we ran
the code provided by the authors on SIFT features and set
the same parameters we adopted in our method. The next
one is the pooling method suggested by [3]. In this case,
lacking a publicly available code, we relied on our imple-
mentation and set P = 16, which seems a good tradeoff
between accuracy and descriptor size according to [3]. As
for our method, we report the performances achieved by
simply concatenating the two contributions of our image de-
scription (MLCW), and after having applied multiple kernel
learning (MLCW+MKL).
As shown in Table 1, the pooling method we propose sys-
tematically outperforms the other approaches. This is con-
sistent with the performances reported in the literature. An
interesting contribution is proposed in [26] where the au-
thors report a very similar performance (57.2%, obtained



plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv AP

max pooling [33] 68.2 57.7 39.9 61.6 24.0 57.4 73.4 53.5 49.7 36.9 42.3 39.6 73.4 62.2 79.4 23.8 42.7 48.4 68.0 47.7 52.5

pooling in [3] 68.4 56.9 41.1 62.9 23.8 58.8 73.9 53.4 50.1 37.2 41.7 40.4 74.3 62.1 79.5 24.1 42.4 49.3 68.8 48.8 52.8

OCP [26] 74.2 63.1 45.1 65.9 29.5 64.7 79.2 61.4 51.0 45.0 54.8 45.4 76.3 67.1 84.4 21.8 44.3 48.8 70.7 51.7 57.2

MLCW 70.5 58.6 42.9 61.6 28.3 59.4 74.8 54.8 51.4 39.4 44.3 41.4 74.9 65.5 81.8 27.6 43.9 48.9 69.9 49.8 54.5

MLCW + MKL 74.2 62.5 49.8 59.3 32.6 62.7 78.8 56.1 52.1 43.2 48.1 45.6 78.7 63.3 88.7 31.5 47.3 52.3 73.2 51.1 57.5

Table 1. Classification results (AP in %) on PASCAL VOC 2007 with different pooling strategies. Coding is always performed with LLC.

Figure 5. The iCubWorld 1.0 Dataset. Samples of the 7 classes
collected for the robot (top strip) and human (bottom strip)
datasets.

with DHOG features and a dictionary of K = 8192 atoms)
adopting a pooling strategy that assumes a prior on the lo-
cation of the object of interest. This speaks in favor of the
capability of our method of implicitly dealing with objects
in general unknown locations within the image. We finally
observe that the results reported in [33] (59.3%) are higher
than the ones we obtained running their code. This was also
observed in [26] and might be due to the different low-level
features and the possible presence of post-processing of the
resulting image features.
The current winners of VOC Challenge 2012 [4, 28] ob-
tain high accuracy results, with an AP of 64.7% [4], how-
ever their approach is based on a combination of multi-
ple features (SIFT,HOG,LBP) and object detectors coupled
with a visual saliency map. Moreover, these remarkable re-
sults have been obtained specifically on the PASCAL VOC
Datasets, whereas our goal is to build a general image rep-
resentation able to generalize in different contexts.

Method Training Class Size
15 30 45 60

max pooling [33] 32.0 38.4 42.2 44.3
pooling in [3] 32.8 39.0 42.8 45.4
MLCW 34.1 39.9 42.4 45.6
MLCW + MKL 35.2 40.1 44.9 47.9

Table 2. Classification results (Average accuracy (%)) on Caltech-
256 as the size of the training set increases. Coding is always
performed with LLC.

4.3. Caltech-256

This Caltech-256 dataset consists of 256 object cate-
gories. Similarly to Sec. 4.2, we first specifically evaluated

the pooling strategy we are proposing. According to pre-
vious works, we report in Table 2 the average accuracy for
different sizes of the training set. Once again, our method
achieves the best performances.
For a more complete comparison with related works, we
summarize in Table 3 the accuracies published for a selec-
tion of recent methods from state-of-art. Since the results
have been obtained under different conditions, we also re-
port some details on the setting they refer to. Although
slightly higher, our method is comparable with the works
in [3, 15]. As for the first, the same considerations we did
referring to the PASCAL dataset hold here, which may sug-
gest some possible improvements of our method (for in-
stance with different features). A comparison with [15]
is more difficult since no public code is available, and we
failed implementing the method since the alternate opti-
mization procedure proposed by the authors has no clear
theoretical grounds.
Table 4 reports a further analysis of the benefit of our Fea-
ture Space Representation. Here the comparison is carried
out without the boost of the spatial pyramid. In our case we
use the FSR only, discarding the spatial representation en-
tirely, while for other methods we only consider the initial
level of the pyramid (l = 0). This is the fairest comparison
between our approach and [3]: in both cases we represent
the image by partitioning the feature space on the overall
image (and in both cases we obtain a representation of size
KP even if P has a different meaning in the two approaches).
We report results on different training set sizes and on two
different dictionary sizes. In both setting our approach im-
proves previous results of about 5%, suggesting for us the
possibility of exploiting only a features space learnt from
(labeled) data.

4.4. iCubWorld 1.0 Dataset

Finally, we evaluate the proposed supervised pooling
method in a real Human-Robot Interaction (HRI) setting.
This analysis is conducted over two sets obtained by col-
lecting images from the cameras of the iCub robot [25] in
different settings, the Robot Mode and the Human Mode
(see Fig. 5). We considered 7 object classes, and acquired
image sequences of 500 frames per class (per modality), for
both the training and the test phase respectively. The recog-
nition has been performed per frame, temporal information



Method #Train. Feature Pooling K Descr. length Avg. acc. (%)
Wang et al.[33] 60 HOG max pooling 4096 SK 47.7
Yang et al.[34] 60 SIFT max pooling 1024 SK 40.1
Gemert et al. (from [33]) 30(*) SIFT bag-of-words 128 K 27.2
Boureau et al.[3] 30(*) SIFT max pooling 1024 KPS 41.7
Gao et al. [16] 60 SIFT max pooling 1024 SK 40.4
Harata et al. [18] 15(*) SIFT max pooling 1024 SK 30.2
Feng et al. [15] 45(**) SIFT geom. pooling 4096 SK 47.3
proposed 60 SIFT superv. weight. max pool. 4096 K(N+S) 47.9

Table 3. Comparison with state-of-art methods on Caltech-256. All methods are based on a 3-level standard spatial pyramid. Values
denoted with (*) refer to the only training set size reported in the corresponding paper. In all the other cases, we report the size of the
best-performing training set among a selection of possibilities, typically in {15,30,45,60}. In (**) 60 is not reported.

K Method
Training Class Size
15 30 60

4096
max pooling [33] (l=0) 23.7 29.3 33.9
pooling in [3] (l=0) 24.2 29.9 34.8
MLCW (no spatial info.) 29.1 34.7 40.8

256
max pooling [33] (l=0) 7.9 9.5 12.1
pooling in [3] (l=0) 9.9 11.8 13.8
MLCW (no spatial info.) 12.0 17.0 20.0

Table 4. Accuracy (%) of our FSR based on MLCW and com-
parison with other pooling methods without the boost of a spatial
pyramid (see text).

is not used. The two datasets have been recorded in natural
and realistic way, more information can be found at http:
//www.iit.it/en/projects/data-sets.html.
The Robot Mode dataset contains images acquired while the
objects of interest were held in the iCub hand and the robot
was moving its own arm in order to observe them from mul-
tiple points of view. By exploiting the known forward kine-
matics of the system it was possible to extract from each
image a bounding a box around the robot manipulator, and
therefore around the hand-held object.
The Human Mode dataset contains images depicting a hu-
man actor holding one of the seven objects of interest in his
hand and showing it to the robot. The robot was actively
tracking the object, granting a certain degree of background
variability to the images. During the acquisition the object
of interests are presented to the robot from multiple points
of view. It was possible to estimate a bounding box around
the moving object by exploiting an independent motion de-
tection algorithm [6, 12]. Since in both cases the bound-
ing boxes have been computed automatically, we can safely
assume there is no bias on the position of the object of in-
terest in the image. Classification results are summarized
in Tab. 5: in this robotics scenario our supervised image
representation boosts the performances of current state of
the art methods, with and without the contribution of a spa-
tial pyramid. Notably, even when no spatial information

Method Acc. RM (%) Acc. HM (%)

max pooling [33], l=0 70.11 65.91
pooling as [3], l=0 78.00 68.37
MLCW (no spat. info.) 81.97 73.34
max pooling [33], l={0,1,2} 83.37 75.37
pooling as [3], l={0,1,2} 84.20 76.73
MLCW, l={0,1,2} 86.28 77.28
MLCW + MKL, l={0,1,2} 87.14 78.34

Table 5. Accuracy (%) on the iCubWorld 1.0, for both Robot Mode
(RM) and Human Mode (HM). Coding is performed with LLC.

is employed, the accuracy is high. This suggests that, in
Human-Robot Interaction (HRI) settings and more in gen-
eral when we can not rely on a prior on the object position in
the image, hand-crafted image regions may not be a suitable
choice for pooling.

5. Discussion

We proposed a novel supervised pooling method for vi-
sual recognition systems. We designed an image descrip-
tion that combines spatial arrangement of objects (with the
classical Spatial Pyramid Representation) and their seman-
tics (with a novel Feature Space Representation) by means
of Multiple Kernel Learning. Data supervision was used to
devise a weighted pooling strategy, where the weights are
related to the coherence of a given feature code with respect
to a particular class of objects. Results on standard com-
puter vision benchmarks as well as HRI scenarios showed
that the proposed approach effectively boosts current visual
recognition system performances and helps attenuating the
effect of the spatial bias of many image datasets. Indeed,
all the examples shown in Figure 1 were correctly classi-
fied by our method and they were not by a standard SPR.
See also the image in Figure 2: an object lies on a side of
the image. A SPR (as in (B)) fails to correctly classify the
object because it is misaligned with the center of the im-
age. The same happens with [3]: if the spatial bin is wrong

http://www.iit.it/en/projects/data-sets.html
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also the configuration space it is going to be poorly repre-
sented. In our case, the combination of a semantic pooling
(B+C) allows us to obtain a correct classification: part of
the objects are weighted properly and the related features
will have higher impact on the final descriptor.

References
[1] H. Bay, A. Ess, T. Tuytelaars, and L. Vangool. Speeded-up

robust features. CVIU, 110, 2008. 2
[2] Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning

mid-level features for recognition. In CVPR, 2010. 1, 3, 4
[3] Y.-L. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. LeCun.

Ask the locals: multi-way local pooling for image recogni-
tion. In ICCV, 2011. 1, 2, 3, 4, 5, 6, 7

[4] Q. Chen, Z. Song, Z. Hua, H. Y., and S. Yan. Hierarchical
matching with side information for image classification. In
CVPR, 2012. 1, 6

[5] C. Ciliberto, S. Fanello, M. Santoro, L. Natale, G. Metta, and
L. Rosasco. On the impact of learning hierarchical represen-
tations for visual recognition in robotics. In IROS, 2013. 4

[6] C. Ciliberto, U. Pattacini, L. Natale, F. Nori, and G. Metta.
Reexamining lucas-kanade method for real-time indepen-
dent motion detection: Application to the icub humanoid
robot. In IROS, 2011. 7

[7] G. Csurka, C. Dance, L. Fan, J. Willamowski, and
C. BrayLixin. Visual categorization with bags of keypoints.
In W. on Statistical Learning in Computer Vision, ECCV,
2004. 1

[8] A. Destrero, C. De Mol, F. Odone, and V. A. A sparsity-
enforcing method for learning face features. Trans. on IP,
18, 2009. 1

[9] N. M. Elfiky, J. Gonzlez, and F. X. Roca. Compact and adap-
tive spatial pyramids for scene recognition. Image Vision
Comput., 30(8):492–500, 2012. 2

[10] M. Everingham, L. Gool, C. Williams, J. Winn, and A. Zis-
serman. The pascal visual object classes (voc) challenge.
IJCV, 2010. 1, 5

[11] T. Evgeniou, M. Pontil, and T. Poggio. Regularization net-
works and support vector machines. Advances in Computa-
tional Mathematics, 2000. 4

[12] S. R. Fanello, C. Ciliberto, L. Natale, and G. Metta.
Weakly supervised strategies for natural object recognition
in robotics. ICRA, 2013. 7

[13] S. R. Fanello, N. Noceti, G. Metta, and F. Odone. Multi-class
image classification: Sparsity does it better. VISAPP, 2013.
1

[14] L. Fei-fei and P. Perona. A bayesian hierarchical model for
learning natural scene categories. In CVPR, 2005. 2

[15] J. Feng, B. Ni, Q. Tian, and S. Yan. Geometric lp-norm
feature pooling for image classification. In CVPR, 2011. 1,
2, 6, 7

[16] S. Gao, I. W.-H. Tsang, L.-T. Chia, and P. Zhao. Local fea-
tures are not lonely - laplacian sparse coding for image clas-
sification. In CVPR, 2010. 7

[17] G. Griffin, A. Holub, and P. Perona. Caltech-256 object cat-
egory dataset. Technical report, California Institute of Tech-
nology, 2007. 5

[18] T. Harada, Y. Ushiku, Y. Yamashita, and Y. Kuniyoshi. Dis-
criminative spatial pyramid. In CVPR, 2011. 7

[19] K. Huang and S. Aviyente. Wavelet feature selection for im-
age classification. Trans on IP, 17, 2008. 1

[20] Y. Jia, C. Huang, and T. Darrell. Beyond spatial pyramids:
Receptive field learning for pooled image features. In CVPR,
2012. 1

[21] S. Kong and D. Wang. A dictionary learning approach for
classification: separating the particularity and the common-
ality. In ECCV, 2012. 1

[22] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In CVPR, 2006. 1, 2

[23] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60, 2004. 2

[24] M. Marszalek, C. Schmid, H. Harzallah, and J. Van De Wei-
jer. Learning Object Representations for Visual Object
Class Recognition. Visual Recognition Challange Workshop,
ICCV, 2007. 1, 5

[25] G. Metta, G. Sandini, D. Vernon, L. Natale, and F. Nori. The
icub humanoid robot: an open platform for research in em-
bodied cognition. In 8th Work. on Performance Metrics for
Intelligent Systems, 2008. 6

[26] O. Russakovsky, Y. Lin, K. Yu, and L. Fei-Fei. Object-
centric spatial pooling for image classification. In ECCV,
2012. 1, 5, 6

[27] G. Sharma and F. Jurie. Learning discriminative spatial rep-
resentation for image classification. In BMVC, 2011. 2

[28] Z. Song, Q. Chen, Z. Huang, Y. Hua, and S. Yan. Contex-
tualizing object detection and classification. In CVPR, 2011.
6

[29] V. Vapnik. Statistical Learning Theory. John Wiley and
Sons, Inc., 1998. 3, 4

[30] M. Varma and D. Ray. Learning the discriminative power-
invariance trade-off. ICCV, 2007. 4

[31] P. Viola and M. Jones. Robust real-time face detection. IJCV,
57, 2004. 1

[32] S. V. N. Vishwanathan, Z. Sun, N. Theera-Ampornpunt, and
M. Varma. Multiple kernel learning and the SMO algorithm.
Adv. in Neural Information Processing Systems, 2010. 2, 4

[33] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.
Locality-constrained linear coding for image classification.
In CVPR, 2010. 2, 5, 6, 7

[34] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyra-
mid matching using sparse coding for image classification.
In CVPR, 2009. 1, 2, 3, 7

[35] J. Yang, K. Yu, and T. Huang. Efficient highly over-complete
sparse coding using a mixture model. In ECCV, 2010. 1

[36] X. Zhou, K. Yu, T. Zhang, and T. Huang. Image classifica-
tion using super-vector coding of local image descriptors. In
ECCV, 2010. 1


