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Abstract

A main theme in object detection are currently discrim-
inative part-based models. The powerful model that com-
bines all parts is then typically only feasible for few con-
stituents, which are in turn iteratively trained to make them
as strong as possible. We follow the opposite strategy by
randomly sampling a large number of instance specific part
classifiers. Due to their number, we cannot directly train a
powerful classifier to combine all parts. Therefore, we ran-
domly group them into fewer, overlapping compositions that
are trained using a maximum-margin approach. In contrast
to the common rationale of compositional approaches, we
do not aim for semantically meaningful ensembles. Rather
we seek randomized compositions that are discriminative
and generalize over all instances of a category. Our ap-
proach not only localizes objects in cluttered scenes, but
also explains them by parsing with compositions and their
constituent parts.

We conducted experiments on PASCAL VOC07, on the
VOC10 evaluation server, and on the MITIndoor scene
dataset. To the best of our knowledge, our randomized max-
margin compositions (RM2C) are the currently best per-
forming single class object detector using only HOG fea-
tures. Moreover, the individual contributions of composi-
tions and their parts are evaluated in separate experiments
that demonstrate their potential.

1. Introduction

Discriminative part-based models currently constitute
one of the most popular and powerful paradigms for the
challenging problem of category-level object detection such
as PASCAL VOC [9]. The underlying rationale is to use
a small number of informative parts and combine them
with a powerful discriminative approach such as the de-
formable part model [12] based on their appearance and
location. This framework typically restricts such discrim-
inative methods as [12, 32] to only few parts, as opposed to

Figure 1. Object detection and parsing with randomized max-
margin compositions (RM2C). The discriminative approach not
only detects object, but also activates compositions according to
the classification function g(F (I)). Compositions in turn activate
parts i (we plot the corresponding positive training patch xp) by
weighting them according to the decision function fk.

weaker spatial models such as bag-of-features [6], Hough
voting [21], or generative methods such as [11, 18, 28]. An-
other paradigm is to use extra manual part labellings as in
[3], which is only feasible for a limited number of parts.
In contrast we aim for a large number of specific but weak
parts (on the order of 1000 per category) that are automat-
ically learned on comparably few training samples (around
100 positives per class) without requiring extra annotations.
Each of these parts is trained on only a small region of a
single positive sample against negatives. In contrast to other
part-based methods such as [8, 16, 22, 29], we compensate
for the weakness of specialized, local, and frail parts by
grouping them into stronger compositions that exhibit im-
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Figure 2. a) shows the compositional representation hierarchy and b) the detection procedure of our randomized max-margin compositions.
Part classifiers responses are pooled at different locations before aggregating them in randomized, discriminatively trained compositions.
All compositions then join in a final combined classifier g(·).

proved generalization ability. Compositionality [15, 23] is
a powerful principle for reducing the representational com-
plexity to render learning of structured models feasible. We
deviate from the common rationale of compositional hi-
erarchies [13, 15, 17, 24, 28] that establish meticulously
arranged, semantically meaningful compositions. Rather
we show that multiple overlapping randomized composi-
tions trained using a max-margin approach generalize sig-
nificantly better to new category instances compared to the
original parts and thus yield improved performance. Com-
positions are then all combined by a final non-linear deci-
sion function in a third layer of this hierarchy of discrimi-
native classifiers, with part classifiers and the compositional
classifiers in the two preceding stages (see Fig. 2).

We thoroughly evaluate the individual contributions and
crucial modeling decisions of our model. Experiments
are conducted on the well-established, competitive bench-
mark detection challenges of PASCAL VOC 2007, using
the VOC 2010 evaluation server [9], and on the challenging
MITIndoor scene recognition dataset of [27]. Our random-
ized max-margin compositions (RM2C) show, to the best of
our knowledge the currently best performance using only
HOG features for single class object detection, i.e. with-
out any postprocessing exploiting interactions of multiple
object classifiers trained for different classes.

Moreover, the experimental analysis underlines the ne-
cessity of large numbers of specific parts because of their
mutual unrelatedness and low generalization ability. We
also observe that randomly sampling compositions signif-
icantly outperforms individual parts, a location based part
grouping, and a clustering based on visual similarity. Fi-
nally, we show that our approach not only localizes object
bounding boxes, but that, although being discriminative, it
parses their content to thoroughly explain a test object with
the randomized compositional model (cf. Fig. 1). We then
propose a novel evaluation setup for part-based models on
PASCAL VOC 2010 that allows measuring the accuracy of
arbitrary individual parts. We believe that this new experi-

mental protocol is crucial to thoroughly evaluate the inter-
mediate components of hierarchical part-based methods.

2. Related Work
A popular and powerful approach for discriminative

part-based object recognition is the deformable part model
(DPM) suggested by Felzenszwalb et al. [12]. The model
trains a latent support vector machine to discover the hid-
den locations of a fixed number of parts. Zhu et al. [32] ex-
tended this idea and suggested a deeper hierarchy of parts
which is trained using a structural SVM. Recently Song et
al. [30] suggested a discriminative and-or tree model to au-
tomatically learn the configuration of parts. Since the spa-
tial configuration needs to be learned in the training phase,
the number of parts is quite restricted. This results in a
small set of very general parts that typically correspond to
a whole aspect. Contrary to this, our framework is able to
handle a very large number of specialized parts. Due to
the great number of parts our approach can not only de-
tect object bounding boxes but also provides a parsing of
its content (see Fig. 1). Endres et al. [8] are avoiding a
structured model and use a simple method that pools part re-
sponses over proposed object regions with a boosting clas-
sifier. Similarly to our approach they start by using part-
based exemplar SVM [22]. However, one of the main chal-
lenges solved in [8] is how to refine these simple but spe-
cialized classifiers to get a smaller more general set of part-
classifiers. In addition there has been work on incorporating
strong supervision to train part-based object detection mod-
els such as [1] and [3] and on different classifiers such as
Random Forests [4].

Part-based approaches are recently also becoming more
popular for scene classification. Pandey et al. [25] adapted
the deformable part model for scene classification. On the
other hand there are holistic representations such as object
bank [20] that require a supervised training of object clas-
sifiers. Compositional hierarchies [15, 23] have been pro-
posed to bridge the large gap between local features or parts



and the whole object or scene. The fundamental goal is to
establish one or more successive representational layers by
grouping parts, thus obtaining a hierarchy of successively
larger and more meaningful compositions [13, 15, 17, 28].
In contrast to this delicate assembly of compositions, which
is common to these approaches, we show that randomized
discriminative compositions are ideal for robust aggregation
of specialized parts, thus yielding significant performance
improvements.

Similar to the discriminative training of intermediate
compositions in [24], [29] train mid-level patch classifiers.
[16] followed this idea but started from individual exemplar
SVM classifiers which are used to mine more positive sam-
ples instead of performing an unsupervised clustering as in
[29]. Since [29] and [16] are discovering parts in an unsu-
pervised manner they need to solve the problem of finding a
good positive training set for parts using clustering, positive
mining etc. which is as difficult as the scene classification
problem itself. Therefore, our aim is not to make parts more
general, but rather to train compositions that generalize bet-
ter than the specialized part classifiers they aggregate.

3. A Compositional Approach to Discrimina-
tive Part-based Recognition

Let us assume for now that we have semi-local features
and part classifiers that are specifically trained for individ-
ual instances of an object category. We discuss the training
of these parts in Sect. 3.3 and provide the classifiers on the
project site 1. Due to the specific nature of such parts, a large
number of them is necessary to capture all relevant charac-
teristics of complex object categories. However, training a
powerful discriminative model, e.g., a non-linear classifier,
on a limited training set, is not feasible based on the high-
dimensional combination of a large number of parts. To
avoid overfitting we aggregate parts in fewer, overlapping
compositions, each capturing a previously learned, random
set of parts. These compositions, that can be shared across
instances of a category, are all gathering different observa-
tions due to the random selection of parts and thus gener-
alize better to novel samples. Sect. 3.1 presents our com-
positional model before discussing part classifiers and their
training in the following sections.

3.1. Randomized Max-Margin Compositions

Assume we have already trained a large set of part classi-
fiers (typically around P = 1000 per category), which will
be described in Sec. 3.3. For some image site ν the classi-
fier of part i is evaluated densely within this region and the
detection scores are pooled yielding a response πi(ν) ∈ R
as will be discussed in Sect. 3.2 . At each image site all
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Figure 3. Maximal
absolute correlation
of a part to any
other part evaluated
over all categories
of VOC 2007. Most
parts are highly un-
correlated, i.e. 95%
of parts have a cor-
relation of less than
.5 to any other.

parts are evaluated. The common approach is then for all
sites ν ∈ I on a regular grid within an object bounding
box I to concatenate all part responses. Given the large
number of parts this would yield a very high dimensional
representation (on average far beyond 20 000-D). In light of
the curse of dimensionality, learning object models with this
high dimensional representation on a limited set of positive
training samples (for PASCAL VOC typically on the order
of 100) is inappropriate. One might speculate that there is
significant redundancy when a large number of part classi-
fiers is applied to an object, so that grouping related parts
or subspace methods could significantly reduce dimension-
ality. However, since each part classifier represents a single
positive object region (Sec. 3.3), we observe that their re-
sponses are highly uncorrelated (cf. Fig. 3). Consequently,
applying principle component analysis, 90% of the original
dimensionality retains only about 40% of the variance.

The πi(·) are essentially trained to act as specialists,
each specifically trained for an individual part instance from
training. Therefore, we propose to group the responses of
all parts i at sites ν to create K groups of part responses
K << P . Each comprises a large number of part responses
and thus generalizes better than individual parts to the large
number of instances from an object category. More pre-
cisely, let π := {πi(ν),∀i, ν} and P(π) be the powerset
of all responses then we seek K compositions γk ⊂ P(π).
When applying a composition to a candidate object bound-
ing box I, we obtain a |γk|-dimensional response γk(I).
Following upon the part classifiers, the groups establish a
second level in a classifier hierarchy. To render the learn-
ing problem feasible, this second level is comprised by lin-
ear classifiers fk(·) trained with hinge loss in a max-margin
fashion,

min
w

1

2
‖w‖22 + C

∑
I∈T

max(0, 1− yIfk(γk(I))) (1)

where fk(γk(I)) = wTk γk(I) + bk, T denotes the set of
training bounding boxes and yI ∈ {−1, 1} is the class label
of the bounding box I ∈ T . Now the questions remains,
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how to obtain the γk. From the experiment in Fig. 3 we
see that the appearance-based part responses πi(ν) at loca-
tions ν are uncorrelated. Without any extra annotation as
in [3] we can from this experiment already suspect that an
unsupervised grouping of parts based on their appearance
and location will not be desirable. And indeed, combining
parts based on similarity in appearance and location using
agglomerative clustering (Wards method) does not yield a
significant improvement of groups compared to their con-
stituent parts. We experimented with different grouping
strategies and measured the performance of the first level
compositional classifiers fk(·) in terms of average precision
on a validation set. Fig. 4 shows the cumulative frequency
of group classifiers fk(·) , i.e., the fraction of classifiers
that succeed a certain average precision. When grouping
parts based on their location we observe little gain over the
baseline of singleton part groups. An agglomerative clus-
tering based on visual similarity yields a larger improve-
ment over the individual part performance. To achieve a
further significant gain we propose to randomize the forma-
tion of compositions. Therefore mutually overlapping part
response vectors γk are drawn randomly from P(π). To
simplify their subsequent combination, we demand all γk
to have a fixed size |γk| = L. Crossvalidation has shown
L=3000 (part,location) pairs to yield optimal performance,
but the fluctuation within reasonable range was insignifi-
cant. Fig. 4 shows that randomized compositions general-
ize significantly better than clustering parts based on their
visual similarity. One might conclude that randomization
avoids overfitting by not using visual information twice, i.e.,
for defining the part classifiers and for clustering them based
on visual similarity.

Now we have a manageable number of compositions,
each being significantly more informative than the large
number of initial parts. Thus, training a non-linear clas-
sifier g(f1(·), . . . , fK(·)) that establishes a third level in the
already existing hierarchy of classifiers becomes feasible.
Let F (·) = (f1(·), ..., fK(·))> be the low dimensional fea-
ture descriptor that concatenates the K decision values (we
useK = 50) fk(·) of the second level group classifiers. The
final third level classifier is then trained by optimizing

max
α

∑
I∈T

αI−
1

2

∑
I∈T

∑
I′∈T

αIαI′ yIyI′κ(F (I), F (I ′)) (2)

with the radial basis function (RBF) kernel given by
κ(F (I), F (I ′)) = exp(−‖F (I)−F (I′)‖22

2σ2 ). The resulting
decision function is g(F (I)) =

∑
I′∈T αIκ(F (I), F (I ′)).

3.2. Part Responses on Image Sites

Evaluating a part classifier i only once per image site ν
leads to noisy results, since the regular spatial grid of sites
is too coarse to deal with local deformations. If a part in an
image would be shifted or scaled, so that it is not aligned

individual parts (4.94%)

location-based grouping (7.45%)

randomized compositions (51.7%)

Figure 4. Comparing
different group-
ing strategies for
assembling com-
positions on VOC
2007 bicycle. Cu-
mulative frequency
of group classifiers
fk(·) w.r.t. their
average precision.

with a site ν we might miss it. Therefore, we follow com-
mon practice and sample local features xj densely using a
sliding window at all locations/scales j ∈ ν within sites. To
get the sites we use regular grids of size 1 × 1, 2 × 2 and
4 × 4. As feature we use HOG and for the j we use the
location/scale pyramid of [12]. As a result we obtain clas-
sifier scores hi(xj) for each part (cf. Sect. 3.3). The part
response to a site is then defined by max pooling over all
locations/scales within ν,

πi(ν) = max
j∈ν

hi(xj). (3)

This aggregation of part responses on a spatial grid has been
shown to work well in different vision problems [19, 20,
29].

3.3. Learning Parts without Part Annotation

Learning part models without annotation of parts is a
challenging problem. Without extra annotation, the task
of finding corresponding parts in different object bounding
boxes turns out to be as difficult as finding the object itself,
since the locality of parts leads to ambiguities. Thus parts
are typically detected conjointly, linked by a spatial model
that enforces spatial consistency. However, when learning
a part, we have neither an object model provided nor any
other parts. Thus, finding all instances of a part in all train-
ing images is daunting. And indeed it was shown that clus-
tering based on the distance of features (e.g. HOG) is not
very reliable [14, 29]. The problem is then that incorrect
groups of parts at this initial stage will lead to mistakes that
accumulate during later stages. We therefore train part mod-
els with just a single positive sample and a set of negatives
as suggested by [22]. To obtain the positive part samples we
randomly select a large number of patches at different loca-
tions and scales within training bounding boxes. All parts
together should exhibit a good coverage of all training im-
ages. Therefore, we do not want to get very similar patches
with high overlap in the same bounding box and therefore
restrict the overlap between sampled patches in the bound-
ing box to be less than 20%. Additionally we restrict the



number of parts per box and sample a maximum of 20 parts.
Note, that significantly less parts maybe sampled if the ob-
ject bounding box is very small. Now we have one positive
sample xp per part, and similar to [22] we perform negative
mining on up to 2500 images to obtain a set of negativesN .
The corresponding classification function hi is

min
ω

1

2
‖ωi‖22+C1 max(0, 1−hi(xp))+C2

∑
x∈N

max(0, 1+hi(x))

(4)
were hi(x) = ωTi x + βi. The part features x are HOG
descriptors [7] using 25 cells that are fitted to the part as
in ESVM [22]. The number of pixels per cell depends on
the scale on which the part was sampled. The minimum
cell size is 4 pixels. In our framework the trained exemplar
SVMs act as specialized parts. One might think that a part
classifier trained on one positive sample is overfitting badly
and therefore performance of the individual parts might be
very poor compared to more general parts using a larger set
of positive training samples. To get an idea of the qual-
ity we are evaluating the individual performance of the part
classifiers in the next section.

Recognition Phase To perform object detection in a
novel test image (see Fig. 2b) we first need to extract HOG
descriptors xj and run part classifiers hi(xj). Then we pool
part responses using Eq. 3 into πi(ν) before running the
composition classifiers fk(·). Finally we evaluate g(F (·))
to combine all compositions using the non-linear classifier.

3.4. Part Evaluation

To evaluate the performance of our part classifiers we are
using the keypoint annotation of [2] for the PASCAL 2010
dataset. However, in contrast to poselets this is here merely
for our subsequent evaluation and not for training. Since
our parts are trained in an unsupervised manner using HOG
features we are comparing the performance of our parts to
those of the Deformable Part Model (DPM) [12] which are
using a similar setup. In contrast to our parts the DPM parts
are much more general since they are trained on all training
images from an aspect of a category.

To evaluate the detection performance of individual parts
we first need to generate groundtruth on which we can test.
In contrast to [3] there are no annotations specific to our
parts, but the idea is to measure how much a part shifts be-
tween training and testing relative to the existing keypoint
annotation of [3]. For the positive training sample xp that
defines the part we therefore measure its euclidean distances
to all keypoints within the object bounding box. During
detection we again compute the distances to the same key-
points. Comparing the training and test vector of keypoint
distances thus defines a similarity measure. Now we can
rank parts according to their mean average precision, i.e.,
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Figure 5. Performance
comparison of the 48
DPM parts with our ran-
domly sampled parts (also
a subset of 48) in terms
of average precision, see
Sect.3.4

how good they are in detecting a similar object region as
they were trained upon, where similarity is measured with
respect to annotated semantic landmarks from [3]. Fig. 5
compares the 48 DPM parts [12] with the randomly sam-
pled parts from Sect. 3.3 (also a subset of 48). We observe
that in the large pool of weak parts there is still a sufficient
number of parts that have favorable detection performance
compared to the DPM parts.

4. Experiments
In our experiments we are providing object recognition

and scene classification results on three of the most chal-
lenging datasets. For object recognition we are evaluating
our approach on PASCAL VOC 2007 and 2010 . The scene
classification results are evaluated on the MITIndoor dataset
[27]. Our experimental results show competitive perfor-
mance to recent state-of-the-art part based approaches on
all datasets.

4.1. Object Recognition

We follow the standard training and testing protocols
for the PASCAL detection challenge only using provided
bounding box annotation on the object category level. Ad-
ditionally we are showing qualitative results in terms of a
back-rendering of our training parts in the detection box to
visualize how our model is explaining objects (see Fig. 6).

4.1.1 Implementation Details

Training Since we are training classifiers on a part level
and on an object level we need to split the training data,
to avoid over-fitting. Considering our part classifiers are
trained in an exemplar fashion over-fitting is not an issue
on the rare positive samples as one part classifiers is only
over-fitting in one image at a certain location and scale. The
sampling of positive patches described in Sec. 3.3 can there-
fore be performed on the whole trainval set. Since each part
classifier is performing a negative mining, the part classi-
fiers might over-fit when we are applying them on the same
negative images again to get the response maps. Therefore
we are only using 2500 negative images from the PASCAL
training data for the negative mining procedure of the part
classifiers. To train the object classifiers (i.e. fk(·) and g(·))
we use all the positives form the trainval set and all nega-
tive images remaining after training the part classifiers. To



Figure 6. Example reconstructions of true positives using compositions and parts from positive training samples.

get a set of hard negative samples we apply the deformable
part model with a low threshold (-1.1) and use the result-
ing false detections. Note, that we use the same models and
parameters for hypothesis generation at detection time. For
training the SVM classifiers we use LIBSVM to train non-
linear classifiers and otherwise LIBLINEAR [10].

Part Selection Since we are sampling an over complete
set of parts the number of parts can be extremely large for
classes with a lot of objects like the person category. This
raises the question if all of these parts are actually needed.
Therefore we perform an experiment where we use an in-
creasing number of parts (in steps of 100 parts) for training
and evaluate the performance on the validation set. Note,
that since we evaluate on the validation set only the training
data are used to train our framework. We order the parts ac-
cording to their strength based on the absolute weights of a
linear SVM classifier trained on the maximum response of
each part per training sample. For each of our evaluations
we are using the best N parts for training. Fig. 7 shows
that the mean average precision is saturating around 1000
parts. This confirms that a large number of part classifiers
is actually needed. One could think that the reason this high
number of parts are needed is because the individual perfor-
mance of our exemplar-based parts is very weak. However,
as we were discussing in detail in Sec. 3.4 and is shown
in Fig. 5 a subset of our part classifiers is even perform-
ing better than the DPM parts. Based on these results we
are selecting the subset of parts for each category with the
highest performance on the validation set. Detecting with
all these classifiers may seem very time consuming. How-
ever, the filter operation is just a single dot-product for all
the part classifiers. Creating the response maps for 1000
part classifiers takes around 13 seconds. For comparison
the DPM [12] takes 7 seconds to create response maps for

54 object and part classifiers. The reason for the compa-
rably small overhead of our system is that the time needed
to build HOG features and extract detection windows for an
image is significantly higher than the detection time. There-
fore, the more filters are used the more favorable it is to first
extract HOG features for all windows and perform a single
matrix multiplication than performing a separate convolu-
tion for each filter as done by the DPM.

4.1.2 Comparison with other Methods

Since we suggest a part-based approach the focus of our
evaluation is to compare with other part-based approaches.
There exist several methods such as [5, 31] that focus on
how the responses of several classifiers can be used to im-
prove overall detection performance. These methods can be
applied in a post-processing step for any part based method.
Therefore part-based methods are evaluated without context
in common literature.

PASCAL VOC2007 Our final approach (RM2C) is also
incorporating parts that are root filters. Our results show
that the suggested approach already gives state-of-the art
performance without applying larger parts corresponding to
objects (RM2C w/o obj.). Additionally we are comparing
our approach to three other part-based approaches. All ap-
proaches are utilizing HOG features as a low level represen-
tation. The detection results are summarized in Tab. 1. Our
method outperforms all other approaches on 17 out of 20
categories. Significant improvements are reached on articu-
lated objects as dogs (8.1%), cats (6.5%) and birds (2.5%).
However, also more rigid objects with high intra class vari-
ability benefit from our specialized part-classifier composi-
tions as aeroplanes (4.5%) and tvmonitors (2.5%). In mean
we are gaining 1.9% over the And-Or Tree (AOT), 2.9%
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DPM rel5 [12] 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7
LHS [32] 29.4 55.8 9.4 14.3 28.6 44.0 51.3 21.3 20.0 19.3 25.2 12.5 50.4 38.4 36.6 15.1 19.7 25.1 36.8 39.3 29.6
AOT [30] 35.3 60.2 9.4 16.6 29.5 53.0 57.1 23.0 22.9 27.7 28.6 13.1 58.9 49.9 41.4 16.0 22.4 37.2 48.5 42.4 34.7
RM2C w/o obj. 37.0 58.3 12.0 14.7 22.9 51.3 51.7 23.7 21.7 25.0 29.0 20.6 51.4 46.1 36.3 12.7 22.3 35.1 43.9 41.8 32.9
RM2C 37.7 61.4 12.7 17.6 29.9 55.1 56.3 29.5 24.6 28.2 30.7 21.2 59.5 51.5 40.3 14.3 23.9 41.6 49.2 46.0 36.6

Table 1. Performance comparison using average precision (AP) for the PASCAL VOC2007 dataset. For abbreviations see Sect. 4.1.2
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DPM rel5 [12] 45.6 49.0 11.0 11.6 27.2 50.5 43.1 23.6 17.2 23.2 10.7 20.5 42.5 44.5 41.3 8.7 29.0 18.7 40.0 34.5 29.6
Poselets [3] 33.2 51.0 8.5 8.2 34.8 39.0 48.8 22.2 - 20.6 - 18.5 48.2 44.1 48.5 9.1 28.0 13.0 22.5 33.0 -
BCP [8] 44.3 35.2 9.7 10.1 15.1 44.6 32.0 35.3 4.4 17.5 15.0 27.6 36.2 42.1 30.0 5.0 13.7 18.8 34.4 28.6 25.0
AOT [30] 44.6 48.5 10.8 12.9 26.3 47.5 41.6 21.6 17.3 23.6 11.5 22.9 40.9 45.3 37.9 9.6 30.4 25.3 39.0 31.2 29.4
RM2C 49.8 50.6 15.1 15.5 28.5 51.1 42.2 30.5 17.3 28.3 12.4 26.0 45.6 51.8 41.4 12.6 30.4 26.1 44.0 37.6 32.8

Table 2. Performance comparison using average precision (AP) for the PASCAL VOC2010 dataset. Note that our approach outperforms
Poselets comparing the mean of the 18 classes where the detection results are provided by 5.3%.

over the Deformable Part Model (DPM) and 7% over the
Latent Hierarchical Structures (LHS).

Since the number of random compositions (K=50) is
rather small one could suspect that the variance of the de-
tection performance is high. However, measuring the vari-
ance of the mean average precision of five different ran-
dom composition samplings showed a favorable variance of
about 0.1%.

PASCAL VOC2010 Additionally, we are providing re-
sults on the PASCAL VOC2010 dataset were we outper-
form other approaches on 12 out of 20 classes (see Tab. 2).
Our approach performs particularly well for classes that can
be considered as very difficult due to the huge intra-class
variations as birds, boats and potted plants were the im-
provement is up to 4.1% in terms of average precision. The
comparison with the Boosted Collection of Parts (BCP) is
particularly interesting, since due to their usage of exemplar
parts it is the most similar approach to our compositional
part-model. We are showing superior performance on 17
out of 20 classes, improving the average precision by 7.8%.
While poselets are giving the best performance on 5 out of
20 classes they also perform more than 10% worse than our
detection system on 5 other classes. Note that we are out-
performing the poselets even though this approach uses ad-
ditional ground truth annotation in the form of keypoints
for training while ours only depends on bounding box an-
notations at object level. Comparing the mean over the 18
classes on which results for the poselets are available we
outperform them by 5.3%. All in all we are gaining 3.2%
in terms of mean average precision over the DPM which is
the best performing approach we are comparing to.

Figure 7. Mean
average precision
of all classes of the
PASCAL VOC2010
dataset on the valida-
tion set training our
model with different
number of parts.

4.2. Scene Classification

For scene classification we are using the protocol given
in [27] where each scene class consists of 80 training im-
ages and 20 test images. We provide results as in [27] in
terms of classification accuracy obtained by averaging the
diagonal of the confusion matrix and in terms of mean av-
erage precision which is used as an additional measurement
in [16].

We compare our performance to 7 different classification
approaches (see Tab. 3). The focus of our evaluation is the
comparison to other methods that are using semantical part
classifiers based on HOG features for scene classification.
Therefore the most important comparisons are in the lower
half of Tab. 3, since these approaches are methodologically
most similar to the one we are suggesting. Our results show
that we outperform Mid-Level Patches [29] by 13% and the
Bag of Parts (BoP) by 5% in term of classification accuracy.
The improved fisher vectors (IFV) can be combined with
all part based approaches to boost performance as it was
done by IFV+BoP [16]. Since we are outperforming the
individual performance of BoP, it should be expected that



Method Acc. (%) Mean AP
Object Bank [20] 37.60 -
RBoW [26] 37.93 -
DPM+GIST-color+SP [25] 43.10 -
Patches+GIST+SP+DPM [25] 49.40 -
IFV+BoP [16] 63.10 63.18
Mid-Level Patches [29] 38.10 -
BoP [16] 46.10 43.55
RM2C 51.34 46.70

Table 3. Average classification performance on the MITIndoor
Dataset. Upper half of the table shows diverse approaches for
scene classification while the lower half focuses on approaches us-
ing semantic parts and are therefore most similar to our approach.

the combination with fisher vectors would outperform their
combined approach. However, the aim of this experiment
was to compare our method with other related part based
approaches.

5. Conclusion
We have proposed a compositional approach that can in-

tegrate large numbers of weak parts in a strong discrimi-
native model. Contrary to the main theme of the filed, we
randomly sample instance specific parts and randomly ag-
gregated them in compositions that are trained using a max-
margin procedure. The approach has shown favorable per-
formance on standard benchmark datasets for object detec-
tion and scene classification and the potential of its con-
stituents has been evaluated individually.2
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