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Abstract

We present a method for finding correspondence between
3D models. From an initial set of feature correspondences,
our method uses a fast voting scheme to separate the in-
liers from the outliers. The novelty of our method lies in
the use of a combination of local and global constraints to
determine if a vote should be cast. On a local scale, we use
simple, low-level geometric invariants. On a global scale,
we apply covariant constraints for finding compatible cor-
respondences. We guide the sampling for collecting voters
by downward dependencies on previous voting stages. All
of this together results in an accurate matching procedure.
We evaluate our algorithm by controlled and comparative
testing on different datasets, giving superior performance
compared to state of the art methods. In a final experiment,
we apply our method for 3D object detection, showing po-
tential use of our method within higher-level vision.

1. Introduction
Consider the problem of matching two 3D point models

M⊂ R3 andM′ ⊂ R3. For any point p ∈M, the aim is to
find the matching point p′ ∈M′, if such a point exists. The
result of this assignment is a correspondence. When the
full set of possible correspondences has been established,
we say thatM has been brought into correspondence with
M′. This represents a fundamental problem in computer
vision and appears in e.g. object detection.

During local point matching or registration [3], point as-
signments are made by spatial proximity of p and p′. Corre-
spondences are progressively built by estimation of the rel-
ative transformation betweenM andM′, followed by a re-
assignment. In this paper, the focus is on free-form match-
ing problems, where no prior assumption can be made on
the proximity of the models. To address this problem, lo-
cal invariant features have been used extensively, both in
images and in 3D [2, 8, 11, 14, 15, 23]. In many practical
scenarios, and especially in free-form matching problems,
M and M′ can be noisy and incomplete. In addition to
this, either of the models can contain a significant amount

M M′ M M′
Figure 1: Matching results between a complete 3D model
M and a captured scene M′ with cluttering objects and
77 % occlusion ofM, taken from the dataset of [15]. Left:
the 1 % highest ranked correspondences obtained by Lowe’s
ratio criterion. Right: the 1 % highest ranked correspon-
dences after applying the proposed voting method.

of irrelevant data, or clutter. In Fig. 1, we show an exam-
ple of such a scenario, in whichM′ has been captured by
a sensor. Although shape features can provide many good
matches, one must expect a high amount of outliers due to
repetitive structures, noise, clutter and occlusions.

Our contribution is a method for finding correct corre-
spondences within a set of initial or putative feature corre-
spondences between two 3D models, corrupted by incorrect
matches. Our method employs a two-stage voting proce-
dure for estimating the likelihood of a correspondence be-
ing correct based on different pairwise constraints. At the
first stage, we use a low-level invariant distance constraint
imposed on the local neighborhood of each correspondence.
At the second stage, we use the highest ranked correspon-
dences of the first stage and enforce a covariant pairwise
constraint. The first stage exploits the local dependency of
correspondences. The second stage provides more indepen-
dent observations and utilizes the fact that correct pose hy-
potheses are stable on a global scale. Our method efficiently
finds correct correspondences, while rejecting outliers, giv-
ing an increase in matching precision. A visualization of
the two constraint types is shown in Fig. 2 on the following
page.

This paper is structured as follows. Related methods are
outlined in Sect. 2. Our method is presented in Sect. 3, and
in Sect. 4 we provide experimental results. Finally, we draw
conclusions and outline directions for future work in Sect. 5.
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Figure 2: Schematics of the entities involved in local (left) and global (right) voting. Left: local voters are collected in the
spherical neighborhood of a correspondence (dark yellow circle). The invariant pairwise compatibility υL is the minimum
ratio of the light red distances. Right: global voters, from which c2 is sampled, are located arbitrarily (dark yellow). The
hypothesized transformation T (solid arrow) gives in this case an inaccurate alignment (dashed arrow) of p2 (light yellow).
The covariant compatibility υG uses the dark red distance between the hypothesized point and the assigned point p′2.

2. Related work

Finding correspondences by voting processes has been
subject to extensive investigation in the image domain. For
completeness, we therefore start by outlining image-based
correspondence finding methods, before describing the 3D
methods used in our comparisons.

In [12, 24], the correspondence problem between sparse
sets of image features is cast to a graph matching problem.
The former recovers the inliers through spectral analysis of
the affinity matrix of the feature matches. The latter finds
a solution by minimization of an objective function, taking
into account both the appearance and spatial arrangement
of feature points. Common to graph matching methods is
a high degree of flexibility, allowing for non-rigid match-
ing. However, the high computational complexity makes
these methods infeasible for dense matching problems with
a high cardinality (several thousand features). Additionally,
the results reported in [12, 24] require very high inlier rates
from the feature matches, which cannot be assumed for our
application, as shown in Sect. 4.

The pyramid match kernel [9] uses a fine to coarse
matching strategy between sets of discriminative image fea-
tures to achieve both robustness and discriminative power.
Feature sets of unequal cardinality are allowed for, but ac-
curacy is only justified for very sparse data (between 5 and
100 image features). In Hough pyramid matching (HPM)
[22], local covariant image feature correspondences are cast
to a tessellated transformation space. Correspondences are
afterwards rejected by pyramid matching. The Hough vot-
ing and Inverted Voting (HVIV) [5] also uses covariant im-
age features for casting votes, but preserves spatial locality
of features before casting votes to arrive at accurate kernel
densities. An additional inversion step propagates transfor-
mations on a local scale, by which an increased recall is
achieved.

Lowe [14] investigated the use of a simple, yet efficient
method for selecting good SIFT feature correspondences.

The method assigns a penalty equal to the ratio of the clos-
est to the second-closest feature distance. This measure is
intrinsic to the feature space, and is immediately applicable
to arbitrary feature types. On the other hand, only unique-
ness is guaranteed, not necessarily discriminative power.
Empirical data based on a large number of matched fea-
tures suggest that this measure provides good separation of
inliers and outliers. Even though the method has been used
for image feature matches, it can be readily applied in 3D.

The geometric consistency (GC) framework groups 3D
correspondences into disjoint clusters, favoring correspon-
dences likely to produce good transformation hypotheses.
Initial work was done by Johnson and Hebert [10, 11],
where two oriented point pairs are grouped if they satisfy
two geometric constraints. Firstly, the relative cylindrical
coordinates of the point pair in first model must be compat-
ible. Secondly, the method favors point pairs which have
a large relative Euclidean distance, since this increases ro-
bustness of the subsequent transformation estimation step.
Chen and Bhanu [4] relaxed the geometric constraints to
only include a term which favors point pairs having similar
distances. The omittance of orientation information in the
grouping procedure increases robustness towards noise. Al-
doma et al. [1] further robustified this method by applying
a subsequent RANSAC [7] step to remove spurious corre-
spondences from each cluster. The GC methods apply con-
straints that are extrinsic to the feature space by using point
entities pertaining to R3.

The method presented in this paper uses Lowe’s feature
distance ratio for initialization. At the first voting stage, we
use a constraint based on Euclidean distance ratios, as op-
posed to the absolute distances used by the GC methods.
In the second and final voting stage, we use covariant con-
straints similar to HPM and HVIV, but adapted to SE(3).
Unlike other methods, our method combines different con-
straints, both on a local and global scale, and uses a voting
mechanism with downward dependencies.



3. Proposed method
In this section, we describe our correspondence voting

method. We start by introducing some terminology below,
before describing our method in detail. To ease the read-
ability of the following sections, we will refer toM as the
object andM′ as the scene.

3.1. Terminology

In the following, a correspondence c between the ob-
ject and scene modelsM andM′ is parameterized by two
matched points p ∈ M, p′ ∈ M′ and a real-valued match-
ing score s:

c = (p, p′, s) (1)

Denote the feature space associated withM andM′ as F
and F ′, respectively. A feature is computed for each point,
i.e. the feature sets are equivalent to the model point sets and
have the same order. A feature-based correspondence is ob-
tained by matching an invariant feature vector f ∈ F with
the nearest matching feature f ′ ∈ F ′. Denote the general
n-dimensional Euclidean L2 distance metric as d:

d(a, b) := ‖a− b‖L2 a, b ∈ Rn (2)

Associating a score to the feature match can now be done
by the negative of the matching distance:

sF (c) := −d(f, f ′) (3)

The set of all correspondences is denoted C =M×M′×R.
For free-form correspondence matching problems, there ex-
ists a unique subset of correct correspondences that brings
M into correspondence withM′:

CCorrect ⊂ C (4)

which represents the objective of the matching process.
In the case of occlusions (as in Fig. 1), some points do

not have a correspondence, and the scene M′ contains an
incomplete instance of M. However, when performing
dense feature matching—as we do in this work—all fea-
tures inM will be assigned a putative feature match inM′
by the feature matching process. We denote this initial set
CF ⊂ C, and this serves as the input to our method. The
problem is now to find the correspondences in CF that are
also part of CCorrect (the inliers), while rejecting those that
are not (the outliers). This makes the problem of finding
correspondence a binary classification problem.

The recall of a matching method is defined as the ratio of
correctly accepted correspondences to the number of inliers
in CF . The precision of a method is the ratio of correctly
accepted correspondences to the total number of accepted
correspondences. The initial inlier fraction in CF is thus
the precision of the feature matching. An accurate match-
ing method should therefore accept as many of the inliers as
possible, while rejecting as many outliers as possible, giv-
ing an increase in precision.

3.2. Overview

The basic assumption behind our approach is that within
the complete set of input feature correspondences CF , the
inliers should systematically satisfy certain geometric con-
straints, while the outliers should only do so randomly. We
enforce these constraints in a voting framework where each
correspondence is paired with a number of voter correspon-
dences. Each positive vote increases the likelihood or rank-
ing score of a correspondence. We bootstrap the process by
an initialization step based on the feature distance ratio, and
then perform two voting stages. At the first stage, we use
invariant distance constraints on a local scale by collecting
voters in the immediate neighborhood of each correspon-
dence. The fraction of positive votes gives a crude ranking
of each correspondence. In the second voting stage, we find
voters on a global scale, based on the first stage ranks, and
enforce a covariant constraint. We introduce an additional
dependency between the stages by accumulating all votes.

3.3. Initialization

Our method requires an initial ranking of the input corre-
spondences. We start by ranking all input correspondences
by the feature distance ratio, which has proven more dis-
criminative than the closest feature distance. Lowe’s ratio
penalizes correspondences by the ratio of the closest to the
second-closest matching feature distance. Since d is a met-
ric, this ratio will always lie in the interval [0, 1], and we can
define the ranking score of a feature correspondence as:

sRatio(c) := 1− d(f, f ′1)

d(f, f ′2)
(5)

where f ′1 and f ′2 are used for denoting the closest and
second-closest feature match of f , respectively. The ratio
method then performs hard thresholding as follows:

CRatio = {c ∈ CF : sRatio(c) ≥ tRatio} (6)

In the original work, an upper threshold for the penalty of
0.8 was determined using empirical data, giving a lower
threshold on the score of tRatio = 0.2.

3.4. First voting stage: local invariants

At the first voting stage, we locate the κ-nearest Eu-
clidean neighbors N of each correspondence on the object.
For each correspondence c, we thus get a subsetN (c) ⊂ CF
with |N (c)| = κ. The number of neighbors κ is a free pa-
rameter of our method, and specifies the sample size. We
can now collect local voters CL as the subset of neighbors
that satisfy the ratio threshold (6):

CL(c) = {N (c) ∩ CRatio} (7)

We pair the correspondence with each voter neighbor and
measure their compatibility υL by the minimum ratio of



Euclidean distances between the object points and the cor-
responding scene points (see Fig. 2, left):

υL(c1, c2) := min

(
d(p1, p2)

d(p′1, p
′
2)
,
d(p′1, p

′
2)

d(p1, p2)

)
(8)

where the minimum of the two possible ratios is taken to
get a result in [0, 1]. By using a relative distance ratio in υL,
the compatibility function becomes invariant to the absolute
sizes of the involved distance pairs.

The set of positive local votes ΥL is the subset of local
voters with a high compatibility:

ΥL(c) = {cL ∈ CL(c) : υL(c, cL) > ς} (9)

where ς ∈ [0, 1[ is the lower similarity and is the second free
parameter of our method. Larger values make the method
more restrictive (giving fewer votes), but this also requires a
more accurate representation of the surfaces to be reliable.

Finally, the likelihood, or estimated local score, sL, giv-
ing evidence of a correspondence under the local constraint,
is calculated as the ratio of votes to the number of voters:

sL(c) =
|ΥL(c)|
|CL(c)|

(10)

It is worth noting that the local voter collection process
(7) in some cases returns very small (� κ) or even empty
sets, depending on how many neighbor features pass the
ratio test. Although this rarely happens in our experience,
we must handle this by setting sL = 0 in the case of an
empty set. The second voting stage explicitly handles the
case of small voter sets by accumulating votes, as described
in the following.

3.5. Second voting stage: covariant surface points

As previously mentioned, the first voting stage produces
a crude estimate of each correspondence being correct us-
ing local neighbors inM. This is justified by other studies,
which have verified that correspondences exhibit local de-
pendencies [5, 25], meaning that correct correspondences
often occur together. However, this also implies that inliers
occurring near outliers passing the ratio test will get a low
local score. We address this issue by introducing a second
voting stage where the κ globally highest ranked correspon-
dences of the first stage are used.

We start by reordering CF according to (10) to get a
monotonically decreasing sequence in sL, denoted CsL . We
take out the κ top ranked correspondences, and arrive at a
set of feasible voter correspondences for use in the global
stage:

CG = {ci ∈ CsL}κi=1 (11)

Since sampling is now based on sL, the voters are collected
globally onM. We have also tested using a different num-
ber of global voters than κ at this stage, but found that best

performance was achieved by reusing κ. Unlike the local
stage, all correspondences share the same voters, and we al-
ways have |CG| = κ. We now compute a hypothesis trans-
formation T ∈ SE(3) for each input correspondence in CF
using the reference frame (RF) associated to each feature
point:

T (c) = T (p′)−1 · T (p) (12)

The use of RFs is common in images [2, 13, 14, 20], where
the local RF consists of a pixel position, an orientation angle
and a scale. Recently, methods for finding repeatable RFs
for 3D shape features have emerged [15, 23], and we require
this information to be available.

The transformation T gives a hypothesis pose for bring-
ingM into correspondence withM′. Two correspondences
c1 and c2 are compatible if c2 covaries with the transforma-
tion hypothesized by c1. We thus arrive at the following
global compatibility function υG (see Fig. 2, right):

υG(c1, c2) := d (T (c1) · p2, p′2) (13)

We now find global votes ΥG by applying both the local
and the global constraint to the global voters CG:

ΥG(c) = {cG ∈ CG : υL(c, cG) > ς ∧ υG(c, cG) < δ}
(14)

where δ is a Euclidean distance tolerance. To compensate
for noise and inaccuracies in the RF rotation estimation, we
set this tolerance to five times the point cloud resolution. If
the resolution is not known a priori, it is estimated as the
median distance between any model point and its nearest
Euclidean neighbor. The local constraint υL is enforced on
the global voters for two reasons. Firstly, the distance ratio
constraint should be satisfied for rigid objects, no matter if
correspondences are paired locally or globally. Secondly,
υL is computationally cheap, and thus serves as a prerejec-
tion step to the more expensive υG.

We integrate all votes and arrive at the final score func-
tion s as the likelihood computed by accumulating both lo-
cal and global votes:

s(c) =
|ΥL(c)|+ |ΥG(c)|
|CL(c)|+ |CG(c)|

(15)

which also makes it clear how small local voter sets is han-
dled: smaller number of local voters gives higher relative
importance to the global voters, which is a desirable effect
as it reduces the bias from the small local sample size. We
stress that in both stages the computed likelihoods have a
downward dependency on the previous stage, introduced by
the voter selection processes (7) and (11). This guided sam-
pling increases precision, as we will demonstrate in Sect. 4.

3.6. Thresholding

Here we shortly describe how we perform the final
thresholding to separate the inliers from the outliers based
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Figure 3: Original version of the Stanford Bunny model
(leftmost) and three of the test models used in the controlled
experiment, color rendered by depth value.

on the computed scores. The function s(c) is real-valued,
so the problem is now to calculate a decision threshold
t ∈ [0, 1], based on some optimality criterion.

To address this, we apply a well-known method from the
image processing domain, namely Otsu’s adaptive thresh-
olding method [18], which is non-parametric and finds the
optimal decision threshold in a sampled univariate distri-
bution under the assumption of bimodality. The method
estimates the probability density function of the data by a
histogram, and then exhaustively searches for the threshold
which maximizes the between-class variance. In Sect. 4 we
give experimental justification for the use of this method.

3.7. Computational considerations and complexity

We end the description of our approach by considering
its time complexity. The feature estimation process requires
local neighbors, and it is often possible to reuse these point
neighbors at the local stage of our method. If not, neighbors
can be found in logarithmic time by spatial indexing, such
as k-d trees. In all experiments presented below, we have
reused the feature neighbors for collecting local voters.

Since we use a fixed sample size κ, and these are col-
lected on the object, our algorithm is linear in the num-
ber of object points. The three components of our algo-
rithm (initialization, local and global voting) each require
a loop over all input correspondences, where the local and
global stages each have an upper operation count of κ per
correspondence. We thus get a final time complexity of
O(|M|+ κ · |M|+ κ · |M|) = O(|M|).

4. Experiments
We have performed both controlled and comparative ex-

periments to evaluate our method. The standard evaluation
procedure for feature matching is recall vs. 1-precision [16],
and we adopt these measures here. All methods are evalu-
ated by varying the threshold t on the score associated with
the method. In addition, we compute maximum F1 scores,
giving a conservative estimate of the overall accuracy.

With regard to the feature estimation, there are many
variabilities, e.g. support radius, matching distance metric
etc. We found that changing the feature or the radius has
minor impact on relative performances. Like similar stud-
ies in the image domain [9, 22], we use the same feature
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Figure 4: Performance measures for the Bunny experiment
for increasing noise. Left: recall vs. 1-precision curves for
all 15 noise levels (dark red to orange, left to right). Right:
Precision, recall and F1 score at decision threshold, maxi-
mum possible F1 score and inlier fraction.

in all tests, the SHOT feature [23], which can be regarded
as a SIFT-like shape feature. The SHOT features provide
RFs for use in our global voting stage. The radius is set to
0.015 m for a good trade-off between robustness and dis-
crimination. For neighbor search, we use k-d trees [17] to
locate both point and feature neighbors by the L2 metric.

All experiments have been performed in a single-
threaded C++ application using a laptop computer equipped
with a 2.2 GHz processor and 8 GiB memory.

4.1. Controlled experiment

We start with a controlled experiment in order to test the
effect of both noise and parameter changes on our method.
All experiments described here are performed using the full
Stanford Bunny model,1 which contains 35947 vertices. We
use the vertices and normals of the original mesh and add
isotropic Gaussian point noise of increasing standard devi-
ation σ = {0.5, 1.0, . . . , 7.5} mm, before computing fea-
tures. For the high noise values, all local structures are
severely distorted, rendering feature matching very chal-
lenging. See Fig. 3 for an illustration.

The original noise-free model is paired with each of the
15 noisy versions, and we evaluate our method on all 15
shape pairs in order to measure the degradation in perfor-
mance as a result of noise. The results of this experiment
can be seen in Fig. 4, showing both recall vs. 1-precision
curves for each noise level and performance measures at
the decision threshold determined by our method.

The results in Fig. 4 show a close to linear drop in preci-
sion with increasing noise, while achieving an almost con-
stant recall, even though there is a rapid, sublinear drop in
the inlier fraction. The F1 score at the decision threshold t
is close to the optimal value, which indicates good classifi-
cation accuracy of the thresholding method. The matching
destabilizes for σ ≥ 6.0 mm, where the inlier fraction is
close to zero.

We also tested the influence of parameter changes at a

1http://graphics.stanford.edu/data/3Dscanrep

http://graphics.stanford.edu/data/3Dscanrep
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Figure 5: Precision, recall and F1 score at the decision
threshold, maximum possible F1 score and inlier fraction
for a fixed noise level of σ = 2.5 mm. Left: performance
for varying sample counts κ (ς = 0.9). Right: performance
for varying similarity thresholds ς (κ = 250).

fixed noise level of σ = 2.5 mm and performed the match-
ing with a linear change in the sampling size κ and the sim-
ilarity ς while fixing the other parameter. We show the re-
sults in Fig. 5, equivalent to the right part of Fig. 4.

Interestingly, the sample size κ has little influence on the
results, whereas the similarity ς is more crucial to perfor-
mance. The leftmost plot shows the convergent state of the
algorithm for high sample sizes, which we have verified by
testing even larger sample sizes. The interpretation of the
rightmost plot in Fig. 5 is that ς represents a trade-off be-
tween precision and recall. When this value is set high,
the method becomes more selective, leading to fewer votes
for all correspondences. This gives an increased precision,
since the few accepted correspondences are more reliable,
but at the expense of recall. Both plots confirm the accuracy
of the thresholding method; indeed the F1 scores at the all
decision thresholds are very close to the optimal value.

Based on these results, we use κ = 250 and ς = 0.9
for a good trade-off between speed and accuracy in all the
following experiments.

4.2. Comparative experiments

In this section, we present comparative experiments car-
ried out on two different datasets. The methods used in the
comparison are shortly described below.

L2 distance: The baseline feature distance ranking sim-
ply uses the negative of the L2 feature distance (3) for rank-
ing correspondences. As noted before, this method is ex-
pected to be highly sensitive to e.g. repetitive structures.

Ratio: The ratio method [14] ranks each correspondence
by the negative of Lowe’s ratio penalty (5). Non-unique
feature matches are now removed, but correctness of the
remaining matches is not guaranteed.

Geometric consistency: The GC method [4] clusters cor-
respondences by imposing an absolute pairwise distance

constraint equal to the Euclidean distance between the fea-
ture points. The algorithm initializes a cluster with a seed
correspondence and adds all correspondences that are com-
patible with the seed to the cluster. The clustered corre-
spondences are then marked as visited, and the seed grow-
ing repeats until all correspondences have been visited. As
an additional step, [1] applies RANSAC to each cluster to
remove spurious correspondences for increased precision.

For our evaluations, we must apply a proper ranking to
the correspondences output by GC. We found that the rel-
ative size of the containing cluster to the total input size
performs better than e.g. the ratio or the RMSE reported
by RANSAC. This is intuitive since the cluster size can be
seen as an estimate of the inlier fraction, conditioned that a
cluster contains inliers.

4.2.1 Results

We run comparative tests on two datasets, both synthetic
and real. The first dataset of Tombari et al. [23] consists
of 45 synthetic scenes containing between three and five in-
stances of the Stanford models Armadillo, Asian Dragon,
Bunny, Dragon, Happy Buddha and Thai Statue. All scenes
are contaminated by isotropic Gaussian noise of 10 % of
the spatial resolution, followed by a downsampling to half
resolution. The protocol for this dataset is to sample 1000
keypoints per object, which allows us to also test the influ-
ence of sparse feature matching on our method. The sec-
ond dataset by Mian et al. [15] contains four complete 3D
models (Chef, Para, T-rex and Chicken) and 50 real scenes
captured with a laser scanner (see Fig. 1). Prior to fea-
ture extraction, all models in the laser scanner dataset are
downsampled to 2 mm, followed by surface normal estima-
tion [21]. For all tests, we extract SHOT features and find
ground truth inliers using the ground truth poses provided
by the datasets, by requiring that matched points must be
closer than two resolution units. The mean inlier fraction
over all scenes ranges from 1.7 % (T-rex) to 4.0 % (Chef ),
making the task of finding the inliers very challenging.

Mean recall vs. 1-precision curves for both datasets are
reported in Fig. 6. As expected, the L2 distance matching
shows poor performance. We explain this by the fact that
feature distances are very sensitive to repetitive structures.
The ratio method shows quite good performance for the
synthetic dataset, but quickly degrades to the performance
of the distance matching for the real scenes. Surprisingly,
GC has better overall performance than GC+RANSAC.
However, GC+RANSAC—being more selective—shows a
higher initial precision, making it more suitable for algo-
rithms requiring few inliers, e.g. pose estimation. The pro-
posed method performs significantly better than all other
methods, which we believe comes from the benefit of using
different kinds of pairwise geometric constraints.
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Figure 6: Overall results for the synthetic feature matching
benchmark (left) and the real laser scanner dataset (right).

Additional performance measures are reported in Tab. 1.
The feature distance is the baseline required for all meth-
ods, and marks the temporal starting point. Since the ratio
score only involves a floating point division followed by a
subtraction, it is very fast. Compared to the GC methods,
our method provides several magnitudes of speedup.

Object Method Max F1 Run time [s]

Chef L2 distance 0.13 -
(28940) Ratio 0.22 0.012

GC 0.67 1.7
GC+RANSAC 0.64 1.9
Voting 0.85 0.33

Para L2 distance 0.11 -
(16732) Ratio 0.15 0.0058

GC 0.57 0.64
GC+RANSAC 0.54 0.77
Voting 0.71 0.16

T-rex L2 distance 0.10 -
(15851) Ratio 0.11 0.0051

GC 0.56 0.56
GC+RANSAC 0.47 0.65
Voting 0.78 0.13

Chicken L2 distance 0.14 -
(12324) Ratio 0.18 0.0039

GC 0.59 0.35
GC+RANSAC 0.56 0.41
Voting 0.80 0.11

Table 1: Performance measures for the laser scanner
dataset. The number below each object is the vertex count.
Maximum F1 scores are computed along the mean curves
in Fig. 6, right. Run times are for full scenes, containing
between approx. 16000 and 23000 vertices.

4.3. Application: object detection

In two final experiments, we demonstrate the power of
our method by applying it for object detection. We embed
our correspondence matching procedure in a naive detection
system as follows. For each object model in the dataset, we
input the full set of calculated scene features and calculate

feature correspondences CF , now with an increased radius
of 0.03 m for better initial feature matching. Calculating
scene features is done once per scene, and takes on aver-
age approx. 1 s. We run our algorithm and take the pose
hypothesis of the single top ranked correspondence in the
output. We run 10 ICP iterations [3] to refine the result and
accept the detection if the aligned object model is covered at
least 5 % by the scene data. We deliberately avoid using so-
phisticated methods for hypothesis segmentation or cross-
verification in order to evaluate the strength of our method
alone.

4.3.1 Results for laser scanner scenes

We applied the detection method to the real laser scanner
dataset, which has been used for object detection compar-
isons in several works. As shown in Tab. 2, even with our
simplistic system, we achieve good detection performance.
Since there are no false positives, precision is 100 % for
all objects. We encourage the reader to compare detection
rates, and especially timings, with state of the art recogni-
tion systems such as [1, 6, 15, 19]. We believe this demon-
strates high potential for the use of our method for higher-
level matching tasks such as object detection.

Object Recall [%] Time [s]

Chef 100 0.39
Para 100 0.20
T-rex 100 0.18
Chicken 90 0.15

Table 2: Detection rates and mean timings for the laser
scanner dataset. Timings include both correspondence vot-
ing and pose refinement.

4.3.2 Qualitative result from real experiment

We finally present a qualitative result from our own experi-
mental setup, consisting of three calibrated stereo cameras.
We project texture to the scene before extracting images and
performing dense stereo matching. The full point cloud of
the scene is obtained by aligning the reconstructed point
clouds from the three views, followed by a 2 mm downsam-
pling. The application is robotic (dis)assembly of three very
similar pegs, which need to be automatically detected. We
perform no scene preprocessing, such as e.g. ground plane
removal, and input the full point cloud when detecting each
object. To allow for multiple instances, we now use the top
100 ranked correspondences per object, and accept the re-
fined pose if it does not overlap with a previous detection
of the same object by more than 10 %. As shown in Fig. 7
on the next page, our method localizes the parts, even when
multiple instances are present. The total detection time for
this scene, including pose refinements, is 1.9 s.



Figure 7: Left: objects (top) and left frame of one of three
texture-projected stereo views used in our setup (bottom).
Right: top 100 ranked correspondences and final detec-
tions within the point cloud for each object (red: round peg,
green: round peg with square handle, blue: square peg).

5. Conclusions and future work

The method described in this paper allows for efficient
and accurate retrieval of correspondences between 3D mod-
els based on putative matches obtained by feature matching.
Evaluated on different datasets, the proposed method gives
an increase in both speed and accuracy by up to several or-
ders of magnitude compared to other methods. We have
justified the use of our method for real-life vision problems
by testing it for object detection, leading to promising re-
sults.

An extension of the method, which we plan to pursue in
the future, is multi-instance correspondence voting includ-
ing several object models. We expect this to achieve sub-
linear runtime increase in the number of models, which is
essential for scalability. By such an extension, we intend to
integrate our method into an object recognition framework,
allowing for efficient detection of multiple 3D objects.
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