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Abstract

Detecting objects becomes difficult when we need to deal
with large shape deformation, occlusion and low resolu-
tion. We propose a novel approach to i) handle large de-
formations and partial occlusions in animals (as examples
of highly deformable objects), ii) describe them in terms of
body parts, and iii) detect them when their body parts are
hard to detect (e.g., animals depicted at low resolution). We
represent the holistic object and body parts separately and
use a fully connected model to arrange templates for the
holistic object and body parts. Our model automatically
decouples the holistic object or body parts from the model
when they are hard to detect. This enables us to represent a
large number of holistic object and body part combinations
to better deal with different “detectability” patterns caused
by deformations, occlusion and/or low resolution.

We apply our method to the six animal categories in the
PASCAL VOC dataset and show that our method signifi-
cantly improves state-of-the-art (by 4.1% AP) and provides
a richer representation for objects. During training we use
annotations for body parts (e.g., head, torso, etc), making
use of a new dataset of fully annotated object parts for PAS-
CAL VOC 2010, which provides a mask for each part.

1. Introduction

Despite much recent progress in detecting objects, deal-
ing with large shape deformations, occlusions and low res-
olution remain fundamental challenges. This is evident
from the low performance of state-of-the-art object detec-
tors [9, 26, 24] for animals, which are highly deformable
objects. Figure 1 shows some typical examples of difficult
images for detecting animals: (a) Animals can be highly
deformed, in which case, finding a template for the holis-
tic object (‘root’) becomes hard due to deformation. How-
ever, some of the constituent body parts (e.g., head or torso)
may still be reliably detected. Hence, the detector should
rely on those parts to detect the holistic object. (b) Some

(a) (b) (c)

deformation occlusion low resolution

Figure 1. Handling deformation, occlusion, and low resolution ob-
jects are challenging tasks for object detectors. (a) It is hard to
detect the objects due to high deformation, but some of the body
parts (e.g., head) can be detected reliably. (b) Detecting the oc-
cluded body parts is difficult. (c) It is possible to detect the objects
but not their parts (e.g., the low resolution head). Our strategy is
to detect what we can – body parts or the holistic object – by us-
ing a model that adaptively switches off some of the parts (or the
holistic object) in the model.

body parts of the animals might not be detectable due to
occlusion, truncation or local ambiguity. Therefore, the ob-
ject detector should automatically select a subset of reliable
body parts for detection of the holistic object. (c) The visual
cues for body parts are typically quite weak when an object
is small so the body parts should be ignored in the model.

In this paper, we propose a novel method to better detect
objects in the scenarios mentioned above. We introduce a
flexible model that decouples body parts or the holistic ob-
ject from the model when they cannot be detected hence we
“detect what we can”. There are two main advantages to
our model: 1) The model provides flexibility by allowing
the holistic object (as well as the body parts) to be ignored.
The current detectors typically model objects by templates
for the holistic object and a set of parts (e.g., [9] or [1],
which allows missing body parts) or just a set of templates
for parts (e.g., [25]). 2) We use ‘detectability’ to model oc-
clusion and deformation and not ‘visibility’. For example,
the holistic body of a highly deformed cat is visible, but we
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would rather not model it since it is not easily ‘detectable’.
We use a fully connected graphical model where the

nodes represent the holistic object and body parts. The
edges encode spatial and scale relationships among the parts
and between the parts and the holistic object. Our model
contains switch variables for each node, which enable us
to decouple the nodes from the model if the corresponding
body parts, or the holistic object cannot be detected. These
switch variables give our model the ability to represent a
large number of combinations of holistic object and body
parts (Fig. 2). We perform inference efficiently on our fully
connected model by taking advantage of the fact that the
nodes are shared between different detectability patterns.

We perform an extensive set of experiments to compare
our method with DPM [9] and segDPM [12]. We show that
our model provides significant improvement over DPM [9]
and segDPM [12] (7.3% and 4.1% AP, respectively), while
it provides a richer description for objects in terms of body
parts (compared to a simple bounding box). We also quan-
tify our method’s ability to localize body parts. We provide
a new dataset of annotated body parts for all of the animal
categories of PASCAL VOC 2010, which is used for train-
ing and evaluating our model. Animals in PASCAL are
highly deformable and appear at different scales with dif-
ferent degree of occlusion, hence provide a suitable testbed
for our method.

2. Related Work
There is a considerable body of work on part-based ob-

ject detectors. Some of these methods represent an ob-
ject with a holistic object (“root”) template attached to a
fixed number of parts [9, 26, 4]. The main disadvantage
of these methods is that they are not robust against oc-
clusion. Azizpour et al. [1] propose a DPM that allows
missing parts. Our method is different from theirs as we
consider detectability of parts instead of visibility, and our
model is more flexible as we can switch off the “root” as
well. We also show significantly better results. Girshick
et al. [13] propose a grammar model to handle a variable
number of parts. The difference between our method and
theirs is that we consider occlusion of body parts, while
they model occlusion for latent parts of the model. In [18],
the authors propose a multi-resolution model to better de-
tect small objects, where the parts are switched off at small
scales. In contrast, we do not explicitly incorporate size
into the model and let the model choose whether the parts
are useful to describe an object or not.

The recent works on human pose estimation [25, 16, 22,
20] typically do not consider the holistic object (root) tem-
plate in their model as they are faced with highly variable
poses. Since detecting the individual parts can be hard when
objects are small, having a root model can be helpful so our
model adaptively switches on or off the root.

In contrast to object detectors encoding parts using la-
tent variables [5, 27, 11, 6, 9, 21, 17], we use semantic
body parts. Most of these methods formulate object detec-
tion within a discriminative framework and so learn parts
that are most effective for discriminating the object from
the background in images. Hence many of these methods
are not suitable for recovering the body parts of the object.

Strong supervision has been used in various ways to de-
tect objects [2, 23, 3, 19, 1, 14]. Similar to our method,
[1, 23, 3] use additional annotations to provide supervi-
sion for a part-based model, while Poselets [2] and [14] use
keypoints and masks annotations to cluster objects or their
parts. [19] use head as a distinctive part to detect cats and
dogs with the assumption that the appearance of animals is
homogeneous.

3. Model
Our overall goal is to better handle large shape deforma-

tion, occlusion and low resolution by introducing a flexible
structure that allows part and/or holistic object (root) tem-
plates to be switched on or off.

We represent objects by their holistic model and a col-
lection of body parts. We arrange them in a fully connected
graph as shown in Figure 2. We consider connections be-
tween all pairs of nodes because if we use a structure like a
tree, switching off non-leaf nodes will break the structure.
The connection between pairs of nodes characterizes their
spatial and scale relationships.

Formally, a random variable zi is associated to node i
and represents its location pi, size si, and switch variable γi.
Here i ∈ {1, . . . ,K}, pi ∈ {1, . . . , Li}, si ∈ {1, . . . , Si}
and γi ∈ {0, 1}, where K is the number of all nodes in the
graph, and Li and Si are the possible number of positions
and scales of node i, respectively. Here γi = 0 indicates
node i should be switched off, which means it is hard to
detect part i. We denote this K-node relational graph as
G = (V,E), where the edges specify the spatial and scale
consistency relations. For notational convenience, we use
the lack of subscript to indicate a set spanned by the sub-
script (e.g., γ = {γ1, . . . , γK}).

The score associated with a configuration of node loca-
tions p, sizes s and switch variables γ in image I can be
written as follows:

F (z) =
∑
i∈V

wiφ(I, zi) +
∑
ij∈E

wijψ(zi, zj) + b(γ), (1)

where φ(.) is the appearance term and ψ(., .) denotes the
pairwise relationships. The pairwise relationship between
nodes consists of spatial ψsp and scale ψsc terms. The last
term, b(γ), is a scalar bias term that models the prior of
detectability pattern γ = {γ1, . . . , γK}. When a node is
switched off, we do not model its appearance or relationship
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Figure 2. (a) Our graphical model where the nodes represent the holistic object and its body parts. Their state variables are position, scale,
and switch variable (γ). The holistic object is shown in yellow and some example body parts are shown in red, green, and blue. The rest
of the body parts are shown with white rectangles. (b) The switch variables decouple nodes from the graph, depending on which parts are
detected, and enable the model to deal with different detectability patterns. Boxes with dashed border are those decoupled from the graph.

with others. In particular, we have:

φ(I, zi) =

{
φ(I, pi, si) if γi ≡ 1

0 if γi ≡ 0.

ψ(zi, zj) =


[
ψsp(pi, pj) ψsc(si, sj)

]T
if γiγj ≡ 1

0 otherwise.

Here φ(I, pi, si) models the appearance of node i inside a
window defined by pi and si. There are various choices to
build the appearance model. In our experiments, we train
the appearance model of each node separately using [9] and
[12]. See more details in Section 4.

We use similar spatial deformations as used by [9]:
ψsp(pi, pj) =

[
dx, dy, dx2, dy2

]
. The difference is that

we normalize the distances by the sum of the size of the in-
volved nodes. The scale term for two nodes is defined by
ψsc(si, sj) =

[
ds, dsx, dsy, ds

2, ds2x, ds
2
y

]
, where:

ds =
sxi × syi
sxj × syj

, dsx =
sxi
sxj
, dsy =

syi
syj

(2)

These terms are visualized in Fig. 3 for clarity.
By introducing the switch variable for each node, our

model represents a large number of holistic object and body
parts combinations that are suitable for different detectabil-
ity patterns. The intuition for having the switch variables is
as follows. For example, in some cases, it is hard to find the
body parts of an object, and a model for the holistic object
works better than a model with body parts. This case typ-
ically happens for objects with low resolution, where it is
hard to detect the body parts due to the lack of appearance
information. Or, often it is hard to model the appearance of
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Figure 3. The deformation and scale features used in our model.

a highly deformed object. However, the body parts might
be detected reliably. Thus, models that only capture the re-
lationship between the body parts and do not rely on the
holistic object are more suitable. Additionally, models that
switch off a subset of body parts are suitable to detect par-
tially occluded objects.

3.1. Inference

To detect the optimal configuration for each object, we
search for the configurations of the random variables z that
maximize our score function z∗ = argmaxz F (z). The
output configuration z∗ = (p∗, s∗, γ∗) indicates whether
the body parts or the holistic object are detected and speci-
fies their corresponding positions and scales. Score F (z∗)
is used as a measure of confidence for the detected object.

Note that our model is loopy and the space of possible
positions and scales for each node is large. Therefore, we
adopt a procedure that results in an approximate solution
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and performs reasonably well for this problem.
We use the appearance term φ to reduce the search space

of positions and scales. In particular, for each node, we
set a threshold on its appearance term φ and perform spa-
tial non-maximum suppression to select a limited number
of hypotheses for that node. Similarly, [16] used a cascaded
method to generate part hypotheses for human pose estima-
tion. The thresholding might hurt their approach because if
a part is missed as the result of thresholding, it will not be
possible to recover it in later stages. In contrast, our model
allows parts to be switched off and thus is robust to missing
parts, and a limited number of strong hypotheses is suffi-
cient for our model.

Although the number of possible state configurations
grows exponentially with the number of nodes in the graph,
the number of body parts is small in our case (e.g., head,
torso, and legs). In our experiments, the number of hy-
potheses for each node is typically around 15 per image.
Therefore, we need to evaluate at most a few thousands of
configurations for each image, which is certainly feasible by
exhaustive search. Note that the nodes are shared between
different detectability patterns so we do not need to perform
inference separately for each pattern.

3.2. Learning

To learn the parameters of the model, we adopt a super-
vised approach, which requires bounding box annotations
for the holistic object as well as body parts of the object.

During training, we can determine the positions and
scales for each node in our model given the ground truth
annotations. However, it is difficult to decide whether a
node should be switched off or not. The reason is that in
our model a node is switched off because it is hard to be
detected, which cannot be decided according to the annota-
tions. Note that if a node is not detected, it does not simply
mean that the node is invisible or occluded. For example,
the holistic body of a highly deformed cat is certainly visi-
ble, but is usually hard to detect and we would rather switch
it off. Hence, we propose a procedure to assign values to
the switch variables γ for each positive training example.

We independently train the appearance models (φ in
Equation 1) for each node and use their activations to decide
whether a body part or holistic object should be switched
off or not for a particular training example. Specifically, for
node i, we set a threshold on its unary term φi, and if it is
not “detected”, we label it as switched off in our model, i.e.
γi = 0. We consider a part or holistic object as “detected”
if there is at least one corresponding activation that has at
least 40% bounding box overlap with it. We use intersection
over union (IOU) as the metric of overlap. The thresholds
are chosen to ensure that there are few false negatives and a
limited number of false positives.

In this way, we determine the label z for each positive

training example. Note that our model (Equation 1) is linear
in the parameter β = [w, b], so we use a linear max-margin
learning framework to learn the parameters:

min
β,ξ

1

2
‖β‖2 + C

∑
i

ξi

s.t. β ·Φi(z) ≥ 1− ξi,∀i ∈ pos
β ·Φi(z) ≤ −1 + ξi,∀i ∈ neg

where Φi(.) is a sparse feature vector representing the i-th
example and is the concatenation of the appearance, bias,
and spatial and scale consistency terms. The above con-
straints encourage positive examples to be scored higher
than 1 (the margin) and the negative examples, which we
mine from the negative images using the inference method
above, lower than -1. The objective function penalizes vio-
lations using slack variables ξi.

3.3. Post Processing

We post-process our results to generate a bounding box
for detections whose holistic object node is switched off.
Also, we remove multiple detections by a novel part-based
non-maximum suppression to get the final output.
Bounding Box Generation: For instances with the holis-
tic object detected, we simply use the bounding box for the
holistic object hypothesis as the detection output. For other
instances, we use the configuration of their body parts to
generate a bounding box for them (since there is no bound-
ing box associated to the holistic object). For this purpose,
we learn a mapping function from the bounding boxes of
body parts to the upper-left (x1, y1) and lower-right (x2, y2)
corners of the holistic object bounding box.

More specifically, for configurations with n body parts
switched on, the object bounding box generation is per-
formed based on the 4n-dimensional vector g(z), which
contains the locations of the upper-left and lower-right cor-
ners of the part boxes. We use the annotated holistic ob-
ject and body part bounding boxes to learn a linear function
for estimating [x1, y1, x2, y2] from g(z). This is done effi-
ciently via least-squares regression, independently for each
detectability pattern.
Part-based Non-Maximum suppression: Using the infer-
ence procedure described above, a single holistic object or
body part hypothesis can be used multiple times in different
detections. This may produce duplicate detections for the
same object. We design a greedy part-based non-maximum
suppression to prevent this. There is a score associated to
each detection. We sort the detections by their score and
start from the highest scoring detection and remove the ones
whose holistic object or parts hypotheses are shared with
any previously selected detection. After this step, we gen-
erate the object bounding box using the above procedure to
get the final results.
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Figure 4. Example annotations of the dataset. The dataset pro-
vides segmentation masks for each body part of the object, but we
use the bounding boxes around the masks of head, torso and legs
(as shown in the cow image) for training and evaluation.

4. Experimental Evaluation

This section describes our experimental setup, presents
a comparative performance evaluation of the proposed
method and shows the results of various diagnostic exper-
iments. We report results for the six animal categories in
PASCAL VOC 2010 dataset [7]. The considered categories
are highly deformable and appear at various scales with dif-
ferent degrees of occlusion. So they serve a suitable testbed
for our model. For all of the experiments in the paper, we
use trainval subset of PASCAL VOC 2010 detection for
training and the test subset for testing and evaluation.
Dataset. We augment PASCAL 2010 dataset with body
part annotations as our model is based on body parts. For
this purpose, we labeled detailed segmentation masks and
bounding boxes of body parts. Figure 4 shows the anno-
tations for some example instances. We note that this is a
different annotation than that used in [1, 23]. In our experi-
ments, we use the bounding box of the body parts and holis-
tic object for training and evaluation (and not the masks).

4.1. Implementation detail

In our experiments, the nodes of our graphical model
correspond to the holistic object, head, torso and legs. Note,
however, that our method is not restricted to the types of
parts used in this paper and can be easily generalized to
other categories and parts.

Bird Cat Cow Dog Horse Sheep mAP
Ours w. segDPM 26.7 52.4 36.2 42.7 53.0 37.4 41.4
Ours w. DPM 15.6 37.3 30.3 31.3 49.0 30.1 32.3
Ours w/o holistic 11.0 35.7 25.3 27.2 40.7 23.9 27.3

DPM [9] 11.0 23.6 23.2 20.5 42.5 29.0 25.0
Poselets [2] 8.5 22.2 20.6 18.5 48.2 28.0 24.3
Sup-DPM [1] 11.3 27.2 25.8 23.7 46.1 28.0 27.0
M-Comp [14] 18.1 45.4 23.4 35.2 40.7 34.6 32.9
DisPM [19] - 45.3 - 36.8 - - -
segDPM [12] 25.3 48.8 30.4 37.7 46.0 35.7 37.3

Table 1. Average precision for detection of animals of PASCAL
VOC 2010. The best results are obtained by our method using
segDPM for the holistic object and DPM for the body parts. Also
note that our method outperforms DPM, and Sup-DPM, even if we
use only the body parts (the third row).

Our method uses separately trained unary appearance
models to prune out the search space and also to infer the
switch variables for each positive training example. Un-
less stated otherwise, we use DPM (voc-release5) as a
classifier to obtain the appearance term for our model. De-
formable HOG templates seem more robust than rigid HOG
templates for representing parts. We use the sigmoid func-
tion σ(x) = 1

1+exp(−1.5x) to renormalize the unary scores.
We adopt the code of LIBLINEAR [8] to learn our model

parameters. We setC = 1 in all of our experiments. The in-
ference takes around 16 seconds for PASCAL images using
a single 2.2 GHz CPU.

4.2. Comparison with other methods

Table 1 shows the results of our model with and with-
out the holistic object node. We also provide a comparison
with the DPM [9] and strongly supervised methods such as
Poselets [2], [1], [19], and [14]. These methods also use ad-
ditional annotations such as keypoints, bounding boxes for
semantic regions or segmentation masks. In the table, we
show the results of our method using two different classi-
fiers ([9] and [12]) for obtaining the unary appearance terms
for the holistic object node.

As shown in the table, our model without the holistic
object node already achieves competitive results. Adding
the holistic object node further boosts the performance to
32.3% AP, which is 7.3% AP higher than DPM perfor-
mance. In addition, we provide richer description for ob-
jects since we output a bounding box for body parts as well.
Figure 5 shows examples of our object detection results, and
also some typical examples that are correctly localized by
our method but missed by DPM.

Our model with segDPM unary for the holistic object
clearly outperforms all of the previous methods by a large
margin and provides 4.1% AP improvement over the state-
of-the-art [12]. The high performance of our method is not
only due to using a strong unary term as we outperform
the unary alone by a large margin. Since segDPM [12] is
not designed for object parts, we use it only for the holis-
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Bird Cat Cow Dog Horse Sheep mAP
NSO (w/o holistic) 0.4 21.0 8.1 22.4 26.6 14.0 15.4
NSO 0.6 20.8 8.8 24.4 28.3 16.7 16.6
Ours w. DPM 15.6 37.3 30.3 31.3 49.0 30.1 32.3

Table 2. Average precision for detection of animals of PASCAL
VOC 2010, when we enforce all the nodes to be switched on. Per-
formance degrades drastically if the nodes cannot be switched off.
NSO stands for No Switch Off.

tic object node. Our model with DPM unary is on par with
[14]. Nevertheless, in terms of memory and computation,
our method is about an order of magnitude more efficient
since [14] relies on the output of a segmentation method,
and uses multiple features, spatial pyramids and kernels.
Our model is much simpler as it uses only HOG feature
and a few linear classifiers.

4.3. Diagnostic Experiments

We proposed a flexible model to better handle large de-
formations, occlusions and low resolution. Also, our model
is able to provide a richer description than bounding box for
objects. In this section, we perform a set of experiments to
support these claims.

4.3.1 Importance of switch variables

Our model allows some of the nodes to be switched off.
We perform an additional experiment to show that this is
critical for high performance. We enforce every node in
our model to be switched on and perform experiments both
with and without the holistic object node. Table 2 shows
the performance degrades drastically if the nodes cannot be
switched off, which confirms that adaptively switching off
some of the nodes in the model is important.

4.3.2 Small scale objects

In this experiment we show that the holistic-only detectabil-
ity pattern (where all body parts are switched off) better cap-
tures objects at low resolution (i.e. small objects).

We set a threshold to get a high recall and divide the re-
called instances of each object category into multiple size
classes. We follow the same division as Hoiem et al. [15],
where each instance is assigned to a size category, depend-
ing on its percentile size: extra-small (XS: bottom 10%);
small (S: next 20%); medium (M: next 40%); large (L: next
20%); extra-large (XL: next 10%). We then compute what
percentage of each size class has been inferred as holistic-
only detectability pattern.

As shown in Table 3, the holistic-only detectability pat-
tern has the highest rate for the instances of the extra-small
class and it describes fewer instances of the other sizes. This
follows our argument that typically it is hard to detect body
parts for tiny objects, and a model without body parts seems

XS S M L XL
Bird 66.7% 38.0% 24.0% 29.3% 21.7%
Cat 22.2% 3.9% 3.9% 1.7% 1.1%
Cow 66.7% 29.1% 15.6% 12.7% 28.6%
Dog 27.8% 7.8% 8.7% 6.0% 4.6%
Horse 52.2% 18.1% 11.7% 13.8% 19.1%
Sheep 52.5% 22.0% 11.6% 14.6% 12.2%

Table 3. Percentage of instances described by the holistic-only de-
tectability pattern. We divide the instances of a category into 5
size classes and show the ratio of instances of each class that are
inferred as holistic-only detectability pattern. The holistic-only
detectability pattern is more effective for the XS class.

more suitable for the instances of low resolution. This is
also observed by [18] for the task of pedestrian detection.

4.3.3 Part localization

Our method can localize object parts and provides a richer
description of objects. We adopt the widely used measure
of PCP (Percentage of Correctly estimated body Parts) [10]
to evaluate the object parts localized by our method. Fol-
lowing [25], for each ground truth object, we consider the
detection with the highest score that has more than 50%
overlap with its bounding box. This factors out the effect
of the detection. A part is considered as correctly localized
if it has more than 40% overlap with the ground truth anno-
tation. Table 4 shows PCP for parts used in our experiments.
Our model outputs fairly precise locations for body parts.

Since our part detection does not always activate for ev-
ery detected object, we also show the Percentage of Objects
with the Part estimated (POP) in Table 4, where we show
the percentage of objects that have a detection for a certain
part type. We can see some interesting patterns for differ-
ent kinds of animals. As expected, head and torso are used
more often than legs, which is probably because legs are
prone to be truncated or occluded and are sometimes tiny
(e.g. bird’s legs). Head is used very often for cat and dog,
while for bird and sheep, torso seems more reliable. The
reason is probably that head is a distinctive part for cat and
dog as it is observed by [19], but for bird and sheep, it is
often too small.

5. Conclusion
In this paper, we propose a new part-based model to

better detect and describe objects. Our model allows each
body part or the the holistic object node to be switched
off to better handle highly deformed, occluded or low
resolution objects. To detect objects we perform inference
on a loopy graph that directly models the spatial and scale
relationships between all pairs of body parts and the holistic
object. We compare our method with other strongly su-
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Figure 5. Our method provides a richer representation for the deformable objects and improves detection results on difficult examples. The
red, green and blue boxes correspond to head, torso and legs, respectively. The holistic object boxes are shown in yellow, and the cyan
boxes correspond to the generated holistic object bounding box (note that we should generate a bounding box for patterns whose holistic
object node is switched off). In the dashed box, we also show examples of animals correctly localized by our method but missed by DPM.
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Head Torso Legs
Bird 27.0 / 61.8 62.9 / 83.2 2.4 / 18.2
Cat 73.5 / 77.3 67.1 / 71.4 18.5 / 28.1
Cow 36.1 / 88.9 64.2 / 89.2 19.7 / 92.6
Dog 67.7 / 75.0 51.7 / 57.9 29.7 / 44.9
Horse 52.0 / 66.8 71.2 / 92.5 37.7 / 82.5
Sheep 24.9 / 70.6 79.2 / 88.6 16.1 / 80.3

Table 4. Part localization performance on PASCAL VOC 2010.
Reported numbers are POP / PCP, where POP stands for Percent-
age of Objects with the Part estimated, and PCP stands for Per-
centage of Correctly estimated body Parts (see text for details).

pervised methods and also the state-of-the-art on PASCAL
VOC 2010 dataset and show a 4.1% AP improvement over
the state-of-the-art [12] for animal categories. We also
outperform DPM [9] and Sup-DPM [1] even if we simplify
our model by using only the body parts (i.e. no holistic
model). We also show that our model localizes the body
parts fairly reliably. To train and evaluate our model, we
provide detailed mask annotations for body parts of the
six animal categories on PASCAL VOC 2010. performed
on the animal subset of the PASCAL VOC dataset, the
method is general enough to be applied to the other object
categories.
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