
Fast and Accurate Image Matching with Cascade Hashing for 3D Reconstruction

Jian Cheng, Cong Leng, Jiaxiang Wu, Hainan Cui, Hanqing Lu
National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences

{jcheng,cong.leng,jiaxiang.wu,hncui,luhq}@nlpr.ia.ac.cn

Abstract

Image matching is one of the most challenging stages in
3D reconstruction, which usually occupies half of computa-
tional cost and inaccurate matching may lead to failure of
reconstruction. Therefore, fast and accurate image match-
ing is very crucial for 3D reconstruction. In this paper, we
proposed a Cascade Hashing strategy to speed up the image
matching. In order to accelerate the image matching, the
proposed Cascade Hashing method is designed to be three-
layer structure: hashing lookup, hashing remapping, and
hashing ranking. Each layer adopts different measures and
filtering strategies, which is demonstrated to be less sensi-
tive to noise. Extensive experiments show that image match-
ing can be accelerated by our approach in hundreds times
than brute force matching, even achieves ten times or more
than Kd-tree based matching while retaining comparable
accuracy.

1. Introduction
3D reconstruction is one of the classic and challeng-

ing problems in computer vision, and finds its applica-
tions in a variety of different fields. In recent years, large
scale 3D reconstruction from community photo collections
(e.g. Photo Tourism [18]) has become an emerging research
topic, which is attracting more and more researchers from
academy and industry. However, 3D reconstruction is ex-
tremely computational expensive. For example, it may cost
more than a day in a single machine to reconstruct an object
with only one thousand pictures. In the Structure from Mo-
tion (SfM) model [1, 4], 3D reconstruction pipeline can be
divided into several steps: feature extraction, image match-
ing, track generation and geometric estimation, etc. Among
them, image matching occupies the major computational
cost, even more than half of all in some case. Moreover,
inaccurate matching results might lead to failure of recon-
struction. Therefore, fast and accurate image matching is
crucial for 3D reconstruction.

Image matching techniques can be roughly divided into
three categories: point matching, line matching and region

matching. Due to its robustness to changes of illumination,
affine transformation and viewpoint changes, point match-
ing has received much attention and many effective algo-
rithms have been proposed in the past decades [13, 2]. How-
ever, point matching is usually very time consuming. For
pairwise image matching, the computational complexity of
exhaustively comparing all feature points in two images is
O(N2), where N is the average number of feature points in
each image.

As an alternative, approximate nearest neighbor (ANN)
search has been studied to replace the exhaustive match-
ing in 3D reconstruction. One classical paradigm is the
tree-based approaches which tend to store data with effi-
cient data structures, and makes the search operation quite
fast, typically with the complexity of O(log(N)). The rep-
resentative tree based algorithms include Kd-tree, M -tree,
and ball tree [15], among which the Kd-tree may be the
most widely used strategy in literature of 3D reconstruc-
tion [1, 4]. However, the high dimensionality will signif-
icantly corrupt the efficiency of tree-based methods, and
make them even perform worse than the naive methods (e.g.
linear scan).

Because of the efficiency in both storage and speed,
hashing based ANN search methods have attracted much at-
tention in the past years [9, 7]. Hashing converts all feature
representation of images into binary codes and then con-
ducts a bitwise XOR operation in very fast speed. Hash-
ing strategy is first introduced into matching process for 3D
reconstruction in LDAHash [19]. LDAHash performs Lin-
ear Discriminant Analysis (LDA) on the descriptors before
binarization. However, LDAHash use an exhaustive linear
search to find the matching points, which reduces signifi-
cantly its efficiency. Besides, LDAhash is a supervised and
data-dependent approach which needs additional human la-
beling in training stage.

Inspired by LDAHash, in this paper, we propose a Cas-
cade Hashing structure to speed up image matching for 3D
reconstruction, named CasHash. The advantages of the pro-
posed approach are two-fold. On the one hand, the proposed
Cascade Hashing structure contains three layers which map
the image representation into binary codes from coarse to

4321

fine, resulting in significant speedup of image matching. On
the other hand, each layer of the Cascade Hashing adopts
different measure and filtering strategy, which is demon-
strated to be less sensitive to noise of feature points.

Compared with the closest LDAHash, our approach has
three major advantages. First, our cascade hash structure
is coarse-to-fine and faster in accelerating image matching.
Second, our approach can be considered as a multi-stage fil-
ter which is resistent to noise point pairs. Third, we utilize
an unsupervised and data-independent method, i.e. Local-
ity Sensitive Hashing (LSH) [3], to generate hash functions.
Therefore, our approach is data-independent and training-
free. Extensive experiments demonstrate that image match-
ing can be accelerated by our approach in ten times or more
than Kd-tree based method while retaining comparable ac-
curacy.

2. The Proposed Approach
In this paper, we propose a Cascade Hashing structure,

named CasHash, to speed up image matching for 3D re-
construction. In our method, a simple hashing algorithm,
Locality Sensitive Hashing (LSH), is adopted to generate
binary code (refer to Fig.1). Consequently, we will give a
brief introduction to LSH algorithm.

2.1. Locality Sensitive Hashing

Let X = {x1, x2, · · · , xn} be a set of data points, where
xi ∈ Rd. Given a query vector q, we are interested in
finding the most similar items in X to the query. LSH is
perhaps the most well known hashing based ANN search
scheme, which relies on the existence of locality sensitive
hashing functions. Assume H be a family of hashing func-
tions mapping Rd to Hamming space B. For any two points
x and y, it chooses a function h from H uniformly at ran-
dom and is confined to the probability h(x) = h(y). The
function family H is locality sensitive if it satisfies the fol-
lowing conditions:

Definition 1: A family H of functions from Rd to B is
called (R, cR, P1, P2)-sensitive for D(·, ·) if for any x, y ∈
Rd

• Prh∈H(h(x) = h(y)) ≥ P1, if D(x, y) ≤ R

• Prh∈H(h(x) = h(y)) ≤ P2, if D(x, y) ≥ cR

where D(·, ·) is a distance function in the original space
Rd. Obviously, a family H is valid only when c > 1, and
P1 > P2. Given valid LSH functions, Gionis et al. proved
that the query time for retrieving (1 + ϵ)-near neighbors is
bounded by O(n

1
1+ϵ) for Hamming distance [7].

Charikar defined a hashing function h ∈ H for the
widely used inner product similarity [3]. More specifically,
choosing a random vector r from a d-dimensional Gaussian

Figure 1. Locality Sensitive Hashing

distribution N (0, I), with this hyperplane r, hashing func-
tion h is defined as:

hr(q) =

{
1, if r · q > 0
0, if r · q < 0

(1)

In [8], Goemans et al. proved that for any data point x and
y ,

Pr(hr(x) = hr(y)) = 1− θ(x, y)

π
(2)

where θ(x, y) = cos−1(xT y
∥x∥∥y∥) is the angle between x and

y.
Defining D(x, y) = θ(x,y)

π , with Eq.(2) it is easy to find
that if D(x, y) ≤ R, then Pr(h(x) = h(y)) ≥ 1 − R
and if D(x, y) ≥ cR, then Pr(h(x) = h(y)) ≤ 1 − cR.
Therefore, if P1 = 1 − R and P2 = 1 − cR, as long as the
approximation factor c is greater than 1, we have P1 > P2.
These satisfy the property in Definition 1.

Since the gap between the probability P1 and P2 could
be quite small, in real cases, an “amplification” process is
needed by concatenating the output of multiple different
hashing functions. Because of its widely use, LSH algo-
rithm is also extended to p-norm distance [5], Mahalanobis
distance [10] and kernel similarity [11].

2.2. Cascade Hashing

In order to speed up the image matching as fast as pos-
sible, the proposed cascade hashing structure is designed
to consist of three layers: hashing lookup (Section 2.2.1),
hashing remapping (Section 2.2.2), and hashing ranking
(Section 2.2.3). The flowchart of our method is shown
in Fig.2. The designed 3-layer hashing maps the feature
representation of images into binary codes from coarse to
fine, resulting in faster image matching. Moreover, each
layer of the cascade hashing adopts different measure and
filtering strategy, which may filter out some feature point
noise in cross-validation manner. In this sense, the proposed
CasHash is less sensitive to noise in 3D reconstruction.

4322

Figure 2. The flowchart of our proposed Cascade Hashing approach. For a feature point in Image I, three steps are involved to find its
matching points in Image J. First, a multi-table hashing lookup with short codes is employed to conduct a coarse search. Second, the
returned candidates will be remapped into higher dimensional Hamming space and the Hamming distances to the query are calculated.
Final, we build hashing table with Hamming distance as keys in order to find the most exact (top k) candidate sets.

6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hash Bits

C
ol

lis
io

n
R

at
io

Collision Ratio vs. # Bits

1st nearest neighbor
2nd nearest neighbor

Figure 3. The ratio that the two nearest neighbors collides in the
same bucket with the query while the number of bits changes.

2.2.1 Hashing Lookup with multiple tables

In the first step, we apply hashing lookup with short codes to
do a coarse search. Particularly, all the feature points in all
images are embedded into m bits binary codes with LSH.
For feature point p in image I , in order to find its matching
point in image J , a lookup table with a set of buckets is
constructed using the m bits binary codes. All the points
that fall into the same bucket of point p in image J will be
returned. This above procedure is called as hashing lookup.

Hashing lookup emphasizes on the practical search
speed since its complexity is constant time. However, us-
ing a single hashing table with long bits, hashing lookup
often fails because the Hamming space becomes increas-
ingly sparse and very few samples fall in the same bucket.
In this paper, we adopt a multi-table strategy to address this
problem. In particular, we generate L functions gl(q) =
(h1,l(q), h2,l(q), · · · , hm,l(q)), l = 1, 2, · · · , L, where
hs,l(1 ≤ s ≤ m, 1 ≤ l ≤ L) are generated independently

and uniformly at random from H. In summary, the data
structure is constructed with L hashing tables which have
m bits, and then each point p is assigned to a bucket gl(p),
for l = 1, · · · , L.

On the one hand, larger value of m leads to a larger gap
between the probabilities of collision for the similar points
(P1) and dissimilar points (P2). The benefit of this am-
plification is that the hashing functions are more selective.
On the other hand, if m is larger then P1 is smaller, which
means that L have to be large to ensure that the real neigh-
bors collide with query point at least once. Particularly, the
probability will be 1− (1− P1)

L. In practice, we can tade
off parameter m and L for different applications.

In feature matching of 3D reconstruction, in order to find
the matching point for feature point p in image I , we usu-
ally need to seek two nearest neighbors from image J . An
experiment is conducted on toy data, and as shown in Fig.3.
When the number of bits m increases, the ratio that the near-
est (second nearest) neighbor collides in the same bucket of
the query decreases, and they will be close to zero when
m > 20. At the same time, as m increases, the Ham-
ming space will be more sparse and less candidates will
be returned. This is very beneficial for the following step
in terms of computation cost. To find a tradeoff between
matching accuracy and computational cost, in the experi-
ments, we set m = 8 or 10 and L = 6 to construct multiple
hashing tables.

2.2.2 Hashing Remapping

After the coarse search in hashing lookup stage, one can
typically carry out accurate search, e.g. calculate the Eu-
clidean distance between every candidate with the query.

4323

0 16 32 64 96 128 192 256
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hash Bits

R
ec

al
l o

f T
op

−
2

N
ea

re
st

 N
ei

gh
bo

rs

Recall vs. # Bits

Figure 4. The recall of the two nearest neighbors when top 10 are
returned while the number of bits changes.

However, the direct calculation of Euclidean distance re-
quires a large amount of computation since the number of
candidates is still large. To address this issue, a new n-bit (n
> m) hashing function is used to remap candidates provided
by Hashing lookup stage into Hamming space. Afterwards,
we sort the candidates according to their Hamming distance
to the query and the top k items will be selected as the final
candidates (described in Section 2.2.3).

When applying LSH to the feature points, e.g. SIFT, the
ranking performance is closely related to the number of bits.
In LSH, it can be theoretically guaranteed that longer binary
codes will result in more discriminative hashing expression,
and thus better performance of ranking. We conduct an ex-
periment on toy data with different number of bits. Recall
of top 2 (in terms of Euclidean distance) is shown in Fig.4
when top 10 (Hamming distance) is returned. In this paper,
we remap the candidates into a 128-d Hamming space.

2.2.3 Top k Ranking via Hashing

In order to execute more precise search, in the third step,
we expect to seek the k nearest neighbors in Hamming
space, and then find the two nearest neighbors among them
in Euclidean space. As the most commonly used method,
the time complexity of linear search to find top k items is
O(kN). A tree-based data structure called min-heap was
proposed to find the top k items and the time complexity
is O(log(k)N) [12]. In this paper, we propose a hashing
based scheme to find the top k items, the time complexity
of which is O(N + k).

In detail, as computing the Hamming distance between
the query and all points in the database, we use Hamming
distance as keys to establish hashing buckets. The points
with the same Hamming distance to the query will fall into
the same bucket. For example, all points with Hamming
distance 1 to the query will fall into the bucket whose key
id is #1. When we use n bits for Hamming ranking, n+ 1
buckets will be established at most. It worths to note that
we only need to scan the database once to accomplish this

process, therefore the time complexity is O(N).
After this process is completed, we access points in the

bucket in which the points’ Hamming distance to the query
is 0. If the number of points in this bucket is less than k,
then access to next bucket in which the points’ Hamming
distance to the query is 1. This process is repeated until
the number of obtained points summing to k. Obviously,
the obtained k points are the top k candidates, and the time
complexity is O(k). Thus, the time complexity of the whole
procedure is O(N+k). And in most applications, k is much
less than N .

After the top k candidates are found, we can find the two
nearest neighbors among them according to the Euclidean
distance, and matches that pass Lowes ratio test will be ac-
cepted [13].

3. Computational Complexity Analysis

Here we compare the computational complexity of our
CasHash method to other related image matching methods.
Assume we need to perform image matching between two
images and each image contains N SIFT keypoints. We de-
note the consuming time for computing Euclidean distance
and Hamming distance as TE and TH , respectively. In mod-
ern CPUs, it only takes one CPU cycle to compute Ham-
ming distance for 128-bit hash code in Hamming space,
thus TH is much smaller than TE .

For brute force matching, linear search required for N2

times computation of Euclidean distance, thus the time
cost is approximately O

(
TE ·N2

)
. In Kd-tree based

approximate nearest neighbor search, the average single
search complexity is O (logN) and total time cost is
O (TE ·N logN). LDAHash based matching also requires
exhaustive search, but its Hamming embedding of descrip-
tors reduces time cost to O

(
TH ·N2

)
.

In CasHash based matching with three-layer structure,
there will be LN/2m points get through hashing lookup
stage on average. The calculation of Hamming distance for
these points takes O (TH · LN/2m) for each query. An-
other major time expenditure is the final search among
top-k candidates, which costs O (TE · k). In general, L
and k are no more than 10. The complexity of com-
puting the hashes is O(dmLN) in the lookup stage and
O(ndLN/2m) in the remapping stage, respectively. In
practice, the lookup and remapping stages can be offline
implemented. Thus, the overall computation complexity is
O
(
TH · LN2/2m + TE ·Nk + dmLN + ndLN/2m

)
. In

theory, larger m will lead to faster matching but lower pre-
cision. In our experiments, m = 8 can result in rather fast
speed with comparable precision. Overall, it is easy to real-
ize 10 times or more acceleration than Kd-tree based image
matching with comparable performance. Extensive experi-
ments will provide encouraging results.

4324

boat trees ubc wall
Brute 13.959s 28.003s 2.033s 18.326s

KDTree 1.278s 2.010s 0.566s 2.044s
LDAHash 0.924s 1.861s 0.144s 1.234s
CasHash 0.128s 0.223s 0.029s 0.173s

Table 1. Comparison of SIFT point matching time for four algo-
rithms: brute force, Kd-tree, LDAHash and CasHash.

4. Experiments
In our experiment, SIFT feature descriptors are ex-

tracted for pairwise images matching. In order to evalu-
ate speed and accuracy of our proposed CasHash method,
it is compared to three matching strategies, namely brute
force matching, Kd-tree matching[15], and LDAHash
matching[19]. We use Bundler[18] to process keypoints
matching result and produce sparse point clouds. PMVS2
package[6] is used to generate dense reconstruction result
for later visualization. 3D reconstruction results of sev-
eral datasets are presented, ranging from high-quality im-
age sets collected by specialists to low-quality image sets
downloaded from Internet.

All experiments are carried out on a single desktop PC
running Ubuntu 13.04 operating system with i7-2600 CPU
and 8GB memory space. Neither parallel computation nor
GPU acceleration technique is used in our experiments to
ensure the fairness of comparison.

4.1. Results on Oxford Database

We use the standard Oxford dataset[14] to evaluate our
SIFT keypoints matching performance and compare it with
brute-force matching, Kd-tree matching and LDAHash
matching. This dataset contains images with different ge-
ometric and photometric transformations, including blur,
viewpoint change, zoom and rotation. Homography ma-
trix between image pairs is given, thus for each SIFT key-
point detected in the first image, its expected position in the
second image can be calculated. For any SIFT keypoint in
the second image, if its distance to the expected position is
lower than a certain threshold, then we assume that these
two keypoints compose a ground-truth match pair. In our
experiment, we set the distance threshold to 2.5.

The time of SIFT keypoints matching with various meth-
ods are measured and listed in Table 1. Due to limited
space, only four sets of results are reported here. In Fig.5,
we observe that brute force matching achieves best perfor-
mance as we expected, since its searching strategy is lin-
early check all keypoints. However, it also takes the longest
matching time among all methods as indicated in Table 1.
Kd-tree matching provides approximately 10 times boost
in matching speed and still maintains satisfying perfor-
mance. LDAHash matching is slightly faster than Kd-tree,
but leads to a significant drop in recall versus 1-precision

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1-Precision

R
ec

al
l

Brute
KDTree
LDAHash
CasHash

(a) Boat (Zoom+Rotation)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

1-Precision

R
ec

al
l

Brute
KDTree
LDAHash
CasHash

(b) Trees (Blur)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1-Precision

R
ec

al
l

Brute
KDTree
LDAHash
CasHash

(c) UBC (JPEG compression)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1-Precision

R
ec

al
l

Brute
KDTree
LDAHash
CasHash

(d) Wall (Viewpoint)

Figure 5. Recall versus 1-precision curves on Oxford database.

curves. Our proposed CasHash matching achieves compa-
rable performance to Kd-tree’s and only takes about 1/10
of Kd-tree’s matching time.

From the above experiment results, we can see that hash-
ing technique is an effective method to accelerate keypoints
matching. However, speed boosting by hashing often re-
sults in performance deterioration, which has been reported
in many other applications. The performance of LDA-
Hash matching in our experiment also proves this conclu-
sion. However, with carefully designed cascade structure,
our proposed CasHash matching not only significantly im-
proves matching speed, but also ensures the matching per-
formance is comparable with that of Kd-tree. This may be
benefit from our cascade structure, whose multiple distance
metric framework is helpful to filter out noise pairs.

4.2. Results on Tsinghua Database

To evaluate the effectiveness of different keypoints
matching algorithms for the final 3D reconstruction, it is
necessary to compare the results with the real-world 3D
model. In our experiment, we use two datasets with 3D
ground truth data acquired by laser scanner, containing 102
and 193 photographs respectively1.

We run different matching methods on these datasets
and use Bundler together with PMVS2 to generate the re-
construction results. The 3D reconstruction results of our
matching method are shown in Fig.6. The matching time
statistics are recorded in Table 2 for comparison.

We used the same evaluation methodology as described
in [17]. For simplicity, the ground-truth model is denoted
as G and the candidate model is denoted as R. Accuracy is

1http://vision.ia.ac.cn/data/index.html

4325

(a) Life.Science.Building: 102 images.

(b) Tsinghua.School: 193 images.

Figure 6. 3D reconstruction results on dataset “Life.Science.Building” and “Tsinghua.School”. Left: real-world photograph; Middle:
CasHash-8Bit; Right: CasHash-10Bit.

Method Dataset-Life.Science.Building
TMatch Speed-Up Points

Brute 76655s 1.00× 457907
KDTree 4689s 16.35× 435275

LDAHash 4782s 16.03× 490146
CasHash-8Bit 639s 119.96× 497944
CasHash-10Bit 316s 242.58× 407562

Method Dataset-Tsinghua.School
TMatch Speed-Up Points

Brute 46488s 1.00× 680966
KDTree 4877s 9.53× 683461

LDAHash 2522s 18.43× 684524
CasHash-8Bit 402s 115.64× 676223
CasHash-10Bit 243s 191.31× 697366

Table 2. Reconstruction performance on Tsinghua database.

to assess how close R is to G and completeness is to assess
how much of G is modeled by R.

The distances between points on R and their respective
nearest points on G are computed to measure the accuracy.
Accuracy at X% is defined as the minimal distance value
so that X% of points on R are within this distance of G.
Similarly, the completeness is measured by the distances
between points on G and their respective nearest points on
R. Completeness at X% is defined as the minimal distance
value so that X% of points on G are within the distance of
R. The accuracy and completeness evaluation results are
demonstrated in Table 3 and Table 4.

From Table 3 we can see that our proposed CasHash-
8Bit matching strategy is remarkably better than all other
methods in dataset “Life.Science.Building”. As for dataset
“Tsinghua.School”, the accuracy statistics of Kd-tree based

matching are superior to the rest. CasHash-8Bit consis-
tently outperforms the rest in completeness statistics as
shown in Table 4 in both two datasets.

According to the experiment results above, it is shown
that our CasHash matching strategy be able to achieve com-
parable (even slightly better) performance against Kd-tree
and LDAHash in most cases.

4.3. Results on Flickr Database

With the rapidly increasing number of photographs up-
loaded to the Internet, it is possible to rebuild 3D scenes of
famous tourist attractions solely based on these web images.
We harvest photo collection of four famous landmarks from
flickr website: Taj Mahal, Statue of Liberty, Notre Dame de
Paris and Colosseum.

We present our reconstruction results in Fig.7 and recon-
struction statistics of all matching methods in Table 5 for
comparison. As shown in Table 5, our proposed CasHash-
matching strategy achieves more than 10 times boost in
speed for SIFT keypoints matching, comparing with com-
monly used Kd-tree matching strategy. At the same time,
our reconstruction performance maintains at a comparable
level with other keypoints matching methods, considering
the amount of points used in the final dense reconstruction
phase as an evaluation index.

5. Conclusions
In this paper, we proposed a Cascade Hashing method to

speed up the image matching. Extensive experiments show
that image matching can be accelerated by our approach in
hundreds times than brute force matching, even achieves ten
times or more than Kd-tree based matching while retaining
comparable accuracy.

4326

Method Life.Science.Building
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Brute 4.95e-3 9.88e-3 1.49e-2 2.01e-2 2.58e-2 3.25e-2 4.17e-2 5.86e-2 1.05e-1 2.93
KDTree 4.68e-3 9.23e-3 1.38e-2 1.86e-2 2.41e-2 3.10e-2 4.07e-2 5.80e-2 1.03e-1 2.95

LDAHash 4.84e-3 9.56e-3 1.42e-2 1.92e-2 2.46e-2 3.14e-2 4.11e-2 5.72e-2 1.01e-1 2.94
CasHash-8Bit 5.39e-3 1.06e-2 1.58e-2 2.11e-2 2.68e-2 3.38e-2 4.40e-2 6.12e-2 1.05e-1 2.92

CasHash-10Bit 4.75e-3 9.47e-3 1.43e-2 1.96e-2 2.56e-2 3.30e-2 4.31e-2 6.10e-2 1.07e-1 2.92

Method Tsinghua.School
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Brute 2.98e-3 5.93e-3 8.92e-3 1.21e-2 1.61e-2 2.13e-2 2.90e-2 4.17e-2 7.11e-2 2.25
KDTree 4.37e-3 8.98e-3 1.39e-2 1.91e-2 2.50e-2 3.19e-2 4.04e-2 5.29e-2 8.00e-2 1.93

LDAHash 2.99e-3 6.13e-3 9.61e-3 1.36e-2 1.85e-2 2.44e-2 3.23e-2 4.45e-2 7.35e-2 1.53
CasHash-8Bit 2.85e-3 5.70e-3 8.67e-3 1.21e-2 1.63e-2 2.19e-2 2.94e-2 4.11e-2 6.78e-2 1.43

CasHash-10Bit 3.87e-3 7.98e-3 1.25e-2 1.76e-2 2.34e-2 3.05e-2 3.97e-2 5.32e-2 8.18e-1 1.78
Table 3. Accuracy of 3D reconstruction on Tsinghua database.

Method Life.Science.Building
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Brute 1.52e-2 2.06e-2 2.59e-2 3.18e-2 3.91e-2 4.93e-2 6.44e-2 8.96e-2 1.52e-1 1.95
KDTree 1.53e-2 2.06e-2 2.58e-2 3.15e-2 3.87e-2 4.88e-2 6.39e-2 9.04e-2 1.61e-1 1.90

LDAHash 1.50e-2 2.02e-2 2.52e-2 3.06e-2 3.75e-2 4.68e-2 6.07e-2 8.47e-2 1.45e-1 1.75
CasHash-8Bit 1.55e-2 2.09e-2 2.59e-2 3.15e-2 3.85e-2 4.82e-2 6.27e-2 8.71e-2 1.48e-1 1.52
CasHash-10Bit 1.56e-2 2.12e-2 2.66e-2 3.26e-2 4.00e-2 5.02e-2 6.58e-2 9.17e-2 1.58e-1 1.68

Method Tsinghua.School
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Brute 1.33e-2 1.72e-2 2.05e-2 2.39e-2 2.77e-2 3.22e-2 3.82e-2 4.73e-2 6.62e-2 8.26e-1
KDTree 1.50e-2 1.94e-2 2.33e-2 2.71e-2 3.13e-2 3.61e-2 4.22e-2 5.12e-2 6.85e-2 8.28e-1

LDAHash 1.35e-2 1.75e-2 2.10e-2 2.45e-2 2.83e-2 3.28e-2 3.86e-2 4.73e-2 6.63e-2 7.85e-1
CasHash-8Bit 1.34e-2 1.73e-2 2.07e-2 2.41e-2 2.79e-2 3.23e-2 3.79e-2 4.65e-2 6.48e-2 9.63e-1
CasHash-10Bit 1.47e-2 1.91e-2 2.31e-2 2.72e-2 3.17e-2 3.71e-2 4.41e-2 5.46e-2 7.52e-2 7.11e-1

Table 4. Completeness of 3D reconstruction on Tsinghua database.

6. Acknowledgements

The authors would like to thank Prof. Zhanyi Hu and
Dr. Wei Gao for their constructive suggestion. This work
was supported in part by 973 Program Project under grant
No.2010CB327905 and National Natural Science Founda-
tion of China under grant No.61332016.

References
[1] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski. Build-

ing rome in a day. In International Conference on Computer Vision
(ICCV), 2009.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up ro-
bust features (surf). Computer vision and image understanding,
110(3):346–359, 2008.

[3] M. Charikar. Similarity estimation techniques from rounding algo-
rithm. In ACM symposium on Theory of computing, pages 380–388,
2002.

[4] D. Crandall, A. Owens, N. Snavely, and D. P. Huttenlocher. Discrete-
continuous optimization for large-scale structure from motion. In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
2011.

[5] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In SCG, pages 253–
262, 2004.

[6] Y. Furukawa and J. Ponce. Accurate, dense, and robust multiview
stereopsis. Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, 32(8):1362–1376, 2010.

[7] A. Gionis, P. Indyk, R. Motwani, et al. Similarity search in high
dimensions via hashing. In VLDB, volume 99, pages 518–529, 1999.

[8] M. X. Goemans and D. P. Williamson. Improved approximation al-
gorithms for maximum cut and satisfiability problems using semidef-
inite programming. Journal of the ACM (JACM), 42(6):1115–1145,
1995.

[9] P. Indyk and R. Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In ACM symposium on Theory
of computing (STOC), pages 604–613, 1998.

[10] P. Jain, B. Kulis, and K. Grauman. Fast image search for learned
metrics. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2008.

[11] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for
scalable image search. In IEEE International Conference on Com-
puter Vision (ICCV), 2009.

[12] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen. Introduc-
tion to algorithms. The MIT press, 2001.

[13] D. Lowe. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110, 2004.

4327

(a) Taj.Mahal: 189 images.

(b) Statue.of.Liberty: 674 images. (c) Notre.Dame: 715 images.

(d) Colosseum: 1357 images.

Figure 7. 3D reconstruction results on Flickr dataset “Taj.Mahal”, “Statue.of.Liberty”, “Notre.Dame” and “Colosseum”. Left: real-world
photograph; Middle: CasHash-8Bit; Right: CasHash-10Bit.

Method Taj.Mahal Statue.of.Liberty
TMatch Speed-Up Points TMatch Speed-Up Points

Brute 52575s 1.00× 124038 30608s 1.00× 88001
KDTree 5136s 10.24× 119165 9765s 3.13× 98674

LDAHash 1774s 29.64× 120353 874s 35.02× 123274
CasHash-8Bit 301s 174.67× 118331 358s 85.50× 203587
CasHash-10Bit 183s 287.30× 116224 231s 132.50× 246206

Method Notre.Dame Colosseum
TMatch Speed-Up Points TMatch Speed-Up Points

Brute 396729s 1.00× 358121 12307s 1.00× 540308
KDTree 60663s 6.54× 347056 2430s 5.06× 445774

LDAHash 13136s 30.20× 413348 851s 14.46× 492040
CasHash-8Bit 2266s 175.08× 484960 222s 55.44× 393408
CasHash-10Bit 1354s 293.01× 400673 196s 62.79× 512508

Table 5. Reconstruction statistics of four matching methods: brute force, Kd-tree, LDAHash and CasHash. Note: vocabulary tree technique
has been used for dataset “Colosseum” to accelerate image matching [16].

[14] K. Mikolajczyk and C. Schmid. A performance evaluation of local
descriptors. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(10):1615–1630, 2005.

[15] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. In VISAPP (1), pages 331–340,
2009.

[16] D. Nister and H. Stewenius. Scalable recognition with a vocabulary
tree. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2006.

[17] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.
A comparison and evaluation of multi-view stereo reconstruction al-
gorithms. In Computer vision and pattern recognition, 2006 IEEE

Computer Society Conference on, volume 1, pages 519–528. IEEE,
2006.

[18] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: exploring
photo collections in 3d. In ACM transactions on graphics (TOG),
volume 25, pages 835–846. ACM, 2006.

[19] C. Strecha, A. M. Bronstein, M. M. Bronstein, and P. Fua. Ldahash:
Improved matching with smaller descriptors. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 34(1):66–78, 2012.

4328

