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Abstract

This paper presents a new approach to tracking people
in crowded scenes, where people are subject to long-term
(partial) occlusions and may assume varying postures and
articulations. In such videos, detection-based trackers give
poor performance since detecting people occurrences is not
reliable, and common assumptions about locally smooth
trajectories do not hold. Rather, we use temporal mid-level
features (e.g., supervoxels or dense point trajectories) as a
more coherent spatiotemporal basis for handling occlusion
and pose variations.Thus, we formulate tracking as labeling
mid-level features by object identifiers, and specify a new
approach, called constrained sequential labeling (CSL), for
performing this labeling. CSL uses a cost function to se-
quentially assign labels while respecting the implications
of hard constraints computed via constraint propagation.
A key feature of this approach is that it allows for the use
of flexible cost functions and constraints that capture com-
plex dependencies that cannot be represented in standard
network-flow formulations. To exploit this flexibility we de-
scribe how to learn constraints and give a provably correct
learning algorithms for cost functions that achieves finite-
time convergence at a rate that improves with the strength of
the constraints. Our experimental results indicate that CSL
outperforms the state-of-the-art on challenging real-world
videos of volleyball, basketball, and pedestrians walking.

1. Introduction

This paper presents a new approach to tracking multi-
ple interacting people in real-world videos, where detecting
people occurrences is not reliable. Examples include videos
of pedestrians in crowded scenes, and team sports, like bas-
ketball and volleyball. In these videos, people are subjectto
long-term partial or full occlusions. Also, in sports videos,
players may assume a wide range of poses and body ar-
ticulations, and their motions and appearance (same team
uniforms) are typically similar to those of nearby players.

These challenges make the state-of-the-art people detec-
tors unreliable. As illustrated in Fig. 1, our experiments

demonstrate that responses of the popular DPM detector [7]
are very noisy, leading to poor performance of state-of-the-
art trackers based on data association of detections. This
raises the question of what video features could be more
suitable in our setting for grounding data association.

We resort to temporal mid-level features – namely, su-
pervoxels [20], and dense point trajectories [5] – as a
more coherent spatiotemporal basis for handling occlusion,
pose variations, and non-smooth trajectories. For exam-
ple, boundaries of supervoxels typically align with peo-
ple’s contours. Therefore, tracking the right combination
of mid-level features facilitates bottom-up reasoning un-
der occlusion and varying poses. As Fig. 1 shows, this
can help disambiguate two people partially occluding each
other. These mid-level features, however, present funda-
mental challenges to the common network-flow, and related
formulations of data association which use object detections
(e.g., [14, 13, 2, 19, 21, 17] ). In particular, a person to
be tracked is typically represented by an unknown number
of mid-level features, which split and merge in both space
and time. Consequently, edge capacities can no longer be
uniformly one and the ideal settings are not clear. Post-
processing is also required to recover identities from flows.

One approach to the above problem might be to apply
heuristic simplifications until the resulting problem fits into
a standard network flow formulation and then solve the
problem using efficient solvers. For example, we can make
hypotheses about places of merging and splitting according
to the size of mid-level features. However, the information
loss and errors injected by applying such simplifications can
often lead to an unrecoverable loss in accuracy, negating the
advantage of using efficient “optimal” solvers. Further, the
types of constraints and affinities among mid-level features
that can be represented in such Markovian flow networks
is quite limiting. Our initial efforts toward this style of ap-
proach have not yet been successful.

In this work, rather than heuristically simplify the mid-
level labeling problem to an efficiently solvable framework,
we instead develop a greedy labeling approach that can op-
erate directly on the original (unsimplified) problem. In par-
ticular, our approach conducts tracking by sequentially la-
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Figure 1: Bounding boxes of the DPM detector [7] (left),
and supervoxels of [20] (right). DPM often misses to de-
tect players in crowds (top) and in unexpected poses (bot-
tom). Supervoxels are more suitable for our challenging
videos, because their boundaries are usually aligned with
part boundaries facilitating bottom up reasoning.

beling mid-level video features with object identifiers, un-
derhardconstraints. Our new algorithm, called constrained
sequential labeling (CSL), uses a flexible cost function to
sequentially assign labels while directly respecting the im-
plications of hard constraints (e.g., a person cannot be at two
distinct locations). A key advantage of this approach is that
it places few restrictions on the form of the cost function, al-
lowing it to capture higher-order dependencies among mid-
level features. We describe supervised learning algorithms
for acquiring both the constraints and cost functions.

Importantly, while our approach is inherently greedy, it
comes with strong theoretical guarantees. We prove that if
there is a cost function (within the considered cost function
space) that supports accurate labeling given the constraints,
then the learning algorithm will achieve finite-time conver-
gence to such a cost function, where the rate of conver-
gence improves with the “strength” of the constraints. As
our experiments demonstrate these assumptions are satis-
fied in challenging real-world problems, where we are able
to learn high-quality constraints and cost function that sup-
port accurate CSL. In particular, we present experiments us-
ing sports and pedestrian data that demonstrate significant
improvements over the state-of-the-art.

2. Prior Work

Existing multi-object trackers typically use points, track-
lets, or object detections [21, 17, 12, 2, 19]. The previous
section highlighted the challenges of using object detections
with significant occlusion and pose variation. Similarly, in-
terest points are not suitable features for our setting, since
they do not capture the spatial cohesiveness of objects, and
thus require making heuristic assumptions about motions,

sizes, and shapes of objects to resolve occlusions [18, 23].
For data association, dependencies between video fea-

tures are typically captured by a network and are often sim-
plified to the first or second order Markovian dependen-
cies [14, 4]. Some approaches seek to encode hard con-
straints, and thus facilitate data association in ambiguous
cases. However, affinities between video features are typi-
cally combined with hard constraints into an NP-hard opti-
mization problem [3, 15]. This, in turn, requires a relaxation
of the hard constraints to the continuous domain, which can
often lead to non-sensical results (e.g., two distinct object
detections are assigned the same object ID) and requiring
heuristic post-processing. Rather, our CSL approach di-
rectly uses such hard constraints via the use of constraint
propagation, which our experiments demonstrate is effec-
tive.

CSL is inspired by the recent success of sequential clas-
sification methods for solving structured prediction prob-
lems (e.g. [10]) where classifiers are used to sequentially
label structured objects. However, CSL overcomes the po-
tential shortsightedness of such approaches through the in-
corporation of hard constraints.

3. Constrained Sequential Labeling

Our input for tracking is a set ofn mid-level, temporal
features (e.g. supervoxels){S1, S2, . . . , Sn} that capture
the foreground object activity (from foreground or saliency
detection) in a video. The goal is to label eachSi by a
label li ∈ {1, . . . , k}, which indicates which ofk objects
the feature corresponds to. For simplicity we first assume
thatk is known and drop this assumption later. We assume
that the visible target objects in the initial frame are labeled
(manually or by a detector) and also that mid-level features
are at a fine enough resolution so that they typically respect
the space-time extent of objects.

CSL operates by both assigning labels to features and
removing labels. For this purpose, we define apartial la-
belingL as a mapping from features to label sets, such that
L(Si) ⊆ {1, . . . , k} is the set of labels that are not ruled
out for Si. If L(Si) = {l} then Si is assigned labell.
We saySi has apartial label if |L(Sj)| > 1. CSL itera-
tively refines a partial labelingL, which is initialized so that
L(Si) = {1, . . . , k} if Si does not start from the first frame
(i.e. all labels are possible), and otherwiseL(Si) = {l},
wherel is the label specified forSi in the first frame. Each
refinement iteration uses acost functionandinequality con-
straintsin order to refine the partial labeling until reaching
a fully specified labeling. We describe this process below,
first ignoring constraints and then incorporating constraints.
Alg. 1 gives pseudo-code for CSL. Note that lines 6-12 in
Alg. 1 pertain to learning, explained in Sec. 4.

Labeling with a Cost Function. We assume a cost func-
tion C(Si, l | L) that assigns a cost to the decision of label-



input : A set of mid-level features{Si}
Object labels for first frame
Weight Vectorw
Set of inequality constraintsΣ
Learning Optionlearn with ground truth
labelingLgt

output: A labelingL or weight vectorw
1 Initialize partial labelingL according to label information in first

frame
2 while there existsSi such that|L(Si)| > 1 do
3 L = ConstraintPropagation(L,Σ)
4 D = {(S, l) : S ∈ A(L), l ∈ L(S)}
5 (Si, l) = argmin(S,l)∈D C(S, l | L)

6 if learn and Lgt(Si) 6= l then
7 C+ = {(S, l) ∈ D|Lgt(S) = {l}}

8 (S+, l+) = arg min(S,l)∈C+ C(S, l | L)

9 C− = {(S, l) ∈ D −C+ | C(S, l|L) < C(S+, l+|L)}

10 w = w +
P

(S,l)∈C−

Ψ(S,l,L)

|C−|
−

P

(S,l)∈C+

Ψ(S,l,L)

|C+|

11 L(S+) = {l+}

12 end
13 else
14 L(Si) = {l}
15 end
16 end
17 if learn then Return w ;
18 else Return L ;
Algorithm 1: Constrained Sequential Labeling Algorithm
with learning option. When the flaglearn is set, the algo-
rithm performs one run of learning the weight vectorw.

ing Si asl ∈ L(Si), whereL is the current partial labeling
being refined. Given the current partial labelingL, each
iteration begins by considering a set ofactivefeatures (see
below) denoted byA(L) as possibilities for assigning a new
label. The cost functionC is then used to select an active
featureSi ∈ A(L) and corresponding labell ∈ L(Si) to
assign to it by settingL(Si) to {l}. In particular, the pair
(Si, l) is selected to be the least cost such pair considering
all active features and labels for those features. These steps
are depicted in lines 4,5, and 14 of the pseudo-code.

Intuitively, we wantC to assign the lowest costs to cor-
rect pairs that can be most confidently labeled in the context
of L. In this work, we will use linear cost functions that
are expressed asC(Si, l | L) = w · Ψ(Si, l, L), wherew
is anm-dimensional weight vector andΨ(Si, l, L) returns
an m-dimensional descriptor vector that represents infor-
mation about the corresponding decision. The descriptors
used in this work are presented at the end of this section
and Section 4 gives a learning algorithm forw.

It remains to specify the active featuresA(L). Si is ac-
tive if its label is partial and is temporally close to an already
labeled feature (see Figure 2). Restricting our attention to
active features reduces the number of cost function evalua-
tions, which can result in significant speedups.

Inequality Constraints and Propagation. Using the
cost function to sequentially assign all labels can be ef-
fective for simpler tracking problems, e.g. ones that do

Figure 2: Example of sequential labeling of supervoxels.
Blue rectangles represent already labeled supervoxels, the
neighboring shaded rectangles are active supervoxels that
will be considered for labeling, the remaining rectangles
will not be considered until they become active.

not involve significant occlusion. However, for more dif-
ficult problems, we have found it is difficult to learn or
hand-code cost functions that achieve state-of-the-art per-
formance. This is due to the short-sighted, greedy nature of
the decision sequence. Fortunately we have found that this
poor performance can be overcome by combining greedy
selection with constraint reasoning. Section 4 provides a
theoretical characterization of this observation.

Our CSL approach uses a set of inequality constraintsΣ
associated with each video. Each constraint is of the form
Si 6= Sj , indicating that the features cannot be assigned
the same label. A partial labelingL violatesa constraint
Si 6= Sj if L(Si) = {l} andl ∈ L(Sj) or vice versa.L is
consistent withΣ if it is not violated by any constraint.

A basic way to combine constraintsΣ and a cost function
is to limit the labeling choices of the cost function to ones
that will not result in constraint violations given the current
partial labelingL. While using constraints in this way can
improve efficiency by reducing the number of cost function
evaluations, our results show that the accuracy improve-
ment is modest. The weakness of this approach is that it
only considers greedy constraint violations, rather than fur-
ther reaching implications of the constraints. For example,
suppose that currentlyL(Si) = {1} andL(Sj) = {1, 2},
and we have the constraintSi 6= Sj . We can infer that the
label for Sj is 2 since it cannot be 1 and given this new
information we can eliminate label 2 as a possibility from
any feature that has an inequality constraint withSj , and so
on. This process of iteratively computing the implicit con-
sequences of constraints is known as constraint propagation
[6] and is an extremely important component of state-of-
the-art constraint satisfaction and optimization algorithms.

Given a current partial labelingL and constraintsΣ we
let ConstraintPropagate(L, Σ) denote the constraint propa-
gation procedure, which returns a refined partial labelingL′

that is consistent withΣ. Specifically,L′ will be the min-
imal refinement ofL (maximally close) that is consistent.
ConstraintPropagate(L, Σ) is straightforward to implement
for inequality constraints. Starting withL iteratively finds a



violated constraintSi 6= Sj such thatL(Si) = {l} and re-
moves labell fromL(Sj) to get a new labeling. The process
terminates when no violation can be found.

CSL integrates constraint propagation by calling the pro-
cedure at the beginning of each iteration (line 3). Thus, in
the first iteration label information will be propagated from
the known labels of the first frame. In later iterations, la-
bel information will be propagated in response to the la-
beling decision made by the cost function in the previous
iteration. This propagation can rule out many possible la-
bels that might have otherwise been considered in current
or later iterations by the cost function. In this way, the
constraints have the effect of improving efficiency since the
number of cost function calls can be reduced and increas-
ing accuracy, because some of those removed cost function
calls may have resulted in erroneous label assignments. Our
results show the improvements are significant.

Handling Unknown Numbers of Objects. Above the
number of objectsk was assumed known as in many sports
domains. However, CSL is easily modified to handle un-
knownk such as pedestrian tracking. The above CSL de-
scription is unchanged, except thatk is initialized to be the
number of labeled objects in the first frame. During the iter-
ation the label set is enlarged (k is increased) whenever the
results of constraint propagation remove all label possibili-
ties for some featureS (i.e. L(S) = ∅), indicating thatS
should not be labeled as any of current objects. Whenever
this happens, a new object is added (k is incremented) to the
set of possible labels of any partially labeled features and
S is assigned the new label. When the learned constraints
in Σ are noisy, we may erroneously remove a correct label
from L(S) resulting inL(S) = ∅, which will hurt perfor-
mance. Our experiments show that this is rare and that the
constraints provide an overwhelming positive impact.

Cost Function Descriptors. Given a partial labelingL,
the descriptor functionΨ(Si, l, L) is defined as:

Ψ(Si, l, L) = [nu, nd, nf , dl, dv, dc]

The first type of descriptorsnu, nd andnf are the num-
ber of unlabeled features inSi’s neighborhood, the number
of different labels in the neighborhood, and the number of
framesSi doesn’t cover respectively. These descriptors pro-
vide measures related to how confidently a feature can be
labeled, which allows a preference for labeling temporally
longer features consistently with its surroundings.

The second set of descriptorsdl, dv anddc encodes the
usual visual dissimilarity between a feature and an object
template in terms of location, optical flow and color his-
tograms. Theobject templatefor label l is the union of all
Si such thatL(Si) = {l}. For location and optical flow, the
template is maintained every frame, and dissimilarity is cal-
culated by averaging over the Euclidean distance between
the feature and the template across each overlap frame. For

color histogram we keep one model and the dissimilarity is
directly the distance between the feature and the template.
In order to account for the difference of color and motion
among parts of an object, the template for color and opti-
cal flow is clustered into3 parts using k-means. Given a
feature and the template, the dissimilarity for color and mo-
tion is calculated according to the closest cluster. We update
the corresponding object template after each CSL iteration.
Note that by introducing the object template, the cost func-
tion becomes extremely high order compared to most previ-
ous work where only lower order relations are considered.

4. Cost Function Learning

We now describe a learning algorithm for tuning the
weights of our linear cost functionC(Si, l | L) = w ·
Ψ(Si, l, L) and give conditions for its convergence. We as-
sume labeled training videos and associated constraints that
provide the ground truth label assignmentsLgt for features.
The goal is to learn a set of weights such that CSL achieves
high accuracy on the training data.

This learning problem poses at least two challenges over
standard supervised learning. First, the training data is am-
biguous since it does not indicate the exact sequence of la-
beling decisions. The second challenge is that the sequence
of decisions made by the cost function are not independent
since each decision depends on the current partial labeling
L, which was generated based on previous decisions.

Our algorithm, CSL-Learn, addresses these challenges
by directly integrating learning into CSL. The outer loop
iterates through each training video, possibly performing
multiple updates to the weight vectorw, and terminates
when either a specified number of iterations is reached or
accuracy is perfect. For each training video, the learning
algorithm executes a “learning enhanced” CSL procedure
given by Algorithm 1 with the flaglearn turned on.

The algorithm behaves likes CSL until the cost function
usingw suggests an incorrect labeling decision (line 6). At
this point the weight vector is updated in a way that dis-
courages errors at similar decision points in the future (see
below). In addition, the incorrect decision is not used to
update the partial labeling, but rather the least cost correct
labeling decision is used to updateL (line 11).

It remains to specify the weight vector update when an
incorrect labell is assigned to featureSi given partial label-
ing L. We defineC+ to be the set of all correct labeling de-
cisions involving active features and(S+, l+) to be the least
cost decision inC+. We also defineC− to be all incorrect
labeling pairs that have a smaller cost than(S+, l+), i.e. the
incorrect pairs that are preferred over all correct pairs. The
weight vector is updated using the following Perceptron-
style rule:

w = w +
X

(S,l)∈C−

Ψ(S, l, L)

|C−|
−

X

(S,l)∈C+

Ψ(S, l, L)

|C+|



This rule updatesw so as to increase the average cost of all
pairs inC− (high-ranking incorrect pairs) and decrease the
average cost of the correct pairs inC+.

Convergence of Learning. We analyze the realizable
learning setting, where it is possible to find a weight vector
that correctly labels all of the training data. In particular, as
for most Perceptron-style learning algorithms, we bound the
number of mistakes made during the training process until
the weight vector correctly labels all training data. We must
assume here that the inequality constraints for each training
example are consistent with the ground truth labeling, since
otherwise convergence would not necessarily be possible.

As for the classic Perceptron algorithm, our convergence
guarantee is in terms of a notion of margin. Given a set
of training videos letL be the set of partial labelings that
are consistent with the inequality constraints. Given a con-
straint setΣ, theΣ-constrained marginof a weight vector
w for a training set is the minimum over allL ∈ L of w ·
Ψ(S−, l−, L)−w·Ψ(S+, l+, L), where(S+, l+) is any cor-
rect candidate labeling and(S−, l−) is any incorrect candi-
date labeling. Ifw has a positive constrained margin then
using it within CSL with the constraints will correctly label
the training set. We now show that the existence of a pos-
itive marginw is sufficient for convergence. BelowR is a
constant such that for all possible feature vectorsΨ(S, l, L)
andΨ(S′, l′, L) we have‖Ψ(S, l, L)− Ψ(S′, l′, L)‖ ≤ R

Theorem 1 Given constraintsΣ and any training set such
that there exists a weight vectorw with Σ-constrained mar-
gin γ > 0 and ‖w‖ = 1, CSL-Learn will converge to a
weight vector that correctly labels all training examples af-
ter making no more than(R/γ)2 weight updates.

Thus a larger margin implies a better mistake bound. The
proof is presented in the supplementary material. We now
relate constraints to margins.

Proposition 1 For any constraint setsΣ andΣ′, such that
Σ ⊆ Σ′, the Σ′-constrained margin of any weight vector
w is no less than theΣ-constrained margin. Furthermore
there exists a training set and constraint setsΣ ⊆ Σ′ such
that there is a weight vectorw with positiveΣ′-constrained
margin and there is no weight vector with positiveΣ-
constrained margin.

Combining the above results we can see the utility of using
constraints in learning. First, adding constraints will never
decrease the margin and often increase it, which means the
mistake bound will never get worse and often improve, sug-
gesting learning is made easier. Second, there are problems
where constraints are necessary to obtain a positive margin
and hence guarantee convergence.

5. Representing and Learning Constraints

Our goal is to learn aconstraint generatorthat returns
the inequality constraints over mid-level features in a video.

The constraints should have high precision in the sense that
if Si 6= Sj is generated then it agrees with the ground truth
with high probability. Further, we would like the constraint
set to be as large as possible, while maintaining high preci-
sion, in order to maximize constraint propagation.

Our constraint generation is similar in spirit to prior work
that used constraints between point trajectories [9]. In that
work, the connected components of each video frame were
computed and an inequality constraint was included be-
tween trajectories if they belonged to different components.
We found that for our features that approach often produces
erroneous constraints because it is not unusual in our videos
for a single object to span multiple connected components
in a frame. This occurs, for example, due to imperfections
in our foreground saliency mask.

Fortunately, it is often still the case that when an object
does span multiple components, those components will sat-
isfy certain spatial layout properties. For example, for peo-
ple tracking, if we consider a bounding polygon for two
components, certain types of bounding polygons are un-
likely to correspond to a single individual. Based on this
insight, we train an SVM classifier to predict whether two
components in a frame correspond to different objects. To
do this we use labeled training data to extract pairs of com-
ponents across the video frames and label them a positive
if the components correspond to different objects and oth-
erwise assign a negative label. We then compute features of
the pairs and train the SVM classifier. In our experiments
we found that a simple set of four features were sufficient
for achieving good results, including: the horizontal and
vertical distance between component centers and the height
and width of the minimal bounding box containing the com-
ponents. Given the learned SVM classifier we then adjust
its prediction threshold so that it achieves high precision.

Given this classifier we then generate a feature inequal-
ity constraintSi 6= Sj if in some video frameSi andSj are
contained in components that the SVM judges are from dif-
ferent objects. On our test data, this approach can achieve
a precision of over 97% in challenging volleyball videos
while maintaining a recall of over 44%, which gives very
informative constraint sets. Figure 3 illustrates an example
of the constraint generation process.

6. Experimental Results

Datasets. We evaluate using benchmark datasets of vol-
leyball and basketball videos that involve the challenges
noted in the introduction. Also to compare to state-of-
the-art detection-based approach, we report results on the
widely used pedestrian benchmark video PETS2009-S2L1
[8] where people detectors are effective. The Volleyball
dataset [1] contains 38 videos of entire collegiate volleyball
plays (each 200–800 frames,720× 480). Volleyball videos
are very challenging, because of inter-occlusions of many



Figure 3: Illustration of determining whether two supervox-
els can have the same label—inequality constraint. In frame
t, Si andSj belong to a single foreground connected com-
ponent, so the frame does not yield an inequality constraint.
In framet′, the SVM classifier decides the two connected
components cannot belong to a single individual, generat-
ing an inequality constraint betweenSi andSj .

players in different body articulations, and non-smooth fast
motions. Ground truth bounding boxes are provided for the
six near-team players, while opposing players are not anno-
tated or used for evaluation. We extended the ground truth
to include finer-level annotations every 5 frames in terms of
player pixel masks which exactly delineate each player in
these frames. We train and test via 3-fold cross-validation
reporting averages across folds. The Figment dataset [9]
contains 18 videos of basketball action (each 50–80 frames,
441 × 180). Ground truth player masks are provided ev-
ery 7-8 frames. We used leave-one-out cross-validation for
evaluation. For PETS2009-S2L1 training of the cost func-
tion and constraints was done using the PETS2009-S2L2.

Implementation Details. We tested CSL using both su-
pervoxels (CSL-VOX) and dense point trajectories (CSL-
DPT). Supervoxels were generated as the leaf-level super-
voxels of the hierarchical video segmentation approach of
[20]. The only input parameter for CSL-VOX is the to-
tal number of supervoxels, which is controlled by vary-
ing the video segmentation parameters. For generating
dense point trajectories we followed [9]. For Volleyball
we obtain foreground features via background subtraction
based on a Gaussian-mixture color model. For the basket-
ball videos, we follow [9] and extract foreground features
based on on motion saliency of dense point trajectories. For
PETS2009-S2L1, we use a trained background model to-
gether with motion saliency to estimate the foreground fea-
tures. To fairly compare with detection-based approach on
PETS2009, we use detection outputs to initialize in the first
frame rather than manual initialization.

Evaluation Metrics. We use the standard CLEAR MOT
evaluation metrics: miss detection (MD), false positives
(FP), ID switches (ID-sw.), and accuracy (acc). Also, to
compare to published results [9] on Figment we use the
metrics from that work: per object clustering error (PRCE),
recall, and tracking time.

Baselines. For Volleyball, we created baselines from
common frameworks: 1)NCuts [16] with different num-
bers of clusters 6 (the true number of clusters) and 12, and
pairwise affinities computed in terms of color, space-time
location and optical flow of supervoxels. NCuts also uses
the same responses of our inequality constraints classifier
which are incorporated as zero-valued entries in the affin-
ity matrix, 2) Detection-basedNetwork Flow[14] using the
publicly available code that applies flow-based linking to
people detections. We trained a people detector in our do-
main and used the resulting detections as input. We also
updated the code to use appearance-based affinities, which
improves results, 3)Network Flow*, the previous network
flow approach, but applied to ground truth bounding boxes,
rather than real detections. This is an oracle baseline (since
perfect detections are used) intended to estimate idealized
performance with perfect input, 4)Superpixeluses our CSL
approach on frame-based segments (intersections of super-
voxels with frames), instead of temporal supervoxels. For
the other two datasets, we compare against the reported
state-of-the-art results.

Quantitative Results. Tab. 1 shows the Volleyball re-
sults. First, we observe that both CSL-VOX and CSL-DPT
significantly outperform all non-Oracle approaches in all
metrics. Further we see that CSL-VOX outperforms CSL-
DPT by a small margin, primarily because the supervox-
els provide more stable affinity estimation. The significant
improvement over Superpixel shows the utility of using the
more coherent temporal mid-level feature rather than frame-
based features within CSL. Using the temporally extended
features allows for more significant constraints and less
shortsighted labeling. The comparison to Network Flow
shows that a state-of-the-art detection based technique faces
serious challenges in our domain due to the difficulty in ob-
taining accurate enough detections. Rather, by using mid-
level features, the CSL approaches are less vulnerable to
occlusions. Surprisingly, the CSL approaches are compara-
ble to the oracle Network Flow* approach, which is allowed
to cheat and use ground truth detections. Notably, CSL is
significantly better in terms of ID switches. Note that the or-
acle approach will necessarily achieve perfect MD and FP
scores due to the use of perfect detections.

Tab. 2 shows that on Figment CSL outperforms two
state-of-the-art methods [9, 5] based on graph partitioning
of dense point trajectories with a variety of post-processing
steps. We hypothesize that one reason for this is that the
prior approaches relax hard constraints as affinity in the
similarity matrix, which can result in non-sensical partitions
that must be heuristically post-processed. CSL-VOX again
outperforms CSL-DPT suggesting that supervoxels are a
more effective mid-level feature in this domain.

Tab. 3 shows results of CSL and two top-performing
detection-based methods on PETS2009S2L1. CSL achieves



Method MD FP ID-sw. Acc
CSL-VOX 2.69 2.49 0.41 94.41
CSL-DPT 5.32 4.67 0.87 89.14
NCut(6) 65.45 65.15 34.84 -65.44
NCut(12) 43.63 80.30 35.03 -58.93
Superpixel 5.15 5.15 37.27 52.43
Network Flow 56.36 3.33 0.91 39.40

Network Flow* 0 0 3.64 96.36

Uniform 2.99 2.89 0.45 93.67
SL 37.58 36.97 6.06 19.39
Uniform-SL 63.03 63.03 13.03 -39.09
CSL-noProp 20.91 20.60 16.06 42.43

Table 1: VolleyBall dataset. Network Flow* uses ground
truth detections.

Method PRCE Recall Tracking time
CSL-VOX 17.10 82.89 89.73
CSL-DPT 19.28 43.62 79.41

[9] 20.32 31.07 75.13
[5] 86.42 0.46 1.03

Table 2: Results for the Figment dataset. PRCE: percentage
of wrongly labeled pixels per player mask; Recall: percent-
age of recalled pixels per player mask; Tracking time: the
number of frames where recall is above 20%.

Method Rec. Prec. ID-sw. MOTA
CSL-VOX 98.28 91.07 6 89.78
CSL-DPT 97.64 90.45 8 88.13

[11] 94.03 92.40 10 84.77
[22] 96.45 93.64 8 90.3

Table 3: Results for PETS2009 S2L1

comparable performance, showing that even in domains
where detections are more reliable, CSL is still competi-
tive. The slightly worse precision performance of CSL is
primarily due to the imperfect constraint classifier, which
sometimes rules out all labels for certain supervoxels, which
are then assigned new labels.

Sensitivity Analysis. Tab. 4 evaluates sensitivity to the
only input parameter – the number of mid-level features
(e.g. supervoxels in this case) – on the Volleyball dataset.
As expected, increasing supervoxels improves accuracy and
increases runtimes.

Tab. 1 also evaluates the importance of learning and us-
ing constraints using several CSL variants (all using super-
voxels): 1)Uniform is CSL with no weight learning and set-
ting all cost function weights to one, 2)SLis pure sequential
labeling (CSL without constraints) with weight learning, 3)
Uniform-SLis SL with no weight learning and setting all
weights to one, 4)CSL-noPropis CSL without constraint
propagation, but does use constraints to assign infinite costs
to labelings that immediately violate a constraint.

Number of supervoxels accuracy time
500 -96.56 23s
1000 -91.20 76s
1500 84.66 124s
2000 92.28 291s

Table 4: Results of tracking accuracy and running time of
our approach with different number of supervoxels as input
for videos with 300 frames.

We see that constraints and constraint propagation are
crucial. In particular, SL (no constraints) is significantly
worse than CSL. Further, CSL-noProp is able to use con-
straints to improve over SL, however, it is not nearly as ef-
fective as CSL, which uses propagation. A second obser-
vation is that while weight learning is able to improve per-
formance (CSL vs. Uniform), we see that the improvement
is small in this case, which is likely due to the fact that our
features are designed to be quite informative and also that
the constraints play a dominating role leaving little room for
improvement. However, we see that the learning algorithm
is quite effective when there is room to improve. In partic-
ular, we see that learning without constraints (SL) is much
better than no learning without constraints (Uniform-SL).

Runtime. The average runtime of generating super-
voxels and dense point trajectories is about 28s/frame and
24s/frame respectively. Given mid-level features, Tab.4
shows that the runtime for CSL is quite fast. Further, CSL
is approximately 10x faster when using constraint propaga-
tion compared to no propagation. This is because constraint
propagation sets the label of approximately 9/10 of the su-
pervoxels avoiding that many cost function evaluations.
Qualitative evaluation: Fig. 4 illustrates tracking results
for CSL and the baselines on a Volleyball video where the
orange player is moving left, the yellow player is moving
right, and the purple player stays still. Only our method
gives correct tracks in this case. NCuts is sensitive to the
choice of the number of clusters. Also, NCuts may pro-
duce solutions that violate the hard constraints, since they
are “softened” in the affinity matrix. Network flow* and Su-
perpixels confused the ID’s of the players on the two sides.
More tracking results including some failure cases can be
found in our supplementary material.

7. Conclusion

We presented a new approach for multi-object track-
ing under significant occlusion based on labeling mid-
level, temporal features such as supervoxels. This label-
ing problem relaxes common assumptions of existing data-
association methods. One of our main contributions is
the constrained sequential labeling (CSL) approach, which
leverages hard constraints and a flexible cost function to
perform accurate labeling. We provided learning algorithms



Figure 4: Volleyball dataset: first row(CSL-VOX), second row(Ncut), third row(Superpixel), forth row(Network Flow*)

for constraints and cost functions and proved that cost-
function learning converges to an accurate solution in finite-
time when such a solution exists. Our experimental results
in volleyball, basketball, and pedestrian tracking demon-
strate that the approach is superior to the state-of-the-art
when people detectors are unreliable and comparable to the
state-of-the-art even when detections are accurate.
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