
Collective Matrix Factorization Hashing for Multimodal Da ta

Guiguang Ding Yuchen Guo Jile Zhou
School of Software,Tsinghua University, Beijing, P.R.China

dinggg@tsinghua.edu.cn yuchen.w.guo@gmail.com jile.zip@gmail.com

Abstract

Nearest neighbor search methods based on hashing have
attracted considerable attention for effective and efficien-
t large-scale similarity search in computer vision and in-
formation retrieval community. In this paper, we study the
problems of learning hash functions in the context of multi-
modal data for cross-view similarity search. We put forward
a novel hashing method, which is referred to Collective
Matrix Factorization Hashing (CMFH). CMFH learns u-
nified hash codes by collective matrix factorization with la-
tent factor model from different modalities of one instance,
which can not only supports cross-view search but also in-
creases the search accuracy by merging multiple view in-
formation sources. We also prove that CMFH, a similarity-
preserving hashing learning method, has upper and lower
boundaries. Extensive experiments verify that CMFH sig-
nificantly outperforms several state-of-the-art methods on
three different datasets.

1. Introduction

Nearest neighbor search plays a fundamental role in
many important applications, such as information retrieval,
data mining, and computer vision. Hashing-based nearest
neighbor search, the most well-known method embedding
high-dimensional data into compact binary codewords, has
garnered considerable interest in recent years for their great
efficiency gains in massive data [8]. One of the most fa-
mous hashing-based models is locality sensitive hashing
(LSH) [6], whose basic idea is to map the original data into
Hamming space while preserving their similarity with high
probability. LSH can deal with similarity search quite effi-
ciently because bit XOR operations are applied when calcu-
lating Hamming distance between binary codes [24]. As ex-
tensions of standard LSH, some machine learning methods
are employed to design effective compact hashing, such as
Manifold Learning, Supervised Learning, Kernel Learning,
Deep Learning, Quantization Learning, Linear Discrimi-
nant Analysis (LDA), K-means and PCA, which respec-
tively generate Spectral Hashing [22], Supervised Hashing

[13], Kernelized Hashing [11], Semantic Hashing [17],
Iterative Quantization Hashing [7], LDA Hashing [20], K-
means Hashing [9] and PCA Hashing [21].

With the spread of similarity search across differen-
t views, the single-view methods aforementioned are ex-
tended to multi-view scenarios. The core problem of hash
function learning for cross-view is how to deal with multi-
modal data sampled from different probability distribution-
s. Recently, a few cross-view hashing methods have been
developed. Generally, cross-view hashing methods can be
divided into two categories: view-specific hashing methods
and integrated ones. View-specific hashing methods learn
independent hash codes for each view of instance, and then
concatenate multiple view-specific binary codes to obtain
integrated hash codes. In [3], cross-modality similarity
search hashing (CMSSH) is solved by embedding incom-
mensurable data into a common metric space, and the hash
functions are learned by using eigendecomposition and s-
tandard AdaBoost. In [12], Kumar et al. extended spec-
tral hashing to the multi-view filed and proposed a Cross-
View Hashing model (CVH), which minimizes the weight-
ed average multi-viewℓ2-norm distance of object pairs by
solving a generalized eigenvalue problem. Co-Regularized
Hashing (CRH) [26], whose objective function intends to
project data far from 0 for good generalization, and at the
same time, preserve the inter-modality similarity effective-
ly. Inter-media Hashing (IMH) [19] introduces inter-media
consistency and intra-media consistency to discover a com-
mon hamming space, and uses linear regression with regu-
larization model to learn view-specific hash functions. The
aforementioned hashing methods are mainly employed in
similarity search across different views. For instance, giv-
en an image as query, search engine can return some doc-
uments to accurately describe the details. To implemen-
t cross-view search, each view needs to store independent
hash codes which increases the cost of storage and search.

Integrated hashing methods learn unified hash codes for
each instance. Composite Hashing with Multiple Informa-
tion Sources (CHMIS) [23] combines information from d-
ifferent sources into final integrated hash codes by optimiz-
ing the relaxed hash codes and combination coefficients al-

4321

ternatively. Multi-View Spectral Hashing (MVSH) [10] in-
tegrates multi-view information into binary codes, and uses
product of codewords to avoid undesirable embedding. This
type of hashing methods is generally utilized to improve the
search accuracy of hash codes by combining multiple infor-
mation sources of one instance, and is not implemented for
cross-view similarly search. They work well only when all
the information sources are available, which is too demand-
ing in real-world.

In this paper, we put forward a novel hashing method,
which is referred to Collective Matrix Factorization Hash-
ing (CMFH). CMFH assumes that each view of one instance
generates identical hash codes, which are not the combina-
tion or concatenation of some hashing codes from different
views. Figure 1 illustrates the difference among the two cat-
egories of methods aforementioned and CMFH. For each
instance, we learn unified codes by collective matrix fac-
torization with latent factor model from different view in-
formation sources. To ensure that the learn hash codes can
be searched for different views, we also learn linear hash
function for each view to determine binary codes of unseen
instances. Our paper has the following contributions:

1. We propose a unified hashing method in cross-view s-
cenario, which can not only support cross-view search
but also increase the search accuracy by merging mul-
tiple view information.

2. Our work is the first attempt to employ the collective
matrix factorization (CMF) technology to learn cross-
view hash functions. Our experiments demonstrate
CMF is an effective hashing method when multiple
view information sources are available.

3. We show that the proposed CMFH is a similarity-
preserving hashing method with approximate bi-
Lipschitz continuity as illustrated in 3.6.

Our extensive experimental study on three differen-
t datasets highlights the advantage of our method under
cross-view scenarios and verifies that CMFH significantly
outperform several state-of-the-art methods.

The remainder of this paper is organized as follows. We
briefly introduce the related work on collective matrix fac-
torization and representative cross-view hashing methodsin
Section 2. Section 3 presents our proposed approach. Sec-
tion 4.1 provides extensive experimental validation on three
datasets. The conclusions are given in Section 5.

2. Related Work

2.1. Collective Matrix Factorization

For relational learning, [18] proposed Collective ma-
trix factorization to predict unknown values of relation giv-
en an entity dataset and observed multiple relations among

Multi-view
Hash Functions

01101101

View-specific Hashing Integrated Hashing Our CMFH

P1 P2

P* P1 P2

View1 View2

Multi-view
Hash Functions

Multi-view
Hash Functions

11010010

10011010

10011010 10011010

Figure 1. The difference among the three types of methods.

entities. CMF jointly factorizes multiple relation matri-
ces which may have different value types, and the factors
share parameters when entities appear in multiple relations.
Take movie rating prediction as an example in [18]. Let
X ∈ R

m×n be an integer matrix representing user’s rat-
ing, and the elementXij denotes useri’s rating for movie
j. Let Y ∈ R

r×n be a binary matrix denoting the genres
each movie belonging to, andYij indicate whether moviej
belongs to genrei or not. The factors areU ∈ R

m×k, V ∈
R

n×k andZ ∈ R
r×k, andV is the shared factor in both

reconstructions:X ≈ f1(UV T) andY ≈ f2(ZV T), where
fi is a possibly-nonlinear link function, andk > 0 is the
rank. The average decomposable losses are:

L(U, V, Z|X,Y) = α1L1(U, V |X) + α2L2(Z, V |Y)

where L1, L2 is decomposable loss function forX ≈
f1(UV T) andY ≈ f2(ZV T) respectively, and

∑
t αt = 1.

Not limited to movie rating prediction, CMF is a sim-
ple yet powerful approach to deal with many applications,
where multiple interlinked sources of data are available and
they cannot be represented by a single adjacency matrix [2].
In multimedia domain, objects are often presented in sever-
al different views,e.g. Wikipedia’s pages of the same topic
may emerge in the forms of image, text or both. To our best
knowledge, we are the first to apply CMF to learn hashing
functions for similarity search on multimodal data.

2.2. View-specific Hashing Methods

View-specific hashing methods learn independent hash
codes for each view of instance, and then concatenate view-
specific binary codes for obtaining integrated hash codes.

CVH [12] designs a set of binary codes{y(t)
i } for view

t of objectoi, ∀t, i, and minimises the weighted cumulative
Hamming distance:

minimize d =
∑

ij

Wijdij

s.t. y
(t)
i ∈ {−1, 1},

∑

i

y
(t)
i = 0,

1

n

∑

i

y
(t)
i y

(t)
i

T
= I, ∀t

(1)

4322

Wheredij =
∑

t

∑
t′≥t ||y

(t)
i − y

(t′)
j ||2 denotes the cumu-

lative Hamming distance betweenoi andoj , andWij be the
similarity betweenoi andoj . At last, a low-dimensional lin-

ear embedding is assumed:y
(t)
i = A(t)Tx

(t)
i , which trans-

forms Equation (1) to a generalized eigenvalue problem.
CMSSH [3] embeds the input data from two arbitrary

spaces into the Hamming space in a supervised way. Giv-
en pair(xk,yk) and similarity labelsk ∈ {+1,−1}, here
xk ∈ R

m,yk ∈ R
n are sampled from different spaces.

CMSSH defines the affine projections of formfi(x) =
pT
i x+ ai andgi(y) = qT

i y + bi, then thei-th bit is gener-
ated by maximizing:

ri =
∑

k

wi(k)sksign(pT
i xk + ai)sign(qT

i yk + bi) (2)

wherewi(k) is weighting coefficients in Adaboost [1], and
wi(k) is increased for(xk, yk) that is misclassified and de-
creased otherwise. Discarding the sign function, Equation
(2) is closely related to a simpler function:

r̂i =
∑

k

vk(p
T
i xk)(q

T
i yk) = pT

i (
∑

k

vkxky
T
k)qi (3)

wherexk andyT
k arexk andyk centered by their weighted

means, andvk = wi(k)sk. Equation (3) can be solved by
singular value decomposition, and multiple hash bits can be
generated by Adaboost framework.

2.3. Integrated Hashing methods

Integrated hashing methods learn only a set of unified
hash codes for each instance. CHMIS [23] uses a code-
wordy∗

i to represent an objectoi, and measures the Ham-
ming distance on each individual source and sum them
up:

∑
t

∑
ij W

(t)
ij ‖y∗

i − y∗
j ‖

2, whereW(t) is the affini-
ty matrix for t-th source. In order to extend the solution
to out-of-sample datapoints easily, CHMIS assumes that
y∗
i = sign(

∑
t αt(M

(t))x
(t)
i), whereM(t) is the weight

matrix for thet-th source, andα = {αt} is a non-negative
convex combination with

∑
t αt = 1. CHMIS minimises:

C1

∑

t

∑

ij

W
(t)
ij ‖y

∗
i − y∗

j‖
2

+C2

∑

i

‖y∗
i −

∑

t

αt(M
(t))x

(t)
i ‖2 + λ

∑

t

‖M(t)‖2

MVSH [10] constructs an average similarity matrixW,
and integrates multiple view information to unified binary
codes asy∗

i = sign(
∑

t M
(t)x

(t)
i), whereM(t) is the pro-

jection matrix. In order to avoid undesirable embedding,
MVSH definesdij = (y∗

i)
Ty∗

j to measure Hamming dis-
tance betweenoi andoj . Hence MVSH minimises:

∑

ij

Wij(
∑

t

M(t)x
(t)
i)T (

∑

t

M(t)x
(t)
i)

3. Collective Matrix Factorization Hashing

In this section, we present our hashing method for mul-
tiple modalities data,i.e. Collective Matrix Factorization
Hashing(CMFH). Without loss of generality, we introduce
CMFH firstly in bimodal case because it is simple and easy
to understand.

3.1. Problem Formulation

Suppose thatO = {oi}
n
i=1 is a set of multi-view objects

andX(1) = [x
(1)
1 , ...,x

(1)
n], X(2) = [x

(2)
1 , ...,x

(2)
n] are two

different view matrices ofO, wherex(1)
i ∈ R

d1 , x(2)
i ∈

R
d2 (usually, d1 6= d2). Given the codewords lengthk,

the purpose of CMFH is to learn unified hash codesyi ∈
{−1, 1}k for oi, i = 1, 2, ..., n, such thatyi,yj preserve
the similarity betweenoi andoj with high probability.

3.2. Framework Overview

As illustrated in Figure 2, the proposed CMFH consists
of two phases. One is offline hash functions learning and
datebases generating, the other is online coding and search-
ing. In offline phase, CMFH learns unified hash codes
Y = [y1, ...,yn]. For out-of-sample instance, CMFH learn-
s view-specific hash functionsft for t-th view. Similar to
previous work [21, 12, 3], we only consider the affine pro-
jections of the form

ft(x
(t)) = Ptx

(t) + at, ∀t (4)

wherePt ∈ R
k×dt is the projection matrix, andat ∈ R

k

is the offset unit vector. In the online phase, queries of any
type would be mapped to compact codes according to relat-
ed learned hashing functions,i.e. given the queryx(t0), gen-
erating unified hashwords byy = sign(ft0(x

(t0))). Then
CMFH returns similar results of all views for the given
mapped query. CMFH is quite efficient for online similar-
ity search task, since bit XOR operations are applied when
calculating Hamming distance between binary codes.

3.3. Collective Matrix Factorization Hashing

We can learn latent semantic feature from source datasets
by matrix factorization [5]:

X(t) = UtVt, ∀t (5)

whereUt ∈ R
dt×k,Vt ∈ R

k×n, andk is the number of
latent factors. Each column vectorvt is a latent semantic
representation of thet-th view datax(t). It is assumed that:

1. The interlinked data should have the same latent se-
mantic representation;

2. The hash codes can be learned from latent semantic
representation,i.e. y = sign(v).

4323

101

000

Image or Text

Query

Hash Functions

Offline Online

-0.4 -1.1 0.3 -0.6

-1.6 -0.2 0.2 -2.1

0.1 0.8 -0.2 0.2

0.3 0.5 0.7 0.4

1.0 0.3 -0.7 1.4

0.0 1.3 0.9 0.6

-0.1 -0.7 1.2 -0.4

≈
≈

0.04 -2.6 1.4

-2.9 -1.2 4.8

-0.4 1.8 -0.4

1.0 0.02 0.2

1.2 2.0 -3.8

0.7 1.3 0.7

1.1 -3.1 2.0

1.0 0.3 -0.7 1.4

0.0 1.3 0.9 0.6

-0.1 -0.7 1.2 -0.4

≈
≈

0 0 1 1

0 1 0 0

0 1 1 0

Binary Codes

Database

0.2 0.4 -0.1 1.2 1.2 0.3 -0.2

×
Hashing

Codewords
Searching

Top-1 Result Pair

Figure 2. Framework of CMFH, illustrated with toy data.

Based on assumption 1, we decomposeX(1) andX(2) joint-
ly with the constraintV1 = V2 = V:

λ||X(1) −U1V||2F + (1− λ)||X(2) −U2V||2F (6)

Hereλ is the balance parameter. TheY for database can
be obtained directly based on assumption 2, but it cannot
be generalized to query straightly. For out-of-sample in-
stance, CMFH learns view-specific hash functionsft for
t-th view of the form in Equation (4). A balanced hash
function, which meets

∑
i sign(ft(x

(t)
i)) = 0, would max-

imum information onX(t) [21]. Dropping sign function,
the balanced constraint would lead toat = −

∑
iPtx

(t)
i /n,

then we can rewrite Equation (4) asft(x(t)) = Pt(x
(t) −∑

i x
(t)
i /n) = Ptx

(t). However, we still usex(t) to denote
the centred datax(t) for convenience.

The overall objective function combines the collective
matrix factorization part given in Equation (6), the linear
embedding part in Equation (4) and regularization term:

minimise
U1,U2,P1,P2,V

G(U1,U2,P1,P2,V) (7)

where

G =λ‖X(1) −U1V‖2F + (1− λ)‖X(2) −U2V‖2F

+µ(‖V −P1X
(1)‖2F + ‖V−P2X

(2)‖2F)

+γR(V,P1,P2,U1,U2)

(8)

whereµ andγ are tradeoff parameters, and regularization
term is defined asR(·) = || · ||2F to avoid overfitting.

3.4. Learning Hash Function

The optimization problem (7) is non-convex with five
matrix variablesU1,U2,P1,P2,V. Fortunately, it is con-
vex with respect to any one of the five matrix variables while
fixing the other four. Therefore, the optimization problem
can be solved by following the listed three steps iteratively
until convergency:

1. FixPt,V, let ∂G
∂Ut

= 0, t = 1, 2, then obtain:

Ut = X(t)VT (VVT +
γ

λt

I)−1 (9)

whereλ1 = λ, λ2 = 1−λ, andI is the identity matrix.

2. FixUt,V, let ∂G
∂Pt

= 0, t = 1, 2, then obtain:

Pt = VtX
(t)T (X(t)X(t)T +

γ

µ
I)−1 (10)

3. FixUt,Pt, let ∂G
∂V

= 0, t = 1, 2, then obtain:

V = (
2∑

t=1

λtU
T
t Ut+(2µ+γ)I)−1(

2∑

t=1

(λtU
T
t +µPt)X

(t))

(11)

The algorithm is summarized in Algorithm 1.

Algorithm 1 Collective Matrix Factorization Hashing
Input:

Data matrixX(t), t = 1, 2, parametersλ, µ, γ, k
Output:

Integrated hash codesY, projection matrixPt, t =
1, 2.

1: Initialize Ut,Pt by random matrices, and centering
X(t) by means,t = 1, 2.

2: repeat
3: Fix Ut,Pt, updateV by Equation (11),t = 1, 2;
4: Fix Ut,V, updatePt by Equation (10),t = 1, 2;
5: Fix Pt,V, updateUt by Equation (9),t = 1, 2;
6: until convergency.
7: Y = sign(V).

3.5. Learning Hash Codes

CMFH first utilizes Equation (11) to computeV, then
generates hashcodes for the whole database by a simple
thresholding strategy,i.e. sign(V). When a new querỹx(t)

comes, CMFH generates the hashcodes according to Equa-
tion (4): ỹ(t) = sign(Pt(x̃

(t) −
∑

i x
(t)
i /n)).

4324

3.6. Theoretical Analysis

CMFH is a similar-preserving hashing method. Accord-
ing to formula (7), for every viewt and every instancei:

x
(t)
i = Utvi + e

(t)
i

vi = Ptx
(t)
i + e′

(t)
i

(12)

wheree(t)i , e′
(t)
i are the reconstruction errors. Based on E-

quation (12), the norm of instancei minus instancej is:

‖x
(t)
i − x

(t)
j − (e

(t)
i − e

(t)
j)‖ = ‖Ut(vi − vj)‖

‖vi − vj‖ = ‖Pt(x
(t)
i − x

(t)
j) + (e′

(t)
i − e′

(t)
j)‖

(13)

Using the norm properties‖AB‖ ≤ ‖A‖‖B‖ and‖A +
B‖ ≤ ‖A‖+ ‖B‖ for any matrixA,B, then obtaining:

‖vi − vj‖ ≥ C1‖x
(t)
i − x

(t)
j ‖ − ǫ

(t)
1 (i, j)

‖vi − vj‖ ≤ C2‖x
(t)
i − x

(t)
j ‖+ ǫ

(t)
2 (i, j)

(14)

whereC1 = maxt{1/‖Ut‖}, C2 = mint{‖Pt‖}, and the

bound errorsǫ(t)1 (i, j) = ‖e
(t)
i − e

(t)
j ‖/‖Ut‖, ǫ

(t)
2 (i, j) =

‖e′
(t)
i − e′

(t)
j ‖. We denoteǫ1 = {ǫ

(t)
1 (i, j); ∀t, i, j} and

ǫ2 = {ǫ
(t)
2 (i, j); ∀t, i, j} as bound error set. The inequalities

in (14) explain the bounds of‖vi − vj‖, which means that
the hash functions of CMFH are approximate bi-Lipschitz
continuity1. However, the value ofǫt affects the local sen-
sitivity of CMFH significantly . IfX(t) andV are decom-
posed perfectly, then the error termǫt equates to 0, and the
bounds in (14) guaranteevi tends tovj whenx(t)

i tends to

x
(t)
j . In fact, minimising (7) would reduce the value ofǫt

(usually, not equates to 0).
We investigate the distribution ofǫt among one large

dataset. We train 64-bits CMFH firstly, then 5000 instances
are sampled to compute reconstruction error by Equation
(12). In order to eliminate the influence of data dimension,
e
(t)
i /‖vi‖ ande′(t)i /‖x

(t)
i ‖ are used as normalized recon-

struction error. Then bound errors are computed based on
them. Therefore, we draw the distribution histogram among
total 25M data pairs in Figure 3. More than90% data pairs
of ǫ1 andǫ2 fall into [0, 0.1], which means that the bounds
of CMFH in (14) is tight in practice.

The time complexity for training CMFH isO((d3+k3+
nkd+k2n+dk2+n2d+n2k)T), whereT is the number of
iterations, andd = maxt{dt}. Becausek, d ≪ n, the over-
all complexity isO(n2(d+k)T). In fact, training CMFH is
faster than most existing multi-view hashing methods. For
each query, the hashing time isO(dk), which is identical to
that of matrix multiplication.

1The inequalities (14) is similar with bi-Lipschitz continuity in mathe-
matical analysisif dropping bound error terms, so we call (14) as approx-
imate bi-Lipschitz continuity.

0 0.05 0.1 0.15 0.2
0

5

10

15

20

25

30

ε1

pe
rc

en
ta

ge
(%

)

0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

12

14

16

18

20

ε2

pe
rc

en
ta

ge
(%

)

Figure 3. The histogram distribution of bound errors.

3.7. Extension

The extension for CMFH in formula (7) from bimodal to
multiple modalities is quite simple and direct:

minimise
Ut,Pt,V

∑

t

λt||X
(t) −UtV||2F + µ

∑

t

||V −PtX
(t)||2F

+γ(
∑

t

R(Pt,Ut) +R(V))

where
∑

t λt = 1. It is straightforward to adapt Algorithm
1 presented above to solve the new problems.

4. Experiments

We carried out our experiments on three differen-
t datasets : Wiki, NUS-WIDE and MIRFLICKR-25000.
We compared the proposed CMFH to several state-of-the-
art methods and the experiment results show that CMFH
can significantly outperform the baseline methods.

4.1. Experiment Settings

4.1.1 Datasets

Wiki 2. It was collected from Wikipedia with 2,866 image-
text pairs. Each image is represented by 128-dimension
SIFT [15] histograms and each text is represented by 10-
dimension topics vector. It contains 10 semantic classes and
each pair is labeled with one of them. We use 75% of the
pairs as the training set, the remaining 25% as the query set.

NUS-WIDE3. It is a real-world web image database con-
taining 81 concepts and 269,648 images with tags. We se-
lect ten largest concepts and the corresponding 186,577 im-
ages. Images are represented by 500-dimension SIFT his-
tograms, and texts are represented by index vectors of the
most frequent 1000 tags. Each pair is annotated by at least
one of 10 concepts. Pairs are considered to be similar if they
share at least one concepts. We use 99% of the data as the
training set and the rest 1% as the query set.

MIRFLICKR-25000 4. It consists of 25,000 images,
and each image is annotated by some labels in 38 unique

2http://www.svcl.ucsd.edu/projects/crossmodal/
3http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
4http://press.liacs.nl/mirflickr/

4325

Table 1. mAP Comparison, View1 is Image or CEDD, and View2 is Text or SIFT.

Task Method
Wiki NUS-WIDE MIRFLICKR-25000

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits
CVH 0.2041 0.1604 0.1296 0.1308 0.3722 0.3632 0.4060 0.3875 0.6070 0.5999 0.5911 0.5778

View1 IMH 0.2017 0.2119 0.2025 0.1926 0.4721 0.4716 0.4668 0.4594 0.6124 0.6034 0.5930 0.5795
to CMSSH 0.2026 0.2113 0.2011 0.2084 0.4997 0.5189 0.5142 0.5086 0.5417 0.5438 0.5406 0.5486

View2 CHMIS 0.2207 0.2189 0.2126 0.2035 0.4870 0.4896 0.4835 0.4762 0.6227 0.6202 0.6147 0.6087
CMFH 0.2538 0.2582 0.2619 0.2648 0.5591 0.5698 0.5780 0.5837 0.6480 0.6597 0.6693 0.6752
CVH 0.2962 0.1944 0.1337 0.1125 0.4042 0.3991 0.4480 0.4315 0.6095 0.6040 0.5955 0.5822

View2 IMH 0.4865 0.5295 0.4935 0.4628 0.4793 0.4800 0.4744 0.4643 0.6046 0.5983 0.5866 0.5771
to CMSSH 0.2928 0.2732 0.2753 0.2814 0.5015 0.5103 0.5039 0.4984 0.6158 0.6206 0.6194 0.6213

View1 CHMIS 0.2207 0.2189 0.2126 0.2035 0.4870 0.4896 0.4835 0.4762 0.6227 0.6202 0.6147 0.6087
CMFH 0.6116 0.6298 0.6398 0.6477 0.6614 0.6921 0.7164 0.7185 0.6174 0.6241 0.6311 0.6340

labels. Images are described by 100-dimension SIFT [15]
histograms which mainly encode surface texture, and 144-
dimension CEDD features [4] which focus on color and
edge directivity. Because they are similar in texture space
while dissimilar in color space, we choose them to simulate
a cross-view setting as in [16]. We use 75% of the pairs as
the training set, and the remaining 25% as the query set.

4.1.2 Baseline Methods

CMFH is compared against five state-of-the-art hashing
methods: LSH5, CVH5, IMH5, CMSSH6 and CHMIS6.
They can be divided into three types. LSH is a single-view
hashing method, while CVH, IMH and CMH are cross-view
hashing methods in which view-specific hash codes are
learned, and CHMIS is a cross-view method which learns
integrated hash codes. We carefully tuned the their parame-
ters and reported their best results.

4.1.3 Evaluation Metric

The performance measure is the mean average precision
(mAP), which is the mean of average precision (AP), and
AP of topR retrieved instances is defined as:

AP =
1

L

R∑

i=1

P (i)× δ(i) (15)

whereL is the number of relevant instances in retrieved set,
P (i) denotes the precision of the topi retrieved documents,
andδ(i) is an indicator function equaling 1 if the item at
ranki is a relevant document, 0 otherwise.

We also reportprecision-recallcurves on Wiki dataset.
It can be obtained by varying the Hamming radius of the
retrieved points and evaluating the precision, recall and the
number of retrieved points accordingly.

4.1.4 Implementation Details

IMH and CHMIS require so much computational resource
that it’s quite difficult to learn hash functions from the whole

5We implemented it because the code is not publicly available.
6The source code is kindly provided by the authors.

set on NUS-WIDE and MIRFLICKR-25000. Thus, we se-
lect 5000 instances from database randomly as the training
set to learn hash functions. Then hash functions are applied
to every instance in database to obtain its hash codes.

In the coming sections, we provide empirical analysis
on parameter sensitivity, which verifies that CMFH can
achieve stable performance under a wide range of param-
eter values. When comparing with the baseline methods,
we use the following parameter settings:λ = 0.5, µ = 100,
γ = 0.01 andR = 50. To remove any randomness caused
by random initialization and random selection of training
set, all of the results are averaged over 25 runs.

4.2. Results and Discussions

4.2.1 Results on Wiki

The mAP values for CMFH and four baseline methods are
reported in Table 1. Theprecision-recallcurves are plotted
in Figure 4. We can observe that CMFH significantly out-
performs all baseline methods on both tasks varying code
length, which verifies the effectiveness of CMFH.

Furthermore, CMFH performs better with longer codes.
This is reasonable because longer hash codes can encode
more information and thus can improve the mAP perfor-
mance. However, We can observe that the PR-curve of sev-
eral methods looks strange, e.g. the PR-curve of CVH at 64
bits shows that it behave like random guess in experiments.
This phenomenon has also been observed in [25] [14]. Ac-
tually, all baseline methods are solved by eigenvalue de-
composition and have orthogonality constraints on each bit
so that each bit shows no correlation to each other. The
first few projection directions may have high variance and
their corresponding hash bits can be quite discriminative,
which is quite useful to similarity search. However, as the
code length increases, the hash codes will be dominated by
bits with very low variance. Actually, since the variance
is too low, the lower bits are meaningless and ambiguous.
So these indiscriminative hash bits may lead the method to
make random guess in experiments.

4326

0 0.2 0.4 0.6 0.8 1
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Recall

P
re

ci
si

on

Iamge → Text @ 32 bits

LSH
CVH
IMH
CMSSH
CHMIS
CMFH

0 0.2 0.4 0.6 0.8 1
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Recall

P
re

ci
si

on

Iamge → Text @ 64 bits

LSH
CVH
IMH
CMSSH
CHMIS
CMFH

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Recall

P
re

ci
si

on

Text → Image @ 32 bits

LSH
CVH
IMH
CMSSH
CHMIS
CMFH

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Recall

P
re

ci
si

on

Text → Image @ 64 bits

LSH
CVH
IMH
CMSSH
CHMIS
CMFH

Figure 4. PR-Curves on Wiki Varying Code Length

4.2.2 Results on NUS-WIDE

The mAP values for CMFH and four baseline methods are
reported in Table 1. As mentioned above, we select 5000
instances randomly as the training set to learn hash func-
tions. And the learned hash functions are extended to the
whole database. CMFH significantly outperforms all base-
line methods on both tasks varying code length.

In addition, we compare the performance of different
hashing methods for single-view similarity search on NUS-
WIDE. We can observe that CMFH, which combines mul-
tiple information sources of one instance, can outperform
other hashing methods. This is reasonable because more in-
formation of one instance can be encoded into hash codes
when combining multiple views. Furthermore, this result
also validates the ability of CMFH to increase the search
accuracy by merging multiple information sources.

In real-world applications, the size of database may be
so large that it’s impossible to learn hash functions on the
whole database because of the limitation of computational
resource. And new data is keeping coming into database
as time goes by and hash codes for new data must be com-
puted. One solution to these problems is to learn hash func-
tions on a smaller training set and extend it to out-of-sample
instances (other instances in database or new-coming in-
stances). The experiment settings on NUS-WIDE is quite
similar to real-world scenario. The experiment results show
that CMFH can handle out-of-sample instances easily and
the ability to handle large-scale database.

4.2.3 Results on MIRFLICKR-25000

The mAP values for CMFH and four baseline methods for
cross-view similarity search are reported in Table 1. As the
results above, CMFH can outperform all baseline methods
varying code length for cross-view similarity search.

4.2.4 Parameter Sensitivity

We conduct empirical analysis on parameter sensitivity on
all six tasks.µ controls the weight of linear embedding. If
it’s too large, Equation (7) is equivalent to maximize inter-
correlation as a special case of CVH which will leads to
poor performance. If it’s too small, the hash functions can’t
preserve locality as it loose the upper bound.γ controls the

Table 2. mAP Comparison on NUS-WIDE for Single-view Simi-
larity Search

Task Method
Code Length

16 32 64 128
LSH 0.4362 0.4490 0.4651 0.4794

Img CVH 0.4662 0.4689 0.4807 0.4868
to IMH 0.4821 0.4835 0.4837 0.4868

Txt CMSSH 0.4819 0.4866 0.4910 0.4936
CHMIS 0.4870 0.4896 0.4835 0.4762
CMFH 0.5591 0.5698 0.5780 0.5837
LSH 0.5004 0.5758 0.6588 0.7110

Txt CVH 0.4193 0.3937 0.4934 0.4729
to IMH 0.5634 0.6444 0.6942 0.7120

Img CMSSH 0.6008 0.6332 0.6440 0.6549
CHMIS 0.4870 0.4896 0.4835 0.4762
CMFH 0.6614 0.6921 0.7164 0.7185

Table 3. Effect of Training Size on mAP

DataSet Task
Training Size

5k 10k 15k

NUS-WIDE
Img to Txt 0.5651 0.5785 0.5871
Txt to Img 0.7164 0.7306 0.7384

MIRFLICKR
CEDD to SIFT 0.6693 0.6736 0.6764
SIFT to CEDD 0.6311 0.6348 0.6383

complexity of the model. The model is under-fitted with too
large value while over-fitted with too small value.

The code length is fixed to 64, and other parameters are
set as introduced in 4.1.4. We conduct analysis on one pa-
rameter by varying its value while fixing the other. The re-
sults, plotted in Figure 5 where View1 is Image or CEDD
and View2 is Text or SIFT, validate that CMFH can achieve
fantastic performance under a wide range of parameter val-
ues. The dashed lines show the best baseline results. On
all six tasks, CMFH outperforms best baseline results when
µ ∈ [1, 1000] andγ ∈ [0.001, 0.1].

4.2.5 Effect of Training Size

Furthermore, we study the effect of size of training set on
NUS-WIDE and MIRFLICKR-25000. Table 3 shows the
mAP results varying the size of training data from 5k to 15k.
Clearly, it’s expected that more effective hash functions can
be learned given more data. However, as the size of train-
ing data increase to 5k, further increasing training data size
does’nt significantly improve the results. This shows the
stabilization of the hash functions learned by CMFH with
reasonably small training set.

4327

0 1 5 10 50 100 200 500 1000 2000 5000 10000

0.2

0.3

0.4

0.5

0.6

0.7

0.8

mu

M
A

P

View1 → View2

Wiki
NUS
FLICKR

0 1 5 10 50 100 200 500 1000 2000 5000 10000
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

mu

M
A

P

View2 → View1

Wiki
NUS
FLICKR

0.0001 0.0005 0.001 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

gamma

M
A

P

View1 → View2

Wiki
NUS
FLICKR

0.0001 0.0005 0.001 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1
0.45

0.5

0.55

0.6

0.65

0.7

0.75

gamma

M
A

P

View2 → View1

Wiki
NUS
FLICKR

Figure 5. Parameter Sensitivity Analysis (µ andγ)

5. Conclusions

In this paper, we propose a novel hashing method, re-
ferred to Collective Matrix Factorization Hashing, for cross-
view similarity search on multimodal data. CMFH learns u-
nified hash codes by collective matrix factorization with la-
tent factor model from different modalities of one instance,
which can be searched for different views. We also show
that CMFH is a similarity- preserving hashing method with
approximate bi- Lipschitz continuity.

We conduct experiments to verify the effectiveness of the
proposed CMFH. We show that CMFH achieves much bet-
ter performance than several state-of-the-art hashing meth-
ods in all cross-view and most single-view similarity search
experiments. The parameter analysis shows that CMFH is
not sensitive to parameter settings, which can deliver re-
markable performance under a wide range of parameter val-
ues. Furthermore, CMFH is capable of dealing with out-
of-sample instances easily and can learn stable hash func-
tions with reasonably small training set from a large-scale
database, which makes it applicable to real-world scenarios.

6. Acknowledgments

This research was supported by the National Basic Re-
search Project of China (Grant No. 2011CB70700), the
National Natural Science Foundation of China (Grant No.
61271394), and the National HeGaoJi Key Project (No.
2013ZX01039-002-002). And the authorswould like to
thank the reviewers for their valuable comments.

References

[1] C. M. Bishop et al.Pattern recognition and machine learn-
ing. Springer, New York, 2006.

[2] G. Bouchard, S. Guo, and D. Yin. Convex collective matrix
factorization. InAISTATS, 2013.

[3] M. M. Bronstein, A. M. Bronstein, F. Michel, and N. Para-
gios. Data fusion through cross-modality metric learning us-
ing similarity-sensitive hashing. InCVPR. IEEE, 2010.

[4] S. A. Chatzichirstofis and Y. S. Boutalis. Cedd: color and
edge directivity descriptor: a compact descriptor for image
indexing and retrieval. InComputer Vision Systems, 2008.

[5] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Fur-
nas, and R. A. Harshman. Indexing by latent semantic anal-
ysis. JASIS, 1990.

[6] A. Gionis, P. Indyk, R. Motwani, et al. Similarity searchin
high dimensions via hashing. InVLDB, 1999.

[7] Y. Gong and S. Lazebnik. Iterative quantization: A pro-
crustean approach to learning binary codes. InCVPR. IEEE,
2011.

[8] J. He, J. Feng, X. Liu, T. Cheng, T.-H. Lin, H. Chung, and
S.-F. Chang. Mobile product search with bag of hash bits and
boundary reranking. InCVPR. IEEE, 2012.

[9] K. He, F. Wen, and J. Sun. K-means hashing: an affinity-
preserving quantization method for learning binary compact
codes. InCVPR, 2013.

[10] S. Kim, Y. Kang, and S. Choi. Sequential spectral learning
to hash with multiple representations. InECCV. Springer,
2012.

[11] B. Kulis and K. Grauman. Kernelized locality-sensitive
hashing for scalable image search. InICCV. IEEE, 2009.

[12] S. Kumar and R. Udupa. Learning hash functions for cross-
view similarity search. InIJCAI. AAAI Press, 2011.

[13] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Super-
vised hashing with kernels. InCVPR. IEEE, 2012.

[14] W. Liu, J. Wang, S. Kumar, and S. F. Chang. Hashing with
graphs. InICML, 2011.

[15] D. G. Lowe. Distinctive image features from scale-invariant
keypoints.IJCV, 2004.

[16] N. Quadrianto and C. H. Lampert. Learning multi-view
neighborhood preserving projections. InICML, 2011.

[17] R. Salakhutdinov and G. Hinton. Semantic hashing.IJAR,
2009.

[18] A. P. Singh and G. J. Gordon. Relational learning via collec-
tive matrix factorization. InSIGKDD. ACM, 2008.

[19] J. Song, Y. Yang, Y. Yang, Z. Huang, and H. T. Shen. Inter-
media hashing for large-scale retrieval from heterogeneous
data sources. InICMD. ACM, 2013.

[20] C. Strecha, A. M. Bronstein, M. M. Bronstein, and P. Fua.L-
dahash: Improved matching with smaller descriptors.PAMI,
2012.

[21] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hash-
ing for scalable image retrieval. InCVPR. IEEE, 2010.

[22] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing.NIP-
S, 2008.

[23] D. Zhang, F. Wang, and L. Si. Composite hashing with mul-
tiple information sources. InSIGIR. ACM, 2011.

[24] D. Zhang, J. Wang, D. Cai, and J. Lu. Self-taught hashing
for fast similarity search. InSIGIR. ACM, 2010.

[25] Y. Zhen and D. Yang. A probabilistic model for multimodal
hash function learning. InSIGKDD, 2012.

[26] Y. Zhen and D.-Y. Yeung. Co-regularized hashing for multi-
modal data. InNIPS, 2012.

4328

