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Abstract [13], Kernelized Hashing [11], Semantic Hashing_1[17],
Iterative Quantization Hashing1[7], LDA Hashing_[20], K-
Nearest neighbor search methods based on hashing haveneans Hashing [9] and PCA Hashing [21].
attracted considerable attention for effective and effieie With the spread of similarity search across differen-

t large-scale similarity search in computer vision and in- { \ie\s, the single-view methods aforementioned are ex-
formation retrieval community. In this paper, we study the tonqeq to multi-view scenarios. The core problem of hash

problems of learning hash functions in the context of multi- ¢,tion learning for cross-view is how to deal with multi-
modal data for Cross-view simil_arit)_/ search. We putforwa_wd modal data sampled from different probability distributio
a noyel hash_mg_method,_whlch is referred to Collective ¢ Recently, a few cross-view hashing methods have been
Matrix Factorization Hashing (CMFH). CMFH learns u-  yeyeioped. Generally, cross-view hashing methods can be
nified hash codes by collective matrix factorization with Ia  jiided into two categories: view-specific hashing methods
ten_t factor model from different modalities of one instance ;4 integrated ones. View-specific hashing methods learn
which can not only supports cross-view search but also in- i, qenendent hash codes for each view of instance, and then
creases the search accuracy by merging multiple view in- ., catenate multiple view-specific binary codes to obtain
formation sources. We also prove that CMFH, a similarity- jteqrated hash codes. Ir1[3], cross-modality similarity
preserving hashing learning method, has upper and lower g1 hashing (CMSSH) is solved by embedding incom-
boundaries. Extensive experiments verify that CMFH Sig- yyangyraple data into a common metric space, and the hash
nificant_ly outperforms several state-of-the-art methods o ¢, tions are learned by using eigendecomposition and s-
three different datasets. tandard AdaBoost. In[]12], Kumar et al. extended spec-
tral hashing to the multi-view filed and proposed a Cross-

. View Hashing model (CVH), which minimizes the weight-

1. Introduction ed average multi-viewi2-norm distance of object pairs by

Nearest neighbor search plays a fundamental role inSC!Ving a generalized eigenvalue problem. Co-Regularized
many important applications, such as information retfieva 1@hing (CRH) [[25], whose objective function intends to

data mining, and computer vision. Hashing-based nearesP'0/€ct data far from 0 for good generalization, and at the

neighbor search, the most well-known method embeddingSame time, preserve the inter-modglity similar?ty effeet .
high-dimensional data into compact binary codewords, hag!¥- Inter-media Hashing (IMH)[LI9] introduces inter-media

garnered considerable interest in recent years for theatgr consistency and intra-media consistency to d's_covef acom-
efficiency gains in massive data][8]. One of the most fa- MO" hamming space, and uses linear regression with regu-

mous hashing-based models is locality sensitive hashingIarization model to learn view-specific hash functions. The
(LSH) [6], whose basic idea is to map the original data into aforementioned hashing methods are mainly employed in

Hamming space while preserving their similarity with high S|m|Iar_|ty search across different views. For instance; gi
probability. LSH can deal with similarity search quite effi- €N @l Image as query, sear_ch engine can returr? some doc-
ciently because bit XOR operations are applied when calcy-uments t_o accurately descr_lbe the details. TO. implemen-
lating Hamming distance between binary codes [24]. As ex- L Cross-view se_arc_h, each view needs to store independent
tensions of standard LSH, some machine learning methodéjaSh codes which increases the cost of storage and search.
are employed to design effective compact hashing, such as Integrated hashing methods learn unified hash codes for
Manifold Learning, Supervised Learning, Kernel Learning, each instance. Composite Hashing with Multiple Informa-
Deep Learning, Quantization Learning, Linear Discrimi- tion Sources (CHMIS)[[23] combines information from d-
nant Analysis (LDA), K-means and PCA, which respec- ifferent sources into final integrated hash codes by optimiz
] Ipervised Hashinging the relaxed hash codes and combin nts al-

4321



ternatively. Multi-View Spectral Hashing (MVSH) [10] in-
tegrates multi-view information into binary codes, andsuse
product of codewords to avoid undesirable embedding. This
type of hashing methods is generally utilized to improve the
search accuracy of hash codes by combining multiple infor-

mation sources of one instance, and is not implemented for Multi-view ‘ Multi-view ‘ Multi-view ‘
cross-view similarly search. They work well only when all Efjh F””P‘;tf”s Hash Functions | | Hash Functions
the information sources are available, which is too demand- p P1 P2
ing in real-world.

In this paper, we put forward a novel hashing method, P4
which is referred to Collective Matrix Factorization Hash- 10011010
ing (CMFH). CMFH assumes that each view of one instance ||View-specific Hashing| Integrated Hashing Our CMFH

generates identical hash codes, which are not the combinagigre 1. The difference among the three types of methods.
tion or concatenation of some hashing codes from different

view;. FigurélL illustrates the di_fference amongthe twe cat .oq \vhich may have different value types, and the factors
egories of methods aforementioned and CMFH. For eachgpare narameters when entities appear in multiple refation

instance, we learn unified codes by collective matrix fac- t51e movie rating prediction as an example M 1[18]. Let
torization with latent factor model from different view in- - € R™*" be an integer matrix representing user's rat-

formation sources.. To ensqre that the learn hash codes can]g’ and the elemeri;; denotes use’s rating for movie
be searched for different views, we also learn linear hash .

- ' i ¢ j. LetY € R"*"™ be a binary matrix denoting the genres
functlon for each view to determine _blnary co_desf of unseengsch movie belonging to, and; indicate whether movig
instances. Our paper has the following contributions:

belongs to genréor not. The factors arg’ € R™** V ¢
1. We propose a unified hashing method in cross-view s-R"*" andZ € R™, andVT is the shared facTtor in both
cenario, which can not only support cross-view search féconstructionsX =~ f,(UV") andY” = f,(ZV"), where

but also increase the search accuracy by merging mul-/i i @ possibly-nonlinear link function, arid > 0 is the
tiple view information. rank. The average decomposable losses are:

2. Our work is the first attempt to employ the collective LUV, Z1X,Y) = an L1(U, V|X) + a2L2(Z, VIY)

matrix factorization (CMF) technology to learn cross- where L., L, is decomposable loss function for =~

view hash functions. Our experiments demonstrate f,(UV7) andY = f»(ZV7) respectively, and", i = 1.

CMF is an effective hashing method when multiple  Not limited to movie rating prediction, CMF is a sim-

view information sources are available. ple yet powerful approach to deal with many applications,
where multiple interlinked sources of data are availabtk an
they cannot be represented by a single adjacency mairix [2].
In multimedia domain, objects are often presented in sever-
al different viewse.g Wikipedia’'s pages of the same topic

Our extensive experimental study on three differen- may emerge in the forms of image, text or both. To our best
t datasets highlights the advantage of our method underknowledge, we are the first to apply CMF to learn hashing
cross-view scenarios and verifies that CMFH significantly functions for similarity search on multimodal data.
outperform several state-of-the-art methods.

The remainder of this paper is organized as follows. We
briefly introduce the related work on collective matrix fac-  View-specific hashing methods learn independent hash
torization and representative cross-view hashing metimods codes for each view of instance, and then concatenate view-
Section[2. Sectiol]3 presents our proposed approach. Secspecific binary codes for obtaining integrated hash codes.
tion [4.1 provides extensive experimental validation oeéhr CVH [12] designs a set of binary cod{rygt)} for view
datasets. The conclusions are given in Secfibn 5. t of objecto,, Vt, i, and minimises the weighted cumulative

Hamming distance:

entities. CMF jointly factorizes multiple relation matri-

3. We show that the proposed CMFH is a similarity-
preserving hashing method with approximate bi-
Lipschitz continuity as illustrated ii_3.6.

2.2. View-specific Hashing Methods

2. Related Work

; . o minimize d = Zwijdij
2.1. Collective Matrix Factorization

ij

For relational learning, [[18] proposed Collective ma- gt y(t) €{-1, 1},23,@ —0, 1 Zy(t)y(t)T — IVt
trix factorization to predict unknown values of relatiowgi ‘ —! ne=mt

en an entity dataset and observed multiple relations among (1)
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Whered;; = 3, 3o, Iyt — y'||2 denotes the cumu- 3. Collective Matrix Factorization Hashing
lative Hamming distance betweenando;, andW;; be the

similarity betweer; ando;. At last, a low-dimensional lin- In this section, we present our hashing method for mul-

o " 0T () ) tiple modalities dataj.e. Collective Matrix Factorization
ear embedding is assumeyif.: = A" x; 7, which trans-  Hashing(CMFH). Without loss of generality, we introduce

forms Equation[{) to a generalized eigenvalue problem.  c\iEH firstly in bimodal case because it is simple and easy
CMSSH [3] embeds the input data from two arbitrary g ynderstand.

spaces into the Hamming space in a supervised way. Giv-
en pair(xg, yx) and similarity labels, € {+1,—1}, here 3.1. Problem Formulation
xr € R™ y, € R™ are sampled from different spaces. B n . .
CMSSH defines the affine projections of forfp(x) = SupFose th(? B {O(ﬁi:l |32 a set (()Qf)mulu-z/;)ew objects
plx + a; andg;(y) = ql'y + b;, then thei-th bit is gener- andX™ = [xj, ..., xn ], X =[x, ...xy ] are two
ated by maximizing: different view matrices of?, wherex!" € Ré1, x? ¢
R?% (usually,d; # d»). Given the codewords length,
ri =Y wi(k)siSign(py xx + a;)sign(al yx +b:;) (2)  the purpose of CMFH is to learn unified hash cogtes=
k {—1,1}* for 0;,i = 1,2,...,n, such thaty;,y, preserve
whereuw; (k) is weighting coefficients in Adaboostl[1], and the similarity betweemw; ando; with high probability.
w; (k) is increased fofxy, yx) that is misclassified and de-
creased otherwise. Discarding the sign function, Equation
(@) is closely related to a simpler function: As illustrated in Figur€l2, the proposed CMFH consists
of two phases. One is offline hash functions learning and
7= w(Pix)(al¥i) = P! O_uXi¥i)a: (3)  datebases generating, the other is online coding and search
k k ing. In offline phase, CMFH learns unified hash codes
wherex;, andy} arex; andy; centered by their weighted Y = Y15l _y_n]. For out-of-sample instance, CMFH learn-
means, andy, = w;(k)s;. Equation[(B) can be solved by S View-specific hash functiong for ¢-th view. Similar to
singular value decomposition, and multiple hash bits can bePrevious work [21], 12.13], we only consider the affine pro-
generated by Adaboost framework. jections of the form

3.2. Framework Overview

2.3. Integrated Hashing methods fi(x®) = Px® 4 a,, vt (4)

Integrated hashing methods learn only a set of unified whereP; € RF*® is the projection matrix, and, € R

hash codes for each '”Star.“’e- CHMIS [23] uses a COde'is the offset unit vector. In the online phase, queries of any
word y; to represent an objeot, and measures the Ham-

) . A type would be mapped to compact codes according to relat-
ming distance ((ta)n each individual source_ and sum _themed learned hashing functioris. given the querg(t), gen-
up: 3, 30, Willy; — v;jlI°, whereW® s the affini- - grating unified hashwords by — sign( f;, (x(*))). Then
ty matrix for ¢-th source. In order to extend the solution c\vEH returns similar results of all views for the given
to out-of-sample datapoints easily, CHMIS assumes thatmanped query. CMFH is quite efficient for online similar-
yi = signy, a:(M®)x{"), whereM(® is the weight ity search task, since bit XOR operations are applied when
matrix for thet-th source, andv = {a:} is a non-negative  calculating Hamming distance between binary codes.
convex combination witf) ~, oy = 1. CHMIS minimises:

3.3. Collective Matrix Factorization Hashing

C WOy —y*||2 .
! zt: 2]: t lyi Vi I We can learn latent semantic feature from source datasets
by matrix factorization [[5]:

+C 3 [lyr = > e (MO)xV)2 4 A>T MO
7 t t

MVSH [10] constructs an average similarity mati¥,
and integrates multiple view information to unified binary
codes ay = signy", M®x!"), whereM® is the pro-
jection matrix. In order to avoid undesirable embedding,

X® = U, V,, Vvt (5)

whereU,; € R%*k vV, ¢ RF*" andk is the number of
latent factors. Each column vectoy is a latent semantic
representation of theth view datax(®. It is assumed that:

MVSH definesd;; = (y;)"y; to measure Hamming dis- 1. The interlinked data should have the same latent se-
tance between; ando;. Hence MVSH minimises: mantic representation;
> W) M(t)xz(-t))T(Z Mx() 2. The hash codes can be learned from latent semantic
i ¢ t representation,e. y = sign(v).
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Figure 2. Framework of CMFH, illustrated with toy data.

(-

Based on assumption 1, we decomps® andX (2 joint- 1. FixP;, V, let §& = 0,t = 1,2, then obtain:

ly with the constrainV, = Vo, = V:

U, = XOVT(vvT 4 Lyt (9)

XD — UV + (1= 0IXE - U VIE 6 N
where\; = A\, \; = 1— ), andl is the identity matrix.

Here A i_s the palance parameter. Thféf(_)r databasg can 2. FixU,,V, let % — 0, = 1,2, then obtain:

be obtained directly based on assumption 2, but it cannot

be generalized to query straightly. For out-of-sample in- P, — VtX(t)T(X(t)X(

stance, CMFH learns view-specific hash functigiador

t-th view of the form in Equation{4). A balanced hash

function, which meet§™, sign(f,(x\”')) = 0, would max-

0" L1 (10)
1

3. Fix Uy, Py, let 8¢ = 0,¢ = 1,2, then obtain:

imum information onX®* [21]. Dropping sign function, 2 . & . )
the balanced constraint would leaciio= — 3, P;x\" /n, V= NUTUAQu+yD) (O (AU +uP) X )
then we can rewrite Equatiofl (4) #gx®) = P, (x(®) — t=1 t=1 (1)

5. x" /n) = P,x". However, we still us&(®) to denote
the centred dat&® for convenience.

The overall objective function combines the collective Algorithm 1 Collective Matrix Factorization Hashing
matrix factorization part given in Equatiof] (6), the linear

The algorithm is summarized in Algorithih 1.

: . . S i Input:
embedding part in Equatiofl(4) and regularization term: Data matrixX(®), ¢ = 1,2, parameters, 1, 7, k
. Output:
minimise U,,Uy, P, Py, V 7 S .
Ul,UIQ,IPl,IgQ,VG( 1, Uz, Py, P2, V) () Integrated hash cod€¥, projection matrixP,,t =
1,2.
where 1: Initialize U, P; by random matrices, and centering
X () by meanst = 1, 2.
G =AIXD — UV 4 (1- )X - U,V 2 repeat
+u([V =P XD |3 + |V = P.XP|3) (8) 3 Fix U, Py, updateV by Equation[(ILL),= 1,2;
+YR(V, Py, Py, Uy, Uy) 4:  Fix Uy, V, updateP, by Equation[(ID},= 1, 2;
5. Fix P, 'V, updateU, by Equation[(®), = 1, 2;
wherey and~y are tradeoff parameters, and regularization 6: until convergency.
term is defined a®(-) = || - ||% to avoid overfitting. 7. Y =sign(V).

3.4. Learning Hash Function

o _ . 3.5. Learning Hash Codes
The optimization probleni{7) is non-convex with five

matrix variablesU;, U, Py, P, V. Fortunately, it is con- CMFH first utilizes Equation[(11) to compué, then

vex with respect to any one of the five matrix variables while generates hashcodes for the whole database by a simple
fixing the other four. Therefore, the optimization problem thresholding strategy,e. sign(V). When a new querg®

can be solved by following the listed three steps iteragivel comes, CMFH generates the hashcodes according to Equa-
until convergency: tion @): y® = signP,(x) — 3, x\" /n)).
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3.6. Theoretical Analysis

CMFH is a similar-preserving hashing method. Acc
ing to formula[T), for every view and every instance

,Et) =Uyv; + e,gt)

(t)

i

b (12
v; = Ptx,gt) +é

Whereegt), e’l(.t) are the reconstruction errors. Based o..

quation [I2), the norm of instanéeninus instancg is:

I =% — (el — e[| = [Uy(vi — vl

Using the norm propertieAB|| < ||A/||B]| and|A +
B|| < ||A| + ||B]| for any matrixA, B, then obtaining:

lvi = vill > Crlxt” — x| = (i, ) i
lvi = vl < Calxt — x| + €573, )
whereCy; = max{1/||U||}, C2 = min{||P¢||}, and the
bound errors{” (i, j) = [lef” — e{”||/[| U4, " (i, 5) =
e — ||, We denotee; = {e{” (i, ); ¥, 1,5} and

€ = {egt)(i,j);w, i, j} as bound error set. The inequalities

in (I4) explain the bounds difv; — v;||, which means that

the hash functions of CMFH are approximate bi-Lipschitz

continuityEl. However, the value of; affects the local sen-
sitivity of CMFH significantly . IfX(Y) andV are decom-

posed perfectly, then the error tesnequates to 0, and the

bounds in (I}) guaranteg tends tov; whenx,gt) tends to
x\". In fact, minimising [7) would reduce the value qf
(usually, not equates to 0).

We investigate the distribution af among one large

el
5 B 5 &

percentage(%)
percentage(%)

o v s o ®

0 0.05 0.15 02 0.05 01 015 02

€1 £2
Figure 3. The histogram distribution of bound errors.

o

3.7. Extension
The extension for CMFH in formul&l(7) from bimodal to
multiple modalities is quite simple and direct:

inimi ) _ 2 _pXO2
”I}'[]'Prﬂ'éeZt:AtHX UtVHF""'Mzt:HV P, XD3

+1(Y_R(P;, Uy) + R(V))

where) ", \; = 1. Itis straightforward to adapt Algorithm
[ presented above to solve the new problems.

4. Experiments

We carried out our experiments on three differen-
t datasets : Wiki, NUS-WIDE and MIRFLICKR-25000.
We compared the proposed CMFH to several state-of-the-
art methods and the experiment results show that CMFH
can significantly outperform the baseline methods.

4.1. Experiment Settings
4.1.1 Datasets

wikifd. It was collected from Wikipedia with 2,866 image-

dataset. We train 64-bits CMFH firstly, then 5000 instances text pairs. Each image is represented by 128-dimension
are sampled to compute reconstruction error by EquationSIFT [18] histograms and each text is represented by 10-
(@2). In order to eliminate the influence of data dimension, dimension topics vector. It contains 10 semantic classés an
egt)/HViH and e'§t>/||x§t>|| are used as normalized recon- €ach pair is labeled with one of them. We use 75% of the
struction error. Then bound errors are computed based orPairs as the training set, the remaining 25% as the query set.

them. Therefore, we draw the distribution histogram among

total 25M data pairs in Figurgl 3. More thaa% data pairs

of ¢; ande, fall into [0, 0.1], which means that the bounds

of CMFH in ([13) is tight in practice.

The time complexity for training CMFH i©((d® + k3 +
nkd+k*n+dk*+n?d-+n?k)T), wherel is the number of
iterations, andl = max.{d;}. Because:, d < n, the over-
all complexity isO(n?(d+ k)T). In fact, training CMFH is

NUS-WIDER. Itis a real-world web image database con-
taining 81 concepts and 269,648 images with tags. We se-
lect ten largest concepts and the corresponding 186,577 im-
ages. Images are represented by 500-dimension SIFT his-
tograms, and texts are represented by index vectors of the
most frequent 1000 tags. Each pair is annotated by at least
one of 10 concepts. Pairs are considered to be similar if they
share at least one concepts. We use 99% of the data as the

faster than most existing multi-view hashing methods. For training set and the rest 1% as the query set.

each query, the hashing timeG¥dk), which is identical to
that of matrix multiplication.

1The inequalities[{T4) is similar with bi-Lipschitz contityiin mathe-

matical analysisf dropping bound error terms, so we cél[{14) as approx-

imate bi-Lipschitz continuity.

MIRFLICKR-25000f. It consists of 25,000 images,
and each image is annotated by some labels in 38 unique

2http://www.svcl.ucsd.edu/projects/crossmodal/
Shttp://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
4http://press.liacs.nl/mirflickr/
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Table 1. mAP Comparison, Viewl is Image or CEDD, and View2€stDr SIFT.
Task Method - - Wiki - - - N.US-WIDE. - - MIRF.LICKR-ZS.OOO -
16 bits | 32 bits | 64 bits | 128 bits | 16 bits | 32 bits | 64 bits | 128 bits | 16 bits | 32 bits | 64 bits | 128 bits
CVH 0.2041 | 0.1604 | 0.1296 | 0.1308 | 0.3722| 0.3632 | 0.4060| 0.3875 | 0.6070| 0.5999 | 0.5911| 0.5778
Viewl IMH 0.2017 | 0.2119 | 0.2025| 0.1926 | 0.4721 | 0.4716 | 0.4668 | 0.4594 | 0.6124 | 0.6034 | 0.5930 | 0.5795
to CMSSH | 0.2026 | 0.2113 | 0.2011| 0.2084 | 0.4997 | 0.5189 | 0.5142 | 0.5086 | 0.5417 | 0.5438 | 0.5406 | 0.5486
View2 | CHMIS | 0.2207 | 0.2189 | 0.2126 | 0.2035 | 0.4870 | 0.4896 | 0.4835| 0.4762 | 0.6227 | 0.6202 | 0.6147 | 0.6087
CMFH 0.2538 | 0.2582 | 0.2619| 0.2648 | 0.5591 | 0.5698 | 0.5780 | 0.5837 | 0.6480 | 0.6597 | 0.6693 | 0.6752
CVH 0.2962 | 0.1944 | 0.1337| 0.1125 | 0.4042| 0.3991 | 0.4480| 0.4315 | 0.6095| 0.6040 | 0.5955| 0.5822
View?2 IMH 0.4865 | 0.5295| 0.4935| 0.4628 | 0.4793 | 0.4800 | 0.4744 | 0.4643 | 0.6046 | 0.5983 | 0.5866 | 0.5771
to CMSSH | 0.2928 | 0.2732 | 0.2753 | 0.2814 | 0.5015| 0.5103 | 0.5039 | 0.4984 | 0.6158 | 0.6206 | 0.6194 | 0.6213
Viewl CHMIS | 0.2207 | 0.2189 | 0.2126 | 0.2035 | 0.4870 | 0.4896 | 0.4835| 0.4762 | 0.6227 | 0.6202 | 0.6147 | 0.6087
CMFH 0.6116 | 0.6298 | 0.6398 | 0.6477 | 0.6614 | 0.6921 | 0.7164 | 0.7185 | 0.6174 | 0.6241 | 0.6311| 0.6340

labels. Images are described by 100-dimension [15]set on NUS-WIDE and MIRFLICKR-25000. Thus, we se-
histograms which mainly encode surface texture, and 144-lect 5000 instances from database randomly as the training
dimension CEDD feature$|[4] which focus on color and set to learn hash functions. Then hash functions are applied
edge directivity. Because they are similar in texture spaceto every instance in database to obtain its hash codes.
while dissimilar in color space, we choose them to simulate
a cross-view setting as in_[16]. We use 75% of the pairs as
the training set, and the remaining 25% as the query set.

In the coming sections, we provide empirical analysis
on parameter sensitivity, which verifies that CMFH can
achieve stable performance under a wide range of param-
) eter values. When comparing with the baseline methods,
4.1.2 Baseline Methods we use the following parameter settings= 0.5, . = 100,

CMFH is compared against five state-of-the-art hashing? = 0-01 andR = 50. To remove any randomness caused
methods: LSH, CVH®, IMH®, CMSSHE and CHMIS. by random initialization and random selection of training
They can be divided into three types. LSH is a single-view S€t all of the results are averaged over 25 runs.

hashing method, while CVH, IMH and CMH are cross-view

hashing methods in which view-specific hash codes are ) i

learned, and CHMIS is a cross-view method which learns 4-2- Results and Discussions

integrated hash codes. We carefully tuned the their parame- .
ters and reported their best results. 4.2.1 Results on Wiki

4.1.3 Evaluation Metric The mAP values for CMFH and four baseline methods are

_ __ reported in TablE]1. Thprecision-recallcurves are plotted
The performance measure is the mean average precisiof, rigure[3. We can observe that CMFH significantly out-
(MAP), which is the mean of average precision (AP), and performs all baseline methods on both tasks varying code
AP of top R retrieved instances is defined as: length, which verifies the effectiveness of CMFH.

1 & ‘ ) Furthermore, CMFH performs better with longer codes.
AP = L ZP(Z> x 0(1) (15) This is reasonable because longer hash codes can encode

i=1 more information and thus can improve the mAP perfor-
wherelL is the number of relevant instances in retrieved set, mance. However, We can observe that the PR-curve of sev-
P(i) denotes the precision of the topetrieved documents,  eral methods looks strange, e.g. the PR-curve of CVH at 64
andd(i) is an indicator function equaling 1 if the item at bits shows that it behave like random guess in experiments.
rank: is a relevant document, O otherwise. This phenomenon has also been observedin [25] [14]. Ac-
We also reporprecision-recallcurves on Wiki dataset. tually, all baseline methods are solved by eigenvalue de-

It can be obtained by varying the Hamming radius of the composition and have orthogonality constraints on each bit
retrieved points and evaluating the precision, recall @aed t so that each bit shows no correlation to each other. The

number of retrieved points accordingly. first few projection directions may have high variance and
their corresponding hash bits can be quite discriminative,
4.1.4 Implementation Details which is quite useful to similarity search. However, as the

) ) code length increases, the hash codes will be dominated by
IMH and CHMIS require so much computational resource pjts with very low variance. Actually, since the variance
5We implemented it because the code is not publicly available So these indiscriminative hash bits may lead the method to
6The source code is kindly provided by the authors. make random guess in experiments.
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4.2.2 Results on NUS-WIDE Table 2. mAP Comparison on NUS-WIDE for Single-view Simi-
larity Search
The mAP values for CMFH and four baseline methods are Task | Method Code Length
; ; 16 32 64 128

reported in Tablgll. As menthr!ed above, we select 5000 [SH 104362 T 04290 | 04651 0.4794
instances randomly as the training set to learn hash func- Img [ CVA | 0.4662 | 0.4689 | 0.4807 | 0.4868

tions. And the learned hash functions are extended to the to IMH 0.4821 | 0.4835| 0.4837 | 0.4868

whole database. CMFH significantly outperforms all base- Txt | CMSSH | 0.4819 | 0.4866 | 0.4910 | 0.4936

CHMIS | 0.4870 | 0.4896 | 0.4835| 0.4762

line methg_ds on both tasks varying code length. . CMEA | 05591 T 0.5695 1 05780 | 0.5837
In_addltlon, we compare Fhe performance of different SH 1 05004 05758 | 0.6588 | 0.7110

hashing methods for single-view similarity search on NUS- Txt CVH | 0.4193 0.3937 | 0.4934 | 0.4729

WIDE. We can observe that CMFH, which combines mul- It0 C:\'/\Iﬂ;SH 8-2883 8-2‘3‘;‘2‘ 8-2233 8-;;218

. . . . mg . . . .

tiple mformanon sources o_f one instance, can outperform CAMIS T 02870 T 0.4896 T 04835 1 04762

other h_ashlng mthods. This is reasonable pecause more in- CMEH | 06614 | 0.6921 1 0.7164 | 0.7185

formation of one instance can be encoded into hash codes

when combining multiple views. Furthermore, this result Table 3. Effect of Training Size on mAP

also validates the ability of CMFH to increase the search DataSet Task - Tra'”l'ga Size .

accuracy by merging mgltlple mforr_natmn sources. DS WIDE Imgto Txt | 0.5651 | 0.5785 | 0.5871
In real-world applications, the size of database may be TxttoImg | 0.7164 | 0.7306 | 0.7384

so large that it's impossible to learn hash functions on the | \ireLickr | _.CEPD 1 SIFT | 0.6693 | 0.6736 | 0.6764

whole database because of the limitation of computational SIFTto CEDD | 0.6311] 0.6348 | 0.6383

resource. And new data is keeping coming into database
as time goes by and hash codes for new data must be comgomplexity of the model. The model is under-fitted with too
puted. One solution to these problems is to learn hash func4grge value while over-fitted with too small value.
tions on a smaller training set and extend it to out-of-sampl
instances (other instances in database or new-coming in
sftar_lces). The experiment _settlngs on NUS'WIDE IS QUIte 5 meter by varying its value while fixing the other. The re-
similar to real-world scenario. The exp(_arlment results_/\sho sults, plotted in FigurEl5 where View1 is Image or CEDD
that CMFH can handle out-of-sample instances easily and, . view? is Text or SIFT, validate that CMFH can achieve
the ability to handle large-scale database. fantastic performance under a wide range of parameter val-
ues. The dashed lines show the best baseline results. On
4.2.3 Results on MIRFLICKR-25000 all six tasks, CMFH outperforms best baseline results when
w € [1,1000] andy € [0.001, 0.1].

The code length is fixed to 64, and other parameters are
set as introduced i 4.3.4. We conduct analysis on one pa-

The mAP values for CMFH and four baseline methods for
cross-view similarity search are reported in Tdble 1. As the
results above, CMFH can outperform all baseline methods4.2.5 Effect of Training Size

varying code length for cross-view similarity search.

Furthermore, we study the effect of size of training set on
NUS-WIDE and MIRFLICKR-25000. Tablgl 3 shows the
MAP results varying the size of training data from 5k to 15k.
We conduct empirical analysis on parameter sensitivity on Clearly, it's expected that more effective hash functicars ¢

all six tasks. controls the weight of linear embedding. If be learned given more data. However, as the size of train-
it's too large, Equatiorf{7) is equivalent to maximize inter ing data increase to 5k, further increasing training data si
correlation as a special case of CVH which will leads to does’nt significantly improve the results. This shows the
poor performance. Ifit's too small, the hash functions tan’ stabilization of the hash functions learned by CMFH with
preserve locality as it loose the upper bous@ontrols the reasonably small training set.

4.2.4 Parameter Sensitivity

4327



Viewl - View2

View2 - Viewl

Viewl - View2 View2 - Viewl

0 1 5 10 50 100 200 500 1000 2000 5000 10000
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In this paper, we propose a novel hashing method, re- 7]
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Figure 5. Parameter Sensitivity Analysjs&nd-y)

ferred to Collective Matrix Factorization Hashing, for sse
view similarity search on multimodal data. CMFH learns u-
nified hash codes by collective matrix factorization with la
tent factor model from different modalities of one instance
which can be searched for different views. We also show
that CMFH is a similarity- preserving hashing method with
approximate bi- Lipschitz continuity.
We conduct experiments to verify the effectiveness of the
proposed CMFH. We show that CMFH achieves much bet-
ter performance than several state-of-the-art hashing-met
ods in all cross-view and most single-view similarity séarc
experiments. The parameter analysis shows that CMFH is

not sensitive to parameter settings, which can deliver re-[12]

[6] A. Gionis, P. Indyk, R. Motwani, et al. Similarity seara

(8]

9]

[10]

[11

markable performance under a wide range of parameter val-
ues. Furthermore, CMFH is capable of dealing with out- [13] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. $upe
of-sample instances easily and can learn stable hash func-
tions with reasonably small training set from a large-scale [14] W. Liu, J. Wang, S. Kumar, and S. F. Chang. Hashing with
database, which makes it applicable to real-world scesario
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