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Abstract

In this paper, we propose a method to refine geometry
of 3D meshes from the Kinect fusion by exploiting shad-
ing cues captured from the infrared (IR) camera of Kinect.
A major benefit of using the Kinect IR camera instead of
a RGB camera is that the IR images captured by Kinect
are narrow band images which filtered out most undesired
ambient light that makes our system robust to natural in-
door illumination. We define a near light IR shading model
which describes the captured intensity as a function of sur-
face normals, albedo, lighting direction, and distance be-
tween a light source and surface points. To resolve ambigu-
ity in our model between normals and distance, we utilize
an initial 3D mesh from the Kinect fusion and multi-view in-
formation to reliably estimate surface details that were not
reconstructed by the Kinect fusion. Our approach directly
operates on a 3D mesh model for geometry refinement. The
effectiveness of our approach is demonstrated through sev-
eral challenging real-world examples.

1. Introduction
Over the past few years, the Microsoft Kinect has be-

come a popular input device in depth acquisition for hu-

man pose recognition [18], and 3D reconstruction [8]. The

Kinect utilizes active range sensing by projecting a struc-

tured light pattern, i.e. the speckle pattern, on a scene in in-

frared (IR) spectrum. Through analyzing the displacement

of the speckle pattern, depth map of a scene can be esti-

mated. The success of Kinect relies heavily on the usage of

IR pattern and the narrow band IR camera which filtered out

most undesired ambient light that makes the depth acquisi-

tion robust to natural indoor illumination. Although the nar-

row band IR camera is one of the key component to the suc-

cess of Kinect, after depth acquisition, these IR images are

discarded and not used in any post-processing applications.

In this paper, we show that the narrow band IR camera of

Kinect is not only useful in capturing the speckle pattern for

depth estimation, but also useful to capture shading cues of

∗The first and the second authors provided equal contributions to this

work.

Figure 1. Comparison of a real data - Apollo. Left: 3D model

from the Kinect fusion. Right: Our refined 3D model using the

IR shading cues. The 3D mesh is rendered with the Phong-shaded

model.

a scene which allows higher quality reconstruction than the

popular Kinect fusion [8] that uses only the estimated depth

map for 3D reconstruction.

We model the light from the IR projector of Kinect as a

near point light source where its illumination falloffs ac-

cording to the inverse square law. With the Lambertian

BRDF assumption about the scene materials in the nar-

row band IR spectrum, we define a near light IR shading

model which describes the captured intensity as a function

of surface normals, albedo, lighting direction, and distance

between a light source and surface points. The proposed

model has ambiguity in normals and distance estimation us-

ing a single shading image. Therefore, we utilize an initial

3D mesh from the Kinect fusion and shading images from

different view point. Our approach operates directly on a

3D mesh and optimizes the geometry refinement process

subject to the shading constraint of our model. The result

is a high quality mesh model which captures surface details

that were not reconstructed by the Kinect fusion as shown in

Figure 1. Thanks to the usage of the Kinect narrow band IR

camera, our approach is also robust to indoor illumination

which works well in both dark room or natural lighting en-

vironment. In addition, our approach does not require addi-

tional camera nor complicated setup which makes it useful

in practical scenario as an add-on to enhance reconstruction

results from the Kinect fusion.
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Figure 2. Invariability of Kinect IR images under different lighting conditions. (a) RGB images under ambient light and dark room. (b) The

corresponding Kinect IR images of (a). (c) RGB images under ambient light and dark room with an additional wide spectrum light source.

(d) The corresponding Kinect IR images of (c). The difference images are shown below each of the image pairs. Enormous differences are

observed in the RGB image pairs while the IR image pairs are almost identical.

2. Related Works

Representative works that utilize shading information for

geometry refinement are reviewed in this section. These

techniques can be classified into 2D depth map refinement

methods and 3D mesh refinement methods.

In depth map refinement, Nehab et al. [12] first proposed

to use photometric stereo [6] to estimate surface normals to

refine depth maps captured by a 3D laser scanner to achieve

high quality geometry refinement. Work in [11] utilizes a

giga-pixel camera to estimate ultra high resolution surface

normals from photometric stereo to refine a low resolution

depth map captured by using a structured light. Work in [1]

uses shading information to improve depth map from ToF

camera, but they assumed the only light source is from the

ToF camera which limited their application in a controlled

environment. Thanks to the recent development of Kinect,

depth map of a scene can be easily acquired at low cost.

But the Kinect depth map usually contains holes and noise

which makes it less useful when a high quality depth map is

required. Utilizing the additional RGB image from Kinect,

methods in [22, 2, 14, 17] define a smoothness cost accord-

ing to image structures in RGB image for depth map re-

finement, but their approaches do not use any shading in-

formation. Hence, they also lose fine depth details during

the smoothing process. In [25, 13], they also use normals

from photometric stereo to refine depth map with additional

consideration to depth discontinuities [25] and first-order

derivative of surface normals [13]. Recent works in [23, 4]

propose to use shape-from-shading [7] from an RGB im-

age instead of using photometric stereo to estimate surface

details for depth map refinement.

In 3D mesh refinement methods, they typically start with

a rough 3D mesh model estimated by using stereo match-

ing [16], or structure from motion [10]. Similar to the 2D

depth map refinements, Hernandez et al. [5] demonstrate to

use normals from photometric stereo to refine mesh model

from multi-view stereo. Lensch et al. [9] introduce a gen-

eralized method for modeling non-Lambertian surfaces by

wavelet-based BRDFs and use it for mesh refinement. Vla-

sic et al. [20] first integrate per-view normal maps into par-

tial meshes, then deforms them using thin-plate offsets to

improve the alignment while preserving geometric details.

Wu et al. [21] use the multi-view stereo to solve the shape-

from-shading ambiguity. They demonstrated high-quality

3D geometry under the arbitrary illumination but assume

the captured objects contain only a single albedo. Park et
al. [15] refine 3D mesh in parameterized space and demon-

strate state-of-the-art quality in geometry refinement results

using normals from photometric stereo.

Comparing our work to the previous works, especially

for the 3D mesh refinement methods, most of them utilize

photometric stereo to estimate normal details. Although

high quality surface details can be estimated by photo-

metric stereo, as demonstrated in the experimental setting

in [5, 20, 15, 24], they require a complicated setting to cal-

ibrate lighting direction and to control environment illumi-

nation. In contrast, our work utilizes the Kinect narrow

band IR camera which makes our approach robust to nat-

ural indoor illumination. In addition, we define a near light

shading model which fits perfectly to our problem setting to

utilize a near point light source instead of directional light

source for normal estimation. Since our work directly op-

erates on a mesh model, our approach is also efficient and

effective in mesh model refinements.

3. Kinect IR images and data capturing

In this section, we first analyze the Kinect IR images.

After that, we define our near light IR shading model based

on our observation about Kinect IR images. Our processes

for IR radiometric calibration and data capturing are also

included in this section.
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Figure 3. Validation of the inverse square law. Left: Region of

Interested (ROI) in IR image. Various images at different depth

are captured. The median intensity within each ROI is plotted.

Right: Intensity falloffs with increasing distance. The falloff rate

follows the inverse square law.

3.1. Kinect IR Images

We verify the invariability of Kinect IR images under

different lighting conditions. In Figure 2, we blocked the

Kinect IR projector and then capture IR images under am-

bient light and dark room environment. The RGB image

pairs in (a) show enormous intensity differences under the

two different lighting conditions, but the IR image pairs in

(b) are almost identical. Next, we put a wide spectrum light

source and then capture the RGB and IR images again under

the same ambient light and dark room environment. Again,

enormous intensity differences are shown in RGB image

pairs in (c) and the IR image pairs in (d) have almost no dif-

ference. The differences in IR images in (d) is only caused

by the additional wide spectrum light source. This example

shows that common indoor lighting does not cover the IR

spectrum captured by the Kinect IR camera. Unless a wide

spectrum light source is presented in a scene, the Kinect IR

images is unaffected by indoor ambient lighting.

Our second analysis verifies the inverse square law prop-

erty of the Kinect IR projector. We capture IR images at

various distance from a white wall. Figure 3 shows a cap-

tured IR image1 and the plotting of median intensity with

the red box area. The decay of observed intensity follows

the inverse square law.

3.2. Near light IR shading Model

We define our near light IR shading model as follows:

I(u) =
cρ

d2
(n · l) + IAmbient, (1)

where I(u) is observed intensity at point u, ρ is albedo

of surface, c is global brightness, n is surface normal, l is

lighting direction, and d is the distance between the sur-

face point and center of light source. Here, we assume the

captured materials in IR spectrum follow the Lambertian

BRDF model.

Following our analysis in the previous subsection, we set

IAmbient = 0 since most indoor ambient lights are invisible

1The IR image is radiometrically calibrated.
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Figure 4. Estimation of camera response function (CRF) of Kinect

IR camera. Left: (a) Color and (b) IR image of the spherical object

for calibration. Right: Curve fitting for CRF estimation. The x-

axis shows the rendered intensities from base mesh and the y-axis

shows the measured intensities in (b).

to the Kinect IR camera and we denote l as the only point

light source in a scene. The inverse square term d is added

to account for the light falloff property of Kinect IR projec-

tor. Note that different pairs of d and n can produce identi-

cal intensity assuming known albedo and lighting direction.

Utilizing initial mesh from Kinect, and multiple view point

information, we will show that this shading model is an ef-

fective constraint for geometry refinement without solving

d and n for each view individually.

3.3. Radiometric Calibration of IR camera

We note the responses of the Kinect IR camera is not

strictly linear to the luminance of incoming light. There-

fore, we need to radiometrically calibrate the Kinect IR

camera. In previous works for radiometric calibration [3],

multiple different exposure images can be easily captured

for calibration. However, the Kinect IR camera can only

capture single exposure image. In addition, there is no cali-

bration pattern for IR camera calibration. Here, we propose

a radiometric calibration method which makes use of mul-

tiple photometric observations of a known geometry to esti-

mate the camera response function (CRF) of the Kinect IR

camera.

We use a white Lambertian sphere as shown in Fig-

ure 4(Left) for our calibration. The white sphere has a

known geometry and a complete observation of surface nor-

mals in every directions. We use the Kinect fusion to obtain

a base mesh of the sphere, and then capture the IR shad-

ing images of the sphere. Since the geometry, the distance,

the lighting direction and the albedo are known for this cal-

ibration object, we can synthetically render a predicted ob-

servation using Equation (1). By comparing the measured

intensities, Iobs, with the predicted intensities, Iren, we can

estimate the CRF, f , by fitting a curve that minimize the

least square errors, ||Iobs − f(Iren)||2, as illustrated in Fig-

ure 4(Right). Here, we assume f is a gamma function where

Iobs = (Iren)
γ . In our estimation, we find that the gamma

value is approximately equal to 0.8.
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Figure 5. Our data capturing system. We use the Kinect fusion to

obtain an initial base mesh. During the Kinect Fusion process, at

certain camera positions, IR camera is blocked and a diffuse light

is turned on for capturing shading images.

3.4. Data Capturing

Figure 5 shows our data capturing system. Our data

capturing process is composed of continuous Kinect fusion

and discrete IR shading image acquisition. An additional

wide spectrum point light source is used because we cannot

switch the speckle pattern to uniform IR light from Kinect

IR projector using the Kinect SDK. During the Kinect fu-

sion, we block the Kinect IR projector and turn on the wide

spectrum light source to capture shading images at multi-

ple locations. Note that, this process can be simplified and

the Kinect IR projector can be used if the pattern from the

Kinect IR projector is programmable. Since indoor ambient

light does not affect the captured IR image, our data acqui-

sition is performed under natural indoor lighting.

After data capturing, we have a base mesh from the

Kinect fusion, and IR shading images from multiple dis-

crete view points. Note that the locations where we captured

shading images belongs to the subset of camera poses dur-

ing Kinect fusion. The camera poses are estimated using

the Kinect SDK by registering Kinect depth map with the

current reconstructed surface. The relative location of the

additional wide spectrum point light source and the Kinect

IR camera is fixed and pre-calibrated. Therefore, lighting

direction, l in Equation (1), is known after data captur-

ing. The Kinect IR images contain considerable amount

of noise. Therefore, we average more than 30 input images

from the same view point to obtain a denoised shading im-

age.

4. Geometry Refinement

In this section, we describe our geometry refinement pro-

cess via optimization. We begin this section by estimating

surface albedo of geometry. Next, we describe our mesh

refinement process by finding an optimal displacement of

mesh vertices that satisfied our near light IR shading model.

We denote xi as a vertex on the base mesh M from the

Kinect fusion, xj ∈ N(xi) as the neighboring vertices that

directly connect to xi, K and Pm are the intrinsic and ex-

trinsic projection matrices of camera poses from the m-th

(a) (b) (c)

Figure 6. (a) One of our input shading images. (b) Projected mesh

vertex (red dots) on (a). (c) Depth map derived from a projected

mesh model. Note that the derived depth map from the Kinect

fusion is far more accurate than the RAW depth map from Kinect.

In our geometry refinement process, we use this depth map instead

of the Kinect RAW depth map for mesh optimization.

(a) (c)(b)

Figure 7. Albedo grouping. (a) Color image (b) IR shading image.

(c) Color labels of grouped albedo.

view, and ui,m = KPmxi is the image coordinate of ver-

tex xi projected on the m-th view. We also define Vi,m

which represent the visibility of xi on the m-th view. Fig-

ure 6 shows an example of vertices projection on one of the

input shading images.

4.1. Albedo Estimation

Global Albedo If we assume the surface albedo consists of

a single value, we can estimate the surface albedo of ver-

tices globally using the inversion of Equation (1). Given

the measured intensity, I , initial normals n and initial depth

map d from projected mesh model and the known lighting

direction, l, we can obtain:

cρ =
1

Z

N∑
i=1

M∑
m=1,

ui,m∈Vi

d2i,m
ni,m · li,m Im(ui,m) (2)

where N is total number of vertices, M is total number

of shading images, and Z is a normalization factor. To

avoid the effect of cast shadow and specular saturation, we

drop the measurements where intensity values are either too



Figure 8. Relationship of variables in mesh optimization in Sec-

tion 4.2.

small or too large.

Local Albedo When the captured object has multiple albe-

dos, we assume surface albedo are locally invariant. There-

fore, we can estimate the local albedo by extending Equa-

tion (2) as:

cρi =
1

Zi

∑
xj∈N(xi)

M∑
m=1,

ui,m∈Vi

d2j,m
nj,m · lj,m Im(uj,m) (3)

After the local albedo estimation, we group the mesh ver-

tices using K-means clustering based on the vertex position

and local albedo (xi, cρi). We then re-estimate the albedo

within each group globally. This process gives us a more re-

liable albedo estimation since local albedo estimation does

not handle outliers in shading image that violate our shading

model. Figure 7 shows an example of our albedo grouping.

Note that the grouping is according to shading image in IR

image instead of colors in RGB image.

4.2. Mesh Optimization

In geometry refinement, we refine the initial mesh model

by estimating an optimal displacement of vertex along its

normal direction subject to the shading constraint from the

Kinect IR images. Our cost function for mesh refinement is

defined as follows, which is composed of a data term Ep(δ)
and a smoothness term Es(δ):

argmin
δ

Ep(δ) + Es(δ), (4)

Ep(δ) =

p∑
i=1

∑
k∈Vi

wi,k

(
ii,k − cρ

ni,k(δi,k) · li,k
d2i,k

)2

, (5)

Es(δ) =

p∑
i=1

∑
j∈Ni

λ1(δi − δj)
2 +

p∑
i=1

λ2(δi)
2, (6)

where δ denotes the displacement of vertices that we want

to optimize, and n is normal direction of a vertex. Figure 8

illustrates the relationship of variables in Equation (4).

The data term Ep(δ) in Equation (5) is designed with the

near light IR shading model which is covered in Section 3.2.

At the beginning of our work, IR camera center is initially

estimated in the world coordinate X . Since we utilize the

(a) (b) (c)

Figure 9. Mesh comparison of before and after remeshing. (a)

Region of interest(ROI) of mesh (b) Initial mesh from the Kinect

fusion. (c) Our mesh after remeshing. Since the mesh is more

clear and dense than that of (b), we can optimize the displacement

of vertices to recover fine details effectively.

calibrated IR camera and the light source, the light direc-

tion li,k at the each light positions can be estimated using

IR camera poses which we obtained from the Kinect fusion.

The distance d between the light source and the vertex po-

sition uses depth from the vertex projection as illustrated in

Figure 6. wi,k is a confidence weight expressed by ni,k · li,k
which means that the observation of vertex normal near to

light direction is more confidently used for the optimizing.

Since the estimated d is in mm unit metric depth and has

large value compared to the other terms, the optimization is

sensitive to the depth d. Therefore, we begin our optimizing

process with the depth-multiplied shading image Ic = I ∗D
where ii ∈ I, di ∈ D and fix d as constant at every iteration

so that d is set to be independent of δ in this process.

The smoothness term Es(δ) in Equation (6) is composed

of two terms. The first term ensures the change of dis-

placement is locally smooth between neighboring vertices,

xi,xj ∈ Ni, and the second term in Equation (6) is to en-

sure the estimated displacement δi would not be too large

since the initial mesh from the Kinect fusion is already quite

accurate. The λ1 and λ2 are determined using the vertex

visibility V and mesh scale.

Comparing our method with the conventional

method [5], our method has an advantage to optimize

only a single variable δ for each vertex, which simplifies

the optimizing process and makes our process more stable

while method in [5] needs to optimize 3 variables, i.e.

x,y,z displacements, for each vertex. By adjusting δi of the

each vertex xi, position of vertex xi are iteratively updated

toward minimizing our optimization cost in Equation (4):

xt
i = xt−1

i + δi,tn
t−1
i . (7)

We optimize Equation (4) by utilizing a sparse non-linear

least square optimization tool2. At the time t, δ is deter-

mined by minimizing the cost in Equation (4) at the previ-

ous step t−1. By doing so, we update δ iteratively to obtain

a high quality mesh with many fine geometry details.

Since the amount of details we can recover are limited

by the mesh complexity. We applied remeshing [19] to

2SparseLM: Sparse Levenberg-Marquardt nonlinear least squares

http://users.ics.forth.gr/ lourakis/sparseLM/



(a) (b) (c) (d)
Figure 10. Result comparison of real data - Sweater. (a) IR shading image (b) Initial mesh model (c) Ours: Enhanced mesh result using 4

shading images. (d) Ours: Enhanced mesh result using 17 shading images.

improve initial mesh quality obtained from Kinect fusion

as shown in Figure 9. The number of vertices are set to

be 200K which does not affect the initial geometry while

allowing us to recover fine geometry details that were not

reconstructed by the Kinect fusion.

5. Experimental Result

We use the Kinect for windows and Kinect SDK 1.7 in

our experiments. The implementation of the Kinect fusion

is provided in the Kinect SDK. For each real world object,

we capture around 20 IR shading images with resolution

640 × 480 for our geometry refinement. Qualitative com-

parisons between the initial and the refined meshes for sev-

eral challenging real world dataset are provided in Figure 10

and Figure 11. The example real world objects are: Apollo,

Cicero, Sweater, Towel and Vase model. These examples

contain fine geometry details which were never been cap-

tured in Kinect RAW depth maps and in the mesh model

reconstructed by the Kinect fusion. After our geometry re-

finement, the fine details are presented in our refined mesh

model. Mesh models are rendered with the Phong-shaded

model.

Sweater Sweater is made of wool and it has repetitive

twisted pattern on it. It is 0.8m high and 0.4m wide. The

measured depth variation of the twisted pattern is 1mm.

Figure 10 shows IR shading image, initial mesh and our re-

sults. In Figure 10 (b), the geometry from the Kinect fusion

does not fully express the twisted pattern on the sweater. On

the other hand, our result (c) and (d) recovers detailed pat-

tern. By comparing (c) and (d), we observed that how the

number of shading image used affect the result in our frame-

work. Those two are the enhanced mesh result using 4 shad-

ing images and 17 shading images respectively. As we can

see in enlarged box, the twisted pattern and the sleeve show

more precise details in the result of using 17 images. We

observed that more shading observations makes our mesh

refinement more stable and result in better geometry.

Apollo We captured the statue of Apollo which is made of

plaster and has fine details on its geometry especially face

and hair region. The size of Apollo is 0.75m × 0.65m. In

Figure 1 and Figure 11, the initial mesh from the Kinect

fusion and enhanced mesh from our method are compared.

The IR shading image shows that Apollo has double eye-

lid on its eye but it is not expressed in the mesh from the

Kinect fusion. Apollo has also the fine detail of hair but is

not appeared in the input mesh. This occurs from the lim-

ited voxel resolution of the Kinect fusion. Our refinement

on the initial mesh shows enhanced double eyelid and hair

geometry. We used 24 IR shading images for the result.

Cicero Statue of Cicero (size of 0.7m × 0.45m) is also

used to verify our algorithm. The back-head of the Cicero

exhibits very fine level of detail and it is not shown in initial

mesh at all. In our result, the fine hair is recovered and it

becomes to have more realistic geometry. 22 IR shading

images are used here.

Towel We also verified that our method works well on

small object with the subtle details. A towel, size of

0.2m× 0.2m , were used for our experiment. As shown in

Figure 11, result of towel, initial mesh loses its fine check-

pattern and it shows flat surface geometry. However, our

method effectively recovers the check-pattern in detail and

the surface of our result mesh becomes rather similar to the

geometry of real object.

Vase We also tested our algorithm with multi-albedo ob-

ject. The target object is plant with a pot, denoted here

as a vase and it has size of 1.2m × 0.3m. We grouped

the albedo as described in Section 4.1. As shown in Fig-

ure 7, plant leaves and a pot have different observation in

terms of surface albedo in the IR image. We observed that

the plant leaves have smooth geometry and there was less

room for refine geometric details. On the other hand, the

pot has complex geometry. We apply our method on the

initial mesh from the Kinect fusion. In this case, albedo

grouping in Sec. 4.1 are applied prior to mesh optimization.

The cross stripes on the pot is recovered using our method.



Apollo

Cicero

Towel

Vase

Figure 11. Enhanced mesh result of real world objects - Apollo, Cicero, Towel and Vase. From the left, each column represents IR shading

images, initial mesh from the Kinect fusion and our mesh result respectively.



However, the region which is marked with the red box is not

refined well. In this region, specular exists and it does not

follow the Lambertian shading model in Equation (1).

6. Conclusion
In this paper, we have presented a framework to utilize

shading information from the Kinect IR image for geom-

etry refinement. As far as we are aware, this is the first

work that seriously studies the shading information inher-

ent in the Kinect IR image and utilizes it for geometry re-

finement. As demonstrated in our study, the captured spec-

trum of Kinect IR images does not have any overlapping

with visible spectrum which makes our acquisition unaf-

fected by indoor illumination condition. Since there is al-

most no ambient light in IR spectrum, the captured inten-

sity can be accurately modeled by our near light IR shading

model assuming the captured materials follow the Lamber-

tian BRDF. We have also described a method to radiometri-

cally calibrate the Kinect IR image using a diffuse sphere, a

method to estimate geometry albedo and albedo grouping,

and a new mesh optimization method to refine geometry by

estimating a displacement vector along vertex normal di-

rection. Our experimental results show that our framework

is effective and demonstrates high quality mesh model via

our geometry refinements. As a limitation of our work, we

assume Lambertian BRDF which makes our results error-

prone to specular highlight. Due to the usage of the Kinect

fusion, we also assume the reconstructed object is static.

In future, we will study how to extend our work to han-

dle non-Lambertian BRDF objects, and mesh refinement for

dynamic object reconstructions.
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