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Abstract

In this paper, we introduce a bilateral consistency metric
on the surface camera (SCam) [26] for light field stere-
o matching to handle significant occlusions. The concep-
t of SCam is used to model angular radiance distribution
with respect to a 3D point. Our bilateral consistency met-
ric is used to indicate the probability of occlusions by ana-
lyzing the SCams. We further show how to distinguish be-
tween on-surface and free space, textured and non-textured,
and Lambertian and specular through bilateral SCam anal-
ysis. To speed up the matching process, we apply the edge-
preserving guided filter [14] on the consistency-disparity
curves. Experimental results show that our technique out-
performs both the state-of-the-art and the recent light field
stereo matching methods, especially near occlusion bound-
aries.

1. Introduction
Stereo matching is a long standing problem in comput-

er vision. Traditional binocular stereo suffers from ambi-
guity as a result of partial occlusions: it is not possible to
establish correspondences on points observed in one view
but occluded in the other. Solutions such as graph-cut rely
on the smoothness term to “fill in” these holes. Occlusion
ambiguity can be potentially addressed by using multiple
views separated by different baselines. For example, an op-
timal joint estimate can be achieved by conducting pairwise
binocular stereo matching on rectified images and then fus-
ing all estimates onto a common 3D model [5]. For more
general multi-view setups, a volumetric representation of
the scene can be recovered using space carving [11].

Much has been done on handling occlusions for multi-
view stereo matching. The graph-cut framework [10] us-
es an occlusion term for checking if the depth assignmen-
t violates the visibility constraint. [25] adds an addition-
al second order smoothness terms and solves the graph-
cut problem using Quadratic Pseudo-Boolean Optimization
(QPBO) [15]. Bleyer et al. [3] impose soft segmentation
and minimum description length to improve occlusion es-

Figure 1. Epipolar Image (EPI) under occlusions. The chess scene
captured by Lytro exhibits complex occlusions. Closeup views of
the EPIs (of the red and yellow scanlines) show that near occlu-
sion boundaries, the EPIs do not form clear structures for reliable
direction/depth estimation.

timation. Heavy occlusion, however, remains difficult to
address even with a large number of views. Fig. 7 shows
plants with dense foliage that would be a challenge for any
stereo algorithm; indeed, results from the multi-view stere-
o algorithm of [10] contain significant errors at occlusion
boundaries.

There are commercially available light field cameras
such as the Lytro and Raytrix cameras which are capable
of capturing a few hundred of views in a single shot. For
example, using an 11MP sensor and 0.1 million microlens-
es, the Lytro camera can acquire 100 views of the scene.
These advances have renewed interest in stereo matching.
Heber et al. [6] propose a matching cost based on Active
Wavefront Sampling, which dose not explicitly model oc-
clusion. Wanner and Goldlücke [18, 19, 22] apply struc-
ture tensors to estimate the feature pixels’ directions in 2D
Epipolar Image (EPI) and use them in stereo matching and
object segmentation. Yu et al. [27] encode the constraints of
3D lines to further improve the reconstruction quality. How-
ever, both techniques are vulnerable to heavy occlusion: the
directional field become too random to estimate (Fig. 1) and
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3D lines are partitioned into small, incoherent segments.
In this paper, we present a new light field stereo match-

ing algorithm that is capable of handling heavy occlusion.
Our approach builds upon the analysis of the angular statis-
tics of the light field: for every 3D point, we trace all rays
passing through it back to the camera array. We then con-
struct an angular sampling image called the surface camera
or SCam [26]. We propose a new bilateral metric to mea-
sure the probability of occlusions of the SCam. We fur-
ther show how to distinguish between on-surface and free
space, textured and non-textured, and Lambertian and spec-
ular through global and local SCam consistency analysis.

Specifically, for a pixel in the reference view, we com-
pute its bilateral metric at every possible depth. We show
that the metric reaches a local minimum at the ground truth
depth; this is a unique property to light field stereo. To re-
liably handle ambiguous textureless surfaces, we introduce
an additional set of local and global confidence metrics to
gauge the reliability in depth estimation. Finally, we de-
velop an efficient filtering-based light field stereo matching
technique that can be parallelized on the GPU for efficient
processing. Experimental results show that our technique
significantly outperforms both the state-of-the-art and the
recent light field stereo matching methods.

2. Angular Light Field Statistics

To represent a light field, it is common practice to use
the two-plane parametrization (2PP) as shown in Fig. 2.
The camera plane st is at z = 0 and the image plane uv
is at z = 1. A ray r not parallel to the parametrization
planes in the space is uniquely specified as a 4D vector
r = [s, t, u, v], where [s, t, 0] is its intersection with the
st plane and [u, v, 1] with the uv plane. In practice, [s, t]
can be viewed as the coordinates of the camera and [u, v] as
those of the sensor.

We first describe our notations. Our analysis is conduct-
ed with respect to a reference R(sr, tr), e.g., the central
camera of the light field. Let p denote a pixel at location
(u, v) in R. We use pd to represent the 3D point (u, v, d),
i.e., d is the depth along ray [sr, tr, u, v]. For every 3D
point pd, we back project it to every camera (s, t) in the
light field. This is equivalent to gathering, at each st cam-
era, a ray (pixel) [u(s, t), v(s, t)] that passes through pd and
then organizing them as an st image. This model has been
previously referred to as the Surface Camera (SCam) [26]
or the Surface Light Field [24]. We denote the SCam at pd
as Apd(s, t).

2.1. SCam Analysis

The characteristics of an SCam image Apd depends
on the 3D location of pd, scene structure, and scene re-
flectance/texture properties. In our analysis, we assume the
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Figure 2. A light field is parameterized using the st camera plane
and the uv image plane. A Surface Camera at P is formed by
tracing all rays passing through P back to all st cameras to form
an st image. [26].

field-of-view (FOV) of the SCam is small (we use the Lytro
camera, whose Scam has about 10 degree FOV).

Consider the simplest case of an unoccluded point on a
Lambertian surface. Rays from different views should have
identical radiances and its SCam should be an image of con-
stant color image, e.g., the SCam of green circled point at
its true depth in Fig. 3. If pd lies on a specular surface, the
SCam will then exhibit view dependencies. However, since
the field-of-view is small, the variation will be small and its
SCam will appear smooth, e.g., the red circled point at its
true depth in Fig. 3. This is the on-surface case.

If pd is free space, then its SCam will appear precisely
as a pinhole image at pd, i.e., it will collect rays emitting
from different points from nearby surfaces. If the nearby
surfaces to pd are textureless, its SCam will appear similar
to the on-surface cases, exhibiting depth ambiguity com-
monly observed in stereo matching. However, if the nearby
surface is highly textured, then the SCam will resemble the
texture pattern, e.g., the brown or green circled point at a
wrong depth in Fig. 3. This is the free space case.

Next, let us consider the occlusion case. Recall that if pd
lies on some surface that is occluded from some views in the
light field, part of its SCam should appear as on-surface and
part free-space. The SCam images in this case will exhibit
abrupt color/texture changes. If the scene is heavily occlud-
ed, the SCam will exhibit complex textures and colors, e.g.,
the blue circled point at its ground true depth in Fig. 3.

2.2. Bilateral Consistency Metric (BCM)

Our analysis further reveals that we can potentially ana-
lyze the content of the SCams to distinguish their occlusion
profiles. Let Ωv∗pd be the set of rays (pixels) collected by the
SCam that reach pd without occlusion and Ωo∗pd be those that
are blocked from reaching pd due to occlusions.
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Figure 3. The consistency-depth (C-D) curves of different points in a plant scene. Consistency is measured using the bilateral consistency
metric and we map depth to disparity for clarity. The C-D curves have different profiles for different points. Notice that the ground truth
disparities correspond to the local/global minimum. The SCams at the sampled disparities are also plotted on the curve.

We define the following consistency measurement:

c∗pd =
1

|Ωv∗pd |
∑

(s,t)∈Ωv∗pd

ρ(Apd(s, t)−Apd(sr, tr)), (1)

where |Ω| is the size of the set Ω and ρ(x) = 1 − e−
x2

2σ2

is a distance function, where σ(= 1
255 in our experiments)

controls the sensitivity of the function to large distances.
The reason for using this distance function instead of L2
norm is explained in Section 2.3.

For the on-surface case, we have ρ(Apd(s, t) −
Apd(sr, tr)) = 0, (s, t) ∈ Ωv∗pd and therefore c∗p = 0. Even
if the surface is non-Lambertion, c∗pd would still close to ze-
ro due to the narrow SCam field-of-view assumption. How-
ever, if pd is free space or occluded, c∗pd would be larger.

The simplest stereo matching algorithm would be to lo-
cate pd that minimizes c∗pd . Unfortunately, there are t-
wo significant issues. First, the set Ωv∗pd is unknown be-
fore scene geometry is recovered. Second, if the surface is
textureless, the off-surface SCam will appear as if it is on-
surface, causing ambiguity. Previous multi-view algorithm-
s [8, 10, 23] implicitly incorporates this visibility constraint
into their optimization framework, e.g., as consistency pri-
ors.

To handle these two issues, we introduce a new bilateral
consistency metric (BCM) PApd to estimate the probability
of each pixel in SCam Apd belonging to Ωv∗pd . Our metric
resembles bilateral filters on color and spatial [17] for esti-
mating how close each pixel in the SCam Apd(s, t) is to the

reference pixel Apd(sr, tr):

PApd (s, t) = e
− d2c

2σ2c
− d2s

2σ2s ,

dc = Apd(s, t)−Apd(sr, tr),

ds = (s, t)− (sr, tr),

(2)

where σc and σs are color and spatial variances (set as 3
255

and 1
4 in our experiments) respectively.

If we assume that the size of Ωv∗pd is at least Nv , we can
sort all pixels inApd using their BCM and approximate Ωv∗pd
as:

Ωvpd = {(s, t)|PApd (s, t) ≥ min(PThresh, P
Nv
Apd

)} (3)

where PThresh(= 0.5) is a predefined threshold and PNvAp
is the Nv-th highest BCM among all pixels in the SCam.
(Nv is set as the half of the total number of views.) Final-
ly, we can use the estimated visibility set to compute the
consistency measure c as:

cpd =
1

|Ωvpd |
∑

(s,t)∈Ωvpd

ρ(Apd(s, t)−Apd(sr, tr)). (4)

2.3. Consistency-Depth Profile

Given a pixel p in the reference view, we can compute
the consistency measure cpd for every hypothetical depth d.
Therefore, we can form a cpd - d curve or the C-D curve.
Let us study the profile of the C-D curves. For the on-
surface case, if the surface is highly textured, the consis-
tency measure should reach global minimum at the ground
truth depth. If the surface is textureless, then we should
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Figure 4. C-D curves for partially occluded scene points. The
ground truth disparity always correspond to the local minimum
on the curve when using our bilateral consistency metric (solid
curves). However, it does not hold when using the traditional L2
consistency metric.

observe a trough (wide flat range of minima) due to ambi-
guity. For the occlusion case, if the occluding surface has a
different color from the ground truth point, since our BCM
already excludes the pixels from the occluders, the consis-
tency measure should still be the global minimum.

However, if the occluder has a similar color of the refer-
ence pixel, BCM cannot reliably prohibit its corresponding
pixels (denoted as set Ωerrpd ) from being included in Ωvpd .
As a result, cpd may not be the global minimum. However,
it will always correspond to a local minimum, as shown in
Fig. 4. In particular, small depth changes in either direction
±δ will produce values cpd±δ that are larger than cpd . Con-
ceptually, this is because the incoherence for the pixels in
Ωv∗pd will increase, whereas the incoherence for the pixels in
Ωerrpd (= Ωvpd \Ω

v∗
pd

) will remain approximately the same due
to the insensitiveness of ρ to large distances. The complete
proof can be found in the Appendix A.

In summary, for each pixel p, its ground truth depth
should always correspond to some minimum on its C-D
curve. It is important to note that the local minimum prop-
erty is unique for our C-D curve based on robust distance
function ρ. The property does not hold when using the clas-
sical L2 norm to measuring the consistency. Fig. 4 com-
pares our C-D curve and L2 norm curve vpd :

vpd =
1

|Ωvpd |
∑

(s,t)∈Ωvpd

(Apd(s, t)−Apd(sr, tr))
2. (5)

Fig. 4 shows that in the presence of occlusion, the correct
depth is not always at a minimum of vpd .
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Figure 5. The C-D becomes more oscillating when the number of
view decreases. The ground truth depths of the red and blue points
of Fig. 4 no longer correspond to the local minimums with 3 × 3
views.

Note that our robust metric for stereo matching is ap-
plicable only for light fields with large numbers of densely
sampled views. It will not be effective if we use a small set
of views (e.g., 5 ∼ 10) as in traditional multi-view stereo
matching. This is because Ωvpd will be too small to reliably
measure. Fig. 5 shows the C-D curves computed using few-
er SCams for the same scene. When the number of views
is fewer than 5× 5, there is a noticeable degradation of the
local minimum property.

3. Light Field Stereo Matching
Our new light field stereo matching algorithm is based

on the minimum property of the C-D curve. The most direc-
t implementation would be to use the consistency measure
cpd in place of the data term in classical graph-cut [4] or be-
lief propagation [16] algorithms. However, both algorithms
are computationally expensive, especially with a large num-
ber of views and disparity labels. We instead developed
a more efficient technique based on recent filtering-based
stereo matching methods [13, 14] that can be parallelized
on the GPU.

We first apply the edge-preserving guided filter [14]
to smooth the initial consistency measure cpd . To assign
depth/disparity to every pixel p, we refine cpd using a lo-
cal confidence measure for resolving the ambiguity caused
by a valley of minima on the C-D curve. We then measure
the profile of p’s C-D curve (e.g., the number of local mini-
ma) to determine an overall confidence. If the confidence is
sufficiently high, we assign p’s depth using the global min-
imum on the C-D curve. Otherwise, we mark the pixel’s



depth as “unknown”. Once we process all pixels, we apply
depth propagation similar to [12] to fill in the holes associat-
ed with the “unknown” pixels based on the color coherence.
The complete algorithm is shown in Algorithm 1.

Algorithm 1 Light Field Stereo Matching
Require: Light Field Input I(s,t), Reference View (sr, tr)

procedure DEPTH ESTIMATION
for all p do

for all d ∈ [dmin, dmax] do
Compute cpd based on Eq. 5;
Apply edge preserving filter on cpd ;
Compute local confidence f lpd using Eq. 7;
Compute c̃pd using Eq. 8;

end for
Compute the reliability fg and mark p as reli-

able/unreliable.
If p is reliable, assign the global min of c̃pd to p.
Otherwise, assign p as unknown.

end for
Fill in “unknown” pixels using propagation.

end procedure

Local Confidence Measurement. If the region is texture-
less, matching becomes ambiguous, since the ground truth
cpd lies within a valley of global minima on the C-D curve.
In the MRF-based solutions, the issue is addressed via the
smoothness prior, i.e., by forcing the pixel’s depth to be
similar to its reliable neighbors. Several confidence mea-
sures have been previous proposed [7], e.g., based on the
existence of local minima and/or flat regions of low cost on
each individual cost profile.

We propose a new local confidence measurement that
makes use of the C-D curve and spatial coherence. Instead
of examining the profile along dimension d only, our con-
fidence measurement incorporates nearby pixels; we com-
pute the stability of cpd under perturbation. Let A′pd be a
perturbed version of SCam image Apd :

A′pd(s, t) =
1

|Ω′|
·

∑
(du,dv)∈Ω′

I(s,t)(upd+du, vpd+dv)) (6)

where Ω′ = {(−1, 0), (1, 0), (0,−1), (0, 1)}, (du, dv) ∈
Ω′, I(s,t) is the image of st-th view and Apd(s, t) =
I(s,t)(upd , vpd).

We define the local confidence f lpd as:

f lpd = 1− e−(cpd−c
′
pd

)2/(2σ2
l ), (7)

where c′pd is the consistency measure ofA′pd and the term σl
controls the scale of the confidence and is same to all pixels.

The local confidence measure penalizes the depth estimated
at textureless region while giving more confidence for those
depth estimated from textured region. We use the local con-
fidence measure to compute the new consistency measure
c̃pd as:

c̃pd = 1− (1− cpd) · f lpd . (8)

Reliability Measure. Next, we assign depths to each pix-
el based on their consistency c̃pd . Specifically, for each pix-
el p, we select the depth d that corresponds to the smallest
c̃pd for all possible d. Recall that the C-D curve can have
multiple local minima adding to the local confidence mea-
surements. Therefore, the assignment using the global min-
imum is not reliable. This happens frequently in the cases
where occluders have similar colors to that of the occluded
smooth surface.

Instead, we compute a global confidence measurement
to determine if a pixel can be reliably labeled or not. Let
{c̃pd1 , c̃pd2 , ..., c̃pdn } represent a set of local minima on the
C-D curve arranged in ascending order, where n is the num-
ber of local minima whose c̃pd is less than a predefined
threshold. The global confidence for a depth estimation is
defined as:

fg = (c̃pd1 − c̃pd2 )/(c̃pd1 − c̃pdn ). (9)

The global confidence is computing the relative gap be-
tween the global and the second smallest local minimum.
The smaller the gap, the less reliable of the depth estima-
tion using the global minimum. For pixels deemed unreli-
able, we resort to depth propagation [12].

4. Experiments
We first evaluate our algorithm on the Synthetic Light

Field datasets used in [18, 20, 21]. We compare our
technique with the recent method of globally consisten-
t depth labeling (GCDL) [18] and line-assisted graph-cut
(LAGC) [27] using the results or source code from the re-
spective authors. We also implemented the more classical
multi-view graph-cut (MVGC) [10]. Finally, in Fig. 8, we
compare with the published results of the fast light field
stereo (FLFS) [9] whose source code is not yet available.

Fig. 6 compares results generated by different methods
on three sets of light fields (Maria, cube and still life) with
the ground truth disparity maps. All scenes exhibit com-
plex occlusions. For clarity, we further show the closeup
views of the error maps. Our technique outperforms GCDL,
MVGC, and LAGC near the occlusion edges in all three ex-
amples and our depth maps better preserve the contour of
the occlusion boundaries. MVGC produces much noisier
results whereas GCDL and LAGC incur boundary fatten-
ing.
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Figure 6. Reconstruction errors using our approach, GCDL [18], MVGC [10], and LAGC [27] on the Maria scene.

Table 1. Mean square errors of disparity recovery computed for all pixels and occlusion pixels.

Scene GCLD MVGC LAGC Our result
overall occlusion overall occlusion overall occlusion overall occlusion

maria 0.001074 0.016240 0.002281 0.015064 0.002548 0.016888 0.001273 0.013989
cube 0.008675 0.054887 0.019067 0.034319 0.018621 0.044417 0.010940 0.032793
still life 0.033672 0.202133 0.066728 0.134544 0.041361 0.183859 0.012868 0.066527
Tree N/A N/A 0.088057 0.088366 0.073049 0.073479 0.072461 0.072523

Our technique is particularly suitable for handling scenes
with heavy occlusions. Fig. 7 shows two synthetic light
fields of trees rendered using the POV-Ray ray-tracer [2] at
a resolution of 600×470×17×17 and 480×640×17×17.
The scenes both have disparity ranges of 0 to 13 pixels.
Notice that the structure tensor based GCDL cannot handle
such a large disparity range. Heavy occlusion is also a chal-
lenge to classical MVGC. Notice that parts of the scenes
such as leaves lack texture while other parts have complex
textures. Our result is able to accurately recover most leaves

and at the same time maintain smooth disparity transition-
s of the ground, the background wall, and the trunk of the
trees. In contrast, MVGC produces strong visual artifacts
by merging individual leaves into groups.

Table 1 summarizes the accuracy of our technique and
these state-of-the-art techniques for all pixels and for oc-
clusion pixels. Specifically, we compute the mean square
errors of the disparity maps as in [21]. The overall er-
rors using GCDL, LAGC, and our technique are com-
parably low when occlusions are less severe. However,
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Figure 7. Stereo matching results on heavily foliaged plants using
MVGC and our technique.

for heavily-occluded scenes (the bottom rows) such as the
plants (Fig. 7), our technique performs better, especially n-
ear the occlusion boundaries. Recall that GCDL can only
handle small disparity range (generally [−4, 4]) since it re-
lies on subpixel accuracy for tensor estimation. We did not
include its results on the plants models. Our technique does
not have disparity range requirements and can handle these
large disparity ranges.

Next, we compare our techniques with GCDL [18] and
FLFS [9] on the Stanford Gantry data set [1]. The light field
contains 17 × 17 views at a resolution of 1280 × 960 of a
Lego gantry crane model. The disparity range is between -4
to 4 pixels and we discretize it into 80 steps. Fig. 8 shows
the comparisons. All three methods produce reasonable re-
sults. However, near the occlusion boundaries such as the
hoist rope from the crane and the contours of the headlights
and windows, our solution much better preserves the shape
of the contours.

Fig. 9 shows the effectiveness of guided filtering. We
compute the disparity maps on the Buddha scene and the
Mona Lisa scene, both composed of 9 × 9 views at a res-

Reference view GCDL

FLFS Ours

Figure 8. Comparison using our method, GCDL [18] and FLFS
[9] on the Stanford Gantry data.

olution of 768 × 768 with disparity range [−1.2, 1.5]. The
Buddha scene consists of large textureless regions such as
the wood plank and the dices. Without applying the guided
filter, the disparities of the dots on the dices are incorrectly
estimated. This is because the ground truth disparity lies
at a trough on its C-D curve whose confidences are equally
low. Using the guided filter, our technique is able to bias
more towards the boundary of the dot whose confidence is
much higher due to textures and therefore forces the interi-
or of the dots to choose the correct disparity. The process is
analogous to adding the smoothness prior to the graph-cut
framework to resolve ambiguity.

5. Discussion and Future Work
We have presented a new light field stereo matching al-

gorithm by modeling the angular light field statistics using
the SCam. To characterize SCam, we have developed a new
bilateral consistency metric for measuring the reliability of
the SCam. The analysis reveals the importance of the SCam
structure in multiview stereo. In particular, we have shown
that the consistency-depth curve has the property that the
ground truth depth always corresponds to a minimum on
the curve. This is a unique property under the dense view
assumption and the bilateral metric. Finally, we have devel-
oped a filter-based stereo matching technique and demon-
strated that it outperforms the state-of-the-art solutions es-
pecially near the occlusion boundaries.

The key component of our approach is the bilateral con-
sistency metric. This metric, however, is biased towards to
the reference view as it uses the color of the reference pixel
as the mean of the bilateral filter. In contrast, the traditional
multi-view stereo such as MVGC uses the mean of all pixels
in the SCam as the reference and compute the L2 difference.
Therefore, MVGC is expected to be more robust when the
input images are noisy. The problem can be partially com-
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Figure 9. Results of our method with and without guided filtering.

pensated by first denoising the input images. Alternative-
ly, we can incorporate the noise model into the consistency
metric, which is part of our immediate future work. Finally,
we plan to build a database of light field data with small to
large disparity ranges and use it as a benchmark to compare
existing light field stereo algorithms.
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