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Figure 1: We introduce a fully-automated method that, given any concept, discovers an exhaustive vocabulary explaining a/l its appearance
variations (i.e., actions, interactions, attributes, etc.), and trains full-fledged detection models for it. This figure shows a few of the many
variations that our method has learned for four different classes of concepts: object (horse), scene (kitchen), event (Christmas), and action

(walking).
Abstract

Recognition is graduating from labs to real-world ap-
plications. While it is encouraging to see its potential being
tapped, it brings forth a fundamental challenge to the vision
researcher: scalability. How can we learn a model for any
concept that exhaustively covers all its appearance varia-
tions, while requiring minimal or no human supervision for
compiling the vocabulary of visual variance, gathering the
training images and annotations, and learning the models?

In this paper, we introduce a fully-automated approach
for learning extensive models for a wide range of variations
(e.g. actions, interactions, attributes and beyond) within
any concept. Our approach leverages vast resources of on-
line books to discover the vocabulary of variance, and in-
tertwines the data collection and modeling steps to alleviate
the need for explicit human supervision in training the mod-
els. Our approach organizes the visual knowledge about a
concept in a convenient and useful way, enabling a variety
of applications across vision and NLP. Our online system
has been queried by users to learn models for several inter-
esting concepts including breakfast, Gandhi, beautiful, efc.
To date, our system has models available for over 50,000
variations within 150 concepts, and has annotated more
than 10 million images with bounding boxes.

1. Introduction

How can we learn everything (visual) about any concept?
There are two main axes to this question. The everything
axis corresponds to all possible appearance variations of a
concept, while the anything axis corresponds to the span of
different concepts for which visual models are to be learned.

The conventional paradigm for learning a concept model
is to first discover the visual space of variance for the
concept (variance discovery), then gather the training data
i.e., images and annotations, and finally design a power-
ful model that can handle all the discovered intra-concept
variations (variance modeling). For variance discovery, the
common practice is to assume a manually defined vocabu-
lary by relying on benchmark datasets [47]. For variance
modeling, which is often approached in isolation from the
discovery step, the majority of methods use a divide and
conquer strategy, where the training data within a category
is grouped into smaller sub-categories of manageable visual
variance [13]. A variety of cues have been used to partition
the data: viewpoint [9], aspect-ratio [18], poselets [5], vi-
sual phrases [43], taxonomies [ 1], and attributes [ 16, 23].

While the above paradigm has helped advance the recog-
nition community, two fundamental and pragmatic ques-
tions remain unanswered: First, how can we ensure every-
thing about a concept is learned? More specifically, how can
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we gather an exhaustive vocabulary that covers all the visual
variance within a concept? Second, how can we scale the
above paradigm to learn everything about anything? l.e., is
it possible to devise an approach that alleviates the need for
human supervision in discovering the vocabulary, gathering
training data and annotations, and learning the models?

In this paper, we introduce a novel “webly-supervised”
approach to discover and model the intra-concept visual
variance. We show how to automatically gather an exhaus-
tive vocabulary of visual variance for any concept, and learn
reliable visual models using no explicit human supervision.

1.1. Variance Discovery and Modeling

Almost all previous works have resorted to the use of ex-
plicit human supervision for variance discovery and model-
ing. Using explicit supervision for variance discovery has a
couple of drawbacks:

Extensivity: a manually-defined vocabulary of variance
cannot enumerate all the visual variances for a concept, and
is biased towards the cultural, geographical, or temporal
biases of the people compiling them. For example, ‘fire-
walking’ is a popular phenomenon only in some parts of
the world, and thus may get excluded in the vocabulary of
‘walking’. When sampling the visual space for collecting
data, arbitrary and limited vocabularies can result in highly
biased datasets [47]. There is always a trade-off between
the exhaustiveness of the vocabulary discovered and the
complexity of the model used to constrain the visual vari-
ance; a more exhaustive vocabulary results in limited vari-
ance within each group, and thereby potentially alleviates
the need for sophisticated models.

Specificity: pre-defined vocabularies do not typically
generalize to new concepts. For example, the action of
‘rearing’ can modify a ‘horse’ with very characteristic ap-
pearance, but does not extend to ‘sheep’, while ‘shearing’
applies to ‘sheep’ but not to ‘horse’. This makes the task of
manually defining a vocabulary even more burdensome as
one needs to define these vocabularies per concept.

Using explicit supervision for variance modeling has the
following additional drawbacks:

Flexibility: the act of explicit human annotation leads
to rigid decisions at the time of dataset creation (e.g., the
list of attributes [16, 23], or visual phrases [43]). These
decisions can seldom be modified once the annotations have
been collected and thus often end up dictating the methods
used to process the data. For example, a grouping based
on horse breeds (‘sorrel horse’, ‘pommel horse’, etc) as in
Imagenet [1 1] is not very useful for a shape (HOG)-based
‘horse’ detector [18]; a grouping based on actions (‘jumping
horse’, ‘reining horse’, etc) might be preferable. Thus, it
will be beneficial if the annotations can be modified based
on the feature representation and the learning algorithm.

Scalability: human annotation also presents a hurdle to-
wards learning scalable models. Every new proposal to con-
strain the visual variance of the data poses a herculean task
of either preparing a new dataset (e.g., ImageNet) or adding
new annotations to an existing dataset. For example, in the
case of phraselets [12] and attributes [16, 23], new annota-

tions had to be added to all the PASCAL VOC images. Fur-
thermore, as the modeling step is typically approached in
isolation from the discovery step, the annotations obtained
for modeling the intra-concept variance are often different
and disjoint from those gathered during variance discovery.

1.2. Overview

In this work, we propose a new approach to automati-
cally discover and model the visual space of a concept that
circumvents the above limitations (see Figure 2). To dis-
cover the vocabulary of variance, we leverage vast resources
of books available online (Google Books Ngrams [33]).
This discovered vocabulary is not only extensive but also
concept-specific. Given a term e.g., ‘horse’, the corpus in-
cludes ngrams containing all aspects of the term such as
actions (‘rearing horse’), interactions (‘barrel horse’), at-
tributes (‘bridled horse’), parts (‘horse eye’), viewpoints
(‘front horse’), and beyond (see Figure 1, top row).

To model the visual variance, we propose to intertwine
the vocabulary discovery and the model learning steps. Our
proposal alleviates the need for explicit human annotation
of images, thus offering greater flexibility and scalability.
To this end, we leverage recent progress in text-based web
image search engines, and weakly supervised object local-
ization methods. Image search has improved tremendously
over the past few years; it is now possible to retrieve rel-
evant sets of object-centric images (where the object of
interest occupies most of the image) for a wide range of
queries. While the results are not perfect, the top ranked
images for most queries tend to be very relevant [32]. With
the recent success of the Deformable Parts Model (DPM)
detector [18], weakly-supervised object localization tech-
niques [36, 39] have risen back to popularity. Although
these methods do not work well when presented with a
highly diverse and polluted set of images, e.g., images re-
trieved for ‘horse’, they work surprisingly well when pre-
sented with a relatively clean and constrained set of object-
centric images, e.g., images retrieved for ‘jumping horse’.

Our idea of intertwining the discovery and modeling
steps is in part motivated by the observation that the VOC
dataset was compiled by downloading images using an ex-
plicit set of query expansions for each object (see Table 1
in [15]). However, the VOC organizers discarded the key-
words after retrieving the images, probably assuming that
the keywords were useful only for creating the dataset and
not for model learning purposes, or presumed that since the
keywords were hand-chosen and limited, focusing too much
on them would produce methods that would not generalize
to new classes. In this work, we show how the idea of sys-
tematic query expansion helps not only in gathering less bi-
ased data, but also in learning more reliable models with no
explicit supervision.

Our contributions include: (i) A novel approach for dis-
covering a comprehensive vocabulary (covering actions,
interactions, attributes, and beyond), and training a full-
fledged detection model for any concept, including scenes,
events, actions, places, etc., using no explicit supervision.
(ii) Showing substantial improvement over existing weakly-
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Figure 2: Approach Overview

supervised state-of-the-art methods. For some categories,
our results are on par with the supervised state-of-the-art.
(iii) Presenting impressive results for unsupervised action
detection for the first time. (iv) An open-source online
system (http://levan.cs.uw.edu) that, given any
query concept, automatically learns everything visual about
it. To date, our system has learned more than 50,000 vi-
sual models that span over 150 concepts, and has annotated
more than 10 million images with bounding boxes.

2. Related work

Taming intra-class variance: Previous works on con-
straining intra-class variance have considered simple an-
notations based on aspect-ratio [18], viewpoint [9], and
feature-space clustering [13]. These annotations can only
tackle simple appearance variations of an object [51]. Re-
cent works have considered more complex annotations such
as phrases [43], phraselets [12], and attributes [16, 23].
While explicit supervision is required to gather the list of
phrases and their bounding boxes in [43], the work of [12]
needs heavier supervision to annotate joint locations of all
objects within the dataset. Although [24, 27] discover
phrases directly using object bounding boxes, their phrasal
vocabulary is limited to object compositions, and cannot
discover complex actions, e.g., ‘reining horse’, ‘bucking
horse’, etc. Moreover, all of the methods [12, 24, 27] dis-
cover phrases only involving the fully annotated objects
within a dataset, i.e., they cannot discover ‘horse tram’
or ‘barrel horse’ when tram and barrel are not annotated.
Attributes [16, 23] are often ambiguous to be used inde-
pendent of the corresponding object, e.g., a ‘tall’ rabbit is
shorter than a ‘short’ horse; ‘cutting’ is an attribute refer-
ring to a sport for horses while it has a completely differ-
ent meaning for sheep. To date, there exists no established
schema for listing attributes for a given dataset [37].

Weakly-supervised object localization: The idea of train-
ing detection models from images and videos without
bounding boxes has received renewed attention [2, 36, 39,
45] due to the recent success of the DPM detector [18].
While it is encouraging to see progress, there are a few lim-
itations yet to be conquered. Existing image-based meth-
ods [2, 36, 45] fail to perform well when the object of inter-
est is highly cluttered or when it occupies only a small por-
tion of the image (e.g., bottle). Video-based methods [39]
rely on motion cues, and thus cannot localize static objects

(e.g., tvmonitor). Finally, all existing methods train their
models on a weakly-labeled dataset where each training im-
age or video is assumed to contain the object. To scale to
millions of categories, it is desirable to adapt these methods
to directly learn models from noisy web images.

Learning from web images: Due to the complexity of
the detection task and the higher supervision requirements,
most previous works [4, 19, 28, 38, 44, 48] on using web
images have focused on learning models only for image
classification. The work of [21, 41] focuses on discover-
ing commonly occurring segments within a large pool of
web images, but does not report localization results. The
work of [49] uses active learning to gather bounding box
annotations from Turkers. The work of [7] aims at discov-
ering common sense knowledge from web images, while
our work focuses on learning exhaustive semantically-rich
models to capture intra-concept variance. Our method pro-
duces well-performing models that achieve state-of-the-art
performance on the benchmark PASCAL VOC dataset.

3. Discovering the Vocabulary of Variance

In order to obtain all the keywords that modify a concept,
we use the Google books ngram English 2012 corpora [33].
We specifically use the dependency gram data, which con-
tains parts-of-speech (POS) tagged head=>modifier de-
pendencies between pairs of words, and is much richer than
the raw ngram data (see section 4.3 in [30]). We choose
ngram data over other lexical databases (such as Wordnet or
Wikipedia lists [1]) as it is much more exhaustive, general,
and includes popularity (frequency) information. Using the
books ngram data helps us cover all variations of any con-
cept the human race has ever written down in books.

Given a concept and its corresponding POS tag, e.g.,
‘reading, verb’, we find all its occurrences annotated with
that POS tag within the dependency gram data. Using the
POS tag helps partially disambiguate the context of the
query, e.g., reading action (verb) vs. reading city (noun).
Amongst all the ngram dependencies retrieved for a given
concept, we select those where the modifiers are tagged ei-
ther as noun, verb, adjective, or adverb'. We marginalize
over years by summing up the frequencies across differ-

'Conjunctions, determiners, pronouns, numbers, and particles are ig-
nored as they seldom carry visually relevant information, e.g., ‘the horse’,
‘100 horse’, etc.
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ent years. Using this procedure, we typically end up with
around 5000 ngrams for a concept.

Not all the ngrams gathered using the above procedure
are visually salient, e.g., ‘particular horse’, ‘last horse’, etc.
While our model learning procedure (section 4) is robust
to such noise, it would be unnecessary to train full-fledged
detectors for irrelevant ngrams. To avoid wasteful computa-
tion, we use a simple and fast image-classifier based prun-
ing method. Our pruning step can be viewed as part of a
cascade strategy that rejects irrelevant ngrams using a weak
model before training strong models for relevant ngrams.

3.1. Classifier-based Pruning

The goal here is to identify visually salient ngrams out
of the pool of all discovered ngrams for a concept. Our
main intuition is that visually salient ngrams should exhibit
predictable visual patterns accessible to standard classifiers.
This means that an image-based classifier trained for a visu-
ally salient ngram should accurately predict unseen samples
of that ngram.

We start by retrieving a set of images I; for each ngram
1. To maintain low latency, we only use thumbnails (64 x 64
pixels) of the first 64 images retrieved from Image Search.
We ignore all near-duplicate images. We then randomly
split this set into equal-sized training and validation sets
I; = {I},I'}, and augment the training images I} with
their mirrored versions. We also gather a random pool of
background images I = {I*, I"}. For each ngram, we train
a linear SVM [6] W; with I} as positive and I* as nega-
tive training images, using dense HOG features [18]. This
classifier is then evaluated on a combined pool of validation
images {I? U I"}.

We declare an ngram ¢ to be visually salient if the Av-
erage Precision (A.P.) [15] of the classifier W; computed
on {I} U I} is above a threshold. We set the threshold to
a low value (10%) to ensure all potentially salient ngrams
are passed on to the next stage, and only the totally irrel-
evant ones are discarded. Although our data is noisy (the
downloaded images are not manually verified to contain the
concept of interest), and the HOG+linearSVM framework
that we use is not the prevailing state-of-the-art for image
classification, we found our method to be effective and suf-
ficient in pruning irrelevant ngrams. After the pruning step,
we typically end up with around 1000 ngrams for a concept.

3.2. Space of Visual Variance

Amongst the list of pruned ngrams there are several syn-
onymous items. For example, ‘sledge horse’ and ‘sleigh
horse’, ‘plow horse’ and ‘plough horse’, etc. Further, some
non-synonymous ngrams correspond to visually similar en-
tities, e.g., ‘eating horse’ and ‘grazing horse’ (see Fig-
ure 2) [31]. To avoid training separate models for visually
similar ngrams, and to pool valuable training data across
them, we need to sample the visual space of a concept more
carefully. How can we identify representative ngrams that
span the visual space of a concept? We focus on two main
criteria: quality and coverage (diversity).

We represent the space of all ngrams by a graph G =
{V, E'} where each node represents an ngram and each edge

Concept [ Discovered superngrams

Cancer {subglottic cancer, larynx cancer, laryngeal cancer }
{rectum cancer,colorectal cancer,colon cancer}

Kitchen {Kkitchen bin, kitchen garbage, kitchen wastebasket }
{kitchen pantry, kitchen larder}

Gandhi {gandhi mahatma, gandhi mohandas}

{indira gandhi, mrs gandhi}

Christmas| {christmas cake, christmas pie, christmas pudding}
{christmas crowd, christmas parade, christmas celebration}

Angry {angry screaming, angry shouting }
{angry protesters, angry mob, angry crowd}

Doctor {doctor gown,doctor coat}
{pretty doctor,women doctor,cute doctor }

{examining doctor, discussing doctor, explaining doctor}

Apple {apple crumble, apple crisp, apple pudding }
{apple trees, apple plantation, apple garden}
{apple half, apple slice, apple cut}

Jumping | {jumping group, jumping kids, jumping people}
{jumping dancing, jumping cheering}
{wave jumping, boat jumping}

Running | {running pursues, running defenders, running backs }

{fitness running, exercise running }
{running shirt, running top, running jacket}

Table 1: Examples of the vocabulary discovered and the relation-
ships estimated for a few sample concepts.

represents the visual similarity between them. Each node
has a score d; that corresponds to the quality of the ngram
classifier W;. We set the score d; as the A.P. of the classi-
fier W; on its validation data {I? U I"}. The edge weights
e;; correspond to the visual distance between two ngrams
1, j and is measured by the score of the jth ngram classifier
W; on the ith ngram validation set {I} U I”}. To avoid is-
sues with uncalibrated classifier scores, we use a rank-based
measure. Our ranking function (R : RV s NIZT)
ranks instances in the validation set of an ngram against
the pool of background images. In our notation R; ; cor-
responds to ranks of images in I against IV scored using
W ;. We use the normalized median rank as the edge weight
_ Median(R;,;)
€g = T
[0 1].
The problem of finding a representative subset of ngrams
can be formulated as searching for the subset S C V that
maximizes the quality F of that subset:

. We scale the ¢; ; values to be between

mgx]—"(S), such that |S| < k, (1)
where F(8) =Y d;-O(i,S). 2)
eV

O is a soft coverage function that implicitly pushes for di-
versity:

1

1= T —eiy)

JES

1€S

0(i,S) = i¢S 3)

This formulation searches for a subset of ngrams that
are visually manageable (have reliable ngram classifiers)
and cover the space of variance within a concept (simi-
lar to [3, 22]). Fortunately, this objective function is sub-
modular, hence there exists a greedy solution within a con-
stant approximation of the optimal solution. We use an it-
erative greedy solution that adds at each stage the ngram
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1 that provides the maximum gain over the current subset
(arg max; F(SUi) — F(S)).

This algorithm provides the subset of representative
ngrams that best describes the space of variance under a
fixed budget k. We can use the same algorithm to also
merge similar ngrams together to form superngrams. By
setting the cost of adding similar ngrams in S to a really
high value, each ngram | ¢ S can be merged to its closest
member in §. Our merging procedure reveals interesting
relations between ngrams by merging visually similar ac-
tions, interactions, and attributes. For example, our method
discovers the following ngrams of ‘horse’ as visually sim-
ilar: {tang horse, dynasty horse}, {loping horse, cantering
horse}, {betting horse, racing horse}, etc. Table 1 shows
more examples for other concepts. Using this procedure, we
reduce the number of ngrams to around 250 superngrams.

4. Model Learning

The images for training the detectors are gathered using

Image Search with the query phrases as the ngrams consti-
tuting the superngram. We download 200 full-sized, ‘full’
color, ‘photo’ type images per query. We resize images to
a maximum of 500 pixels (preserving aspect-ratio), discard
all near-duplicates, and ignore images with extreme aspect-
ratios (aspect ratio > 2.5 or < 0.4). We split the down-
loaded images into training and validation sets.
Training a mixture of roots: Pandey et al., [36] demon-
strated the possibility of training the DPM detector [ 18] us-
ing weak supervision. Directly applying their method to all
the images within a concept (pooled across all ngrams) re-
sults in a poor model®. Therefore we train a separate DPM
for each ngram where the visual variance is constrained.

[36] initializes the DPM with the full image as the
bounding box. We found using this initialization often leads
to the bounding box getting stuck to the image boundary
during the latent reclustering step®. To circumvent this

2AP. of {10.8%,12.7%,12.1%,10.6%, 11.1%,10.1%} for K =
{6,12,18,25,50,100} components, respectively, for the horse category
(c.f. 30.6% using our method, see Table 2)

3This is due to the artifact of zero-padding within the HOG descriptor
at the image boundaries, and the non-convex optimization of the latent
SVM. In some cases, the latent SVM obtains a lower objective function

problem, we initialize our bounding box to a sub-image
within the image that ignores the image boundaries. Using
this initialization also avoids the two-stage training proce-
dure used in [36], where in the first stage latent root place-
ments are identified and cropped, for training the DPM in
the second stage.

Similar to [18], [36] also initialized their components us-
ing the aspect-ratio heuristic. This is sub-optimal in the
weakly supervised setting as image aspect-ratio is a poor
heuristic for clustering object instances. To address this lim-
itation, we initialize the model using feature space cluster-
ing as proposed in [13]. While our ngram vocabulary helps
segregate the major appearance variations of a concept,
the downloaded images per superngram still have some re-
maining appearance variations. For example, the ‘jumping
horse’ ngram has images of horses jumping in different ori-
entations. To deal with such appearance variations, we use
a mixture of components initialized with feature space clus-
tering. In the presence of noisy web images, this procedure
provides a robust initialization. Some of the mixture com-
ponents act as noise sinks, thereby allowing cleaner models
to be learned [51]. In our experiments, we typically found
70% of the components per ngram to act as noise sinks. It
is wasteful to train a full parts-based model for such noisy
components. Therefore, we first train root filters for each
component and subsequently prune the noisy ones.
Pruning noisy components: To prune noisy components,
we run each component detector on its own validation set
and evaluate its performance. Given that the positive in-
stances within the validation set for each ngram neither have
the ground-truth bounding boxes nor the component labels,
we treat this task as a latent image classification problem.
Specifically, we first run the ngram mixture-of-components
detector on its full validation set (held-out positive images
as well as a random pool of background images). We then
record the top detection for each image and use the com-
ponent label of that detection to segregate the images. We
now have a segregated pool of validation images per ngram
component. In the absence of ground-truth boxes, we as-
sume the top detections of positive images are true and neg-
ative images are false, and therefore compute the average
precision (A.P.) by only using the detection scores (ignor-
ing overlap). We declare a component to be noisy either if
its A.P. is below a threshold (10%) or if its training or vali-
dation data has too few (< 5) positive instances. The second
condition helps us discard exemplar components that over-
fit to incidental images. While a root-only filter model is
relatively weak compared to the parts model, we found that
it does an effective job here for pruning noisy components.
Merging pruned components: Some of the components
across the different ngram detectors end up learning the
same visual concept. For example, a subset of ‘hunter
horse’ instances are quite similar to a subset of ‘jumping
horse’ instances. The merging step in section 3.2 consid-
ered a monolithic classifier trained with full image features.

value by preferring a larger box that includes the image boundary during
the reclustering step.



As the mixture of component models are more refined (by
way of localizing instances using detection windows), they
can identify subtle similarities that cannot be found at the
full image level. To pick a representative subset of the com-
ponents and merge similar ones, we follow a similar proce-
dure as outlined in section 3.2. Specifically, we represent
the space of all ngram components by a graph G = {V, E'},
where each node represents a component and each edge rep-
resents the visual similarity between them. The score d; for
each node now corresponds to the quality of the component.
We set it to the A.P. of the component (computed during the
above pruning step). The weight on each edge e; ; is de-
fined similarly as the median rank obtained by running the
jth component detector on the ith component validation set.
(We continue to use only the top detection score per image,
assuming top detections on positives are true and on nega-
tives are false.) We solve for the same objective function as
outlined in equation (1) to select the representative subset.
We found this subset selection step results in roughly 50%
fewer components. The final number of components aver-
ages to about 250 per concept. Figure 3 shows some of our
discovered components.

Given the representative subset of components, we fi-
nally augment them with parts as described in [18], and
subsequently merge all the components to produce the fi-
nal detector.

5. Results

Our proposed approach is a generic framework that can
be used to train an extensive detection model for any con-
cept. To quantitatively evaluate the performance of our ap-
proach, we present results for object and action detection.
Object detection: We evaluated the performance of our
trained detection model for the 20 classes in the PASCAL
VOC 2007 testset [15]. We picked this dataset as recent
state-of-the-art weakly supervised methods have been eval-
uated on it. In our evaluation, we ensured that none of the
test images of the VOC 2007 testset existed in our trainset.

Table 2 displays the results obtained using our algorithm
and compares to the state-of-the-art baselines [39, 45]. [45]
uses weak human supervision (VOC data with image-level
labels for training) and initialization from objectness [2]
that is in turn trained on a VOC 2007 subset*. In com-
parison, our method uses web supervision as not even the
images are supplied for training’. Nonetheless, our result
substantially surpasses the previous best result in weakly-
supervised object detection. Figure 1 shows some of the
actions, interactions, and attributes learned for ‘horse’. Fig-
ure 4 shows the models learned for other concepts.

Action detection: The VOC challenge [!5] also hosts the
action classification task where the bounding boxes for the

4Objectness [2] uses ‘meta-training’ images with ground-truth object
annotations for learning its parameters. While objectness could be used as
an initialization even in our approach, we chose not to use it here as our
goal is to learn models for any concept (scenes, events, etc) and not just for
the 20 VOC classes.

SWhile our method does not need any explicit supervision, it does
download and use two orders of magnitude more images than the PAS-
CAL VOC dataset
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Figure 4: Our approach can learn extensive models for any con-
cept (y-axis). Each row shows four of the many variations that our
method has learned. Full results (detailed vocabulary and trained
models) are available on our project website.

human performing the action are assumed to be known
(both in test and train images) and the human activity has
to be identified. We consider the more challenging task of
action detection, where not only does the action in an im-
age has to be identified, but also localized with a bound-
ing box. Further, we attempt to perform action detection in
the unsupervised setting where even the training images are
not provided. To our knowledge, this is the first attempt at
webly-supervised action detection on the VOC dataset. The
recent work of [12] reports results obtained for strongly-
supervised action detection on the VOC 2011 val set. Ta-
ble 3 reports our results and compares them to the super-
vised baseline reported in [12].

Figures 1,4 display some of the models learned for the
VOC action classes ‘jumping’, ‘running’, and ‘walking’.
For each action category, our approach learns a detailed
vocabulary that reveals several fine-grained variations, e.g.,
‘model walking’ vs. ‘race walking’. Similar to a dictio-
nary or an encyclopedia providing different lexical con-
notations of a concept, our method generates its different
visual connotations. We also ran our experiments on the
composite ‘ridingbike’ category but found our model per-
formed poorly (A.P. of 4.5% vs. 41.6% by [18]) as the
VOC ground-truth box only covers the person performing



Method | Supervision || aero | bike | bird | boat | bottle | bus | car | cat | chair | cow | table | dog | horse | mbik | pers | plant | sheep | sofa | train tv
[45] weak 13.4744.0] 3.1 3.1 0031217439 7.1 011 93] 991 15[ 294] 383 46| 0.1 041 38[1342] 00
[39] weak 174 -1 93] 92 - 3571 94 -1 97 -] 33] 162 273 - - - -1 150 -
Ours web 14.0[36.2[12.5 | 10.3 921350359 84 100 17.5] 65[129] 306 | 275] 6.0 15| 18.8[10.3] 235] 164
[ 18] [ full [[33.2]59.01103 1157 26.6]52.0[53.7]225] 202243 269126 56.5] 485[433] 134 209[359[452[42.1]

Table 2: Results (A.P.) on VOC2007 (test) object detection. Rows 1 and 2 show state-of-the-art results for weakly-supervised object

detection. [

] trains on VOC2007 training data with image-level labels and uses objectness for initialization. [

] trains on manually

selected videos but without bounding boxes and shows results on 10/20 classes (ignores classes without motion). Row 3 shows our webly-
supervised results, i.e., not even the training images supplied. Row 4 shows the results of current state-of-the-art for fully supervised object
detection that is a possible upper bound for weakly supervised approaches. Our method outperforms the supervised DPM on birds and

dogs and is almost on par with DPM on sheep.

jumping | phoning | walking | takingphoto
[ 18] (supervised) 6.1 4.1 10.9 1.1
Ours 12.8 3.6 10.7 0.2

Table 3: Results (A.P.) on VOC2011 (val) action detection. Top
row shows state-of-the-art results for fully-supervised action de-
tection obtained using [ 18] (as reported in [12]), while the bottom
row shows our results. The evaluation protocol is the same as that
for object detection (overlap > 50% is success.) Our result beats
the fully supervised result for jumping and is almost on par in the
remaining 3 classes.

the action, while our unsupervised approach also localizes
the bike along with the person. (Our method gets an A.P.
of 31.6% when the overlap criteria with ground-truth is re-
duced to 25%).

What are the sources of errors that prevent our model
from performing on par with the supervised state-of-the-
art [18]? We have found a couple of issues:

Extent of overlap: Our final detection model is a multi-
component model (number of components > 250 on aver-
age). Given a test image, there could be several valid de-
tections by our model, e.g., an image of horse-drawn car-
riage would not only have the ‘profile horse’ detection but
also the ‘horse carriage’ and ‘horse head’ detections. As
the VOC criterion demands a single unique detection box
for each test instance that has 50% overlap, all the other
valid detections are declared as false-positives either due
to poor localization or multiple detections. Selecting the
correct box from a pool of valid detections in a completely
unsupervised setting is a challenging research problem.

Polysemy: Our framework learns a generic model for a
concept, e.g., the car model includes some bus-like car com-
ponents, while the VOC dataset exclusively focuses on typ-
ical cars (and moreover, discriminates cars from buses).
Such polysemy is an achilles’ heel when dealing with lexi-
cal resources as the same term can refer to two completely
different concepts (see Figure 5). To alleviate these con-
cerns, it might be possible to tune our model to account for
dataset biases and thereby improve its performance [20, 47].
Tuning biases in a completely unsupervised setting is also
an interesting research direction.

Testing our model involves convolving each test image
with an exhaustive model of around 250 components. This
testing step can be easily sped up by leveraging recent fast
detection methods [10, 14, 46].

“Train”
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Figure 5: Our approach learns models for all visual connotations
of a concept. For example, the noun ‘train’ could either refer to
a dress or a locomotive, and the noun ‘chair’ could either refer to
a piece of furniture or a designation. Future work could focus on
exploring the polysemy discovered by our approach.
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6. Conclusion & Potential Applications

We have presented a fully automated approach to dis-
cover a detailed vocabulary for any concept and train a full-
fledged detection model for it. We have shown results for
several concepts (including objects, scenes, events, actions
and places) in this paper, and more concepts can be obtained
by using our online system. Our approach enables several
future applications and research directions:

Coreference resolution: A core problem in NLP is to de-
termine when two textual mentions name the same entity.
The biggest challenge here is the inability to reason about
semantic knowledge. For example, the Stanford state-of-
the-art system [25] fails to link ‘Mohandas Gandhi’ to ‘Ma-
hatma Gandhi’, and ‘Mrs. Gandhi’ to ‘Indira Gandhi’ in the
following sentence: Indira Gandhi was the third Indian prime minis-
ter. Mohandas Gandhi was the leader of Indian nationalism. Mrs. Gandhi
was inspired by Mahatma Gandhi’s writings. Our method is capa-
ble of relating Mahatma Gandhi to Mohandas Gandhi and
Indira Gandhi to Mrs Gandhi (See Table 1). We envision
that the information provided by our method should provide
useful semantic knowledge for coreference resolution.
Paraphrasing: Rewriting a textual phrase in other words
while preserving its semantics is an active research area in
NLP. Our method can be used to discover paraphrases. For
example, we discover that a ‘grazing horse’ is semantically
very similar to a ‘eating horse’. Our method can be used to
produce a semantic similarity score for textual phrases.
Temporal evolution of concepts: Is it possible to also
model the visual variance of a concept along the temporal
axis? We can use the year-based frequency information in
the ngram corpus to identify the peaks over a period of time
and then learn models for them (see figure 6). This can help
in not only learning the evolution of a concept [26], but also
in automatically dating detected instances [35].
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Figure 6: Our approach can be used to learn the temporal evolu-
tion of a concept. Figure shows instances of the concept ‘car’ with
separate components trained for every generation (25 years) since
1900. Our merging algorithm merged the model for year 1950
with 1925 and 1975 (possibly indicating no major change in the
appearance of cars during that time).

Deeper image interpretation: Recent works have em-
phasized the importance of providing deeper interpretation
for object detections rather than simply labeling them with
bounding boxes [34, 43]. Our work corroborates this line
of research by producing enhanced detections for any con-
cept. For example, apart from an object bounding box (e.g.,
‘horse’), it can provide object part boxes (e.g., ‘horse head’,
‘horse foot’, etc) and can also annotate the object action
(e.g., ‘fighting’) or the object type (e.g., ‘jennet horse’).
Since the ngram labels that we use correspond to real-world
entities, it is also possible to directly link a detection to its
corresponding wikipedia page to infer more details [42].
Understanding actions: Actions and interactions (e.g.,
‘horse fighting’, ‘reining horse’) are too complex to be ex-
plained using simple primitives. Our methods helps in dis-
covering a comprehensive vocabulary that covers all (sub-
tle) nuances of any action. For example, we have discov-
ered over 150 different variations of the walking action in-
cluding ‘ball walking’, ‘couple walking’, ‘frame walking’
(see Figure 1, bottom row). Such an exhaustive vocab-
ulary helps in generating fine-grained descriptions of im-
ages [17, 29, 34, 40, 50].

Segmentation & discovery: Each component in our
model has training instances that are all tightly aligned
in the appearance space (see Figure 3). Hence it is pos-
sible to cosegment the instances, and learn a foreground
segmentation model for each component using cosegmen-
tation [8, 21, 41]. This enables extending our approach to
perform unsupervised pixel-level segmentation, and obtain
a rich semantic segmentation model for any concept.
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