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Abstract

Active contour, especially in conjunction with prior-
shape models, has become an important tool in image seg-
mentation. However, most contour methods use shape pri-
ors based on similarity-shape analysis, i.e. analysis that is
invariant to rotation, translation, and scale. In practice, the
training shapes used for prior-shape models may be col-
lected from viewing angles different from those for the test
images and require invariance to a larger class of transfor-
mation. Using an elastic, affine-invariant shape modeling
of planar curves, we propose an active contour algorithm in
which the training and test shapes can be at arbitrary affine
transformations, and the resulting segmentation is robust to
perspective skews. We construct a shape space of affine-
standardized curves and derive a statistical model for cap-
turing class-specific shape variability. The active contour is
then driven by the true gradient of a total energy composed
of a data term, a smoothing term, and an affine-invariant
shape-prior term. This framework is demonstrated using a
number of examples involving the segmentation of occluded
or noisy images of targets subject to perspective skew.

1. Introduction

An object of interest in an image can be characterized
to some extent by the shape of its external boundary. It
is therefore important to develop procedures for boundary
extraction in problems of detection, tracking, and classifi-
cation of objects in images. Active contour algorithms have
become an important tool in image segmentation for object
detection [5, 6]. As segmentation algorithms become more
sophisticated, they are tested in more difficult imaging envi-
ronments of real-world scenarios where images do not have
enough contrast to provide sharp boundaries, there is some
occlusion of the target, or there exists target-like clutter or
noise. Thus, it is of increasing importance that boundary
extraction algorithms make use of prior knowledge about
the expected target class in order to help compensate for
the lack of clear data. This is accomplished by influencing

the contour evolution in part with a shape prior, a statisti-
cal model derived from a set of known training shapes, in a
Bayesian active contour approach [12, 16, 8, 4].

Most of the past Bayesian segmentation methods use a
shape prior designed to be invariant to similarity transfor-
mations of translation, rotation, and global scaling. How-
ever, in situations when the image plane of a camera is
not parallel to the plane containing the defining part of
the shape, perspective effects can transform the observed
shapes in a more complicated manner than what can be
modeled by the similarity group alone. The affine group is
commonly used to approximate such shape deformations,
and thus it is our goal to develop a segmentation algorithm
that uses a shape prior built from affine-invariant shape
statistics. In other words, training and test shapes can be
at random affine transformations from each other and the
segmentation results will be invariant to those transforma-
tions. Thus, our segmentation will be robust not only to
poor image quality but also to perspective skews due to dif-
ferent viewing angles, either in test or training.

1.1. Past Work on Prior-Driven Active Contours

There are two broad categories of active contour meth-
ods: parametric methods that evolve an explicitly defined
parameterized curve, and geometric methods that evolve
implicitly defined zero-level sets of higher-dimensional
functions. Due to the popularity and versatility of geometric
methods, pioneered by the works of [13, 5] among others,
most Bayesian methods have been applied in the geomet-
ric realm and follow the ideas presented in Leventon et al.
[12], which uses PCA of level-set functions to form a shape
prior. Tsai ef al. in [16] incorporate a similar shape prior
in an improved level-set segmentation framework given by
Chan and Vese [6]. Others, e.g. [10], improve on Leven-
ton’s Gaussian shape prior by applying non-parametric den-
sity estimation techniques in IL? space . Yezzi and Soatto in
[18] propose a shape prior based on an average shape that
is invariant to any finite-dimensional group transformation,
which includes the affine group.

There have been a few Bayesian active contour mod-



els that take a parametric approach. One such example,
[9] makes use of “landmark-based” shape analysis [7] to
impose a shape prior based on the statistics of similarity-
invariant point sets. Recent advancements in the modeling
of shapes as continuous curves, given by elastic shape anal-
ysis, e.g. [15], have allowed for more accurate and parsimo-
nious shape models compared to those of [7, 12, 16, 10, 18].
Elastic shape analysis offers the important advantage of si-
multaneous registration and deformation of curves with an
optimal combination of stretching and bending. Joshi et al.
[8] create a shape prior from an intrinsic density on elastic
shape space, but the method uses an older, more computa-
tionally expensive representation. The work of Bryner et
al [4] incorporates recent simplifications for elastic shape
analysis provided in [ 15] for a computational speed-up. The
works of [8] and [4] only formulate an intrinsic similarity-
invariant shape prior rather than allowing for an affine-
invariant, elastic shape model, which has been developed
in [3] and [2].

1.2. Our Approach and Contributions

Our goal is to develop a method for representing, mod-
eling, and incorporating prior information about shapes
of closed curves, invariant to affine transformation and re-
parameterization, in a parametric boundary extraction algo-
rithm. Using the mathematical representation presented in
[3] on affine-invariant elastic shape, we develop an intrin-
sic statistical model on the space of canonical, or affine-
standardized, closed curves that will serve as a shape prior
for the segmentation. Due to elastic matching of curves,
this shape model captures the underlying shape variation of
a shape class more accurately and leads to a more parsi-
monious shape model than its extrinsic counterparts often
used in previous geometric Bayesian contour models. Fur-
thermore, an invariance to affine transformation allows the
model to be robust to perspective skews. With respect to
many state-of-the-art Bayesian contour models that use in-
trinsic shape statistics (e.g. [8, 4]), we make one further key
advancement to their approach aside from our novel, affine-
invariant shape prior term. In our work we compute a true
gradient descent flow for energy minimization [17]; that is,
for each energy functional in the active contour model, we
compute its gradient with respect to the same (IL?) met-
ric. Previous methods tend to mix gradients by computing
the shape prior energy gradient with respect to the intrin-
sic shape metric and the remaining energy gradients with
respect to the L2 metric [8, 4].

In summary, there are three important elements of our
approach in this paper: (1) Bayesian active contours with
elastic shape priors, (2) shape analysis that is invariant to
both the affine and re-parameterization transformations, and
(3) the concept of true gradient. After reviewing the current
literature, we find that (i) while item (1) was introduced in

both [8] and [4], these papers did not have items (2) and
(3); (i) item (2) — elastic, affine-invariant shape analysis
— was introduced in [3] and developed further in [2], but
those papers did not have items (1) or (3); (iii) item (3) was
proposed in [17] but without either (1) or (2). To reiterate,
there is no paper currently in the literature that performs
even two of the three items together, which underlines the
novelty of our approach.

The organization of the rest of the paper is as follows.
Section 2 reviews the affine-invariant, elastic shape anal-
ysis method from [3], and then develops the algorithmic
tools to build intrinsic statistical shape models on the affine
shape space. Section 3 describes the Bayesian active con-
tour model, focusing on computation of the shape prior en-
ergy gradient with respect to the .2 metric. Section 4 shows
a variety of experimental results that showcase the effec-
tiveness of using our affine shape prior with .2 gradient
compared to other methods. Section 5 is the conclusion and
summary of future efforts.

2. Affine-Invariant, Elastic Shape Statistics

Here, we summarize the affine-invariant, elastic shape
analysis method from [3] and then develop the procedures
to form intrinsic statistical models on such a shape space.

2.1. Affine-Invariant, Elastic Shape Analysis

Let 8 € B where B is the set of all closed, parameterized,
absolutely continuous curves. The action of the orientation-
preserving affine group G, = GL, (2) x R? on 3 results in
the orbits [3] = {AB +b|A € GL4(2),b € R?}, where the
group G L (2) represents all matrices in GL(2) with posi-
tive determinant. Let I' be the set of all re-parameterizations
of the form ~ : S — S! such that +y is a diffeomorphism.
We wish to analyze the space of all equivalence classes
B/(G, x T), yet, with respect to the standard .2 metric,
the group G, x I' does not act on 53 by isometries. Thus, it
is not possible to impose a proper distance between equiv-
alence classes and perform affine-invariant shape analysis
of curves with this metric in this representation space. The
solution proposed in [3] is to define a space M /G, with
the following properties: (a) M C B and Gy is a subgroup
of G, x T, (b) there exists a bijection between M /G, and
B/(G4 x T), and (c) Gg acts by isometries on M with re-
spect to the chosen metric. Thus, a proper statistical analy-
sis on M /G| is possible and represents, implicitly, a statis-
tical analysis on B/(G, x I'). The space M /G| is called a
section of affine orbits.

The section is defined in the following manner. Let
Lg = fol |3(t)|dt be the length of the curve 3, where | - |
is Euclidean 2-norm. (Please contrast it from || - || which
is used to denote the L.2-norm of a curve or function.) The
centroid of B is defined as Cy = 1 [ B(t)|B(1)|dt € R2.



The covariance of 3 is defined as X5 = Ll—B fol(ﬁ(t) -

Cp)(B(t) — Cs)T|B(t)|dt € R>*2. It can be shown that
for any 3 € B there exists a canonical, or standard, element
Bo € [B] that satisfies the following three conditions: (1)
Lg, =1,(2) Cg, = 0, and (3) X, o< I. Furthermore, for
any two curves (1) and 3(®) within an affine transformation
of each other, the corresponding standard elements, Bél)
and 582) , are related by a rotation and a re-parameterization,
ie. Béz) = O(ﬁél) 07), where O € SO(2) and vy € T". If
By is the space of all such affine-standardized curves, then
the quotient space By/(SO(2) x T') satisfies properties (a)
and (b) of a section as defined in the previous paragraph.
Property (c) is not yet satisfied since the group I' does not
act on By by isometries with respect to the IL? metric.

In order to achieve the isometry property (c), we make
the following transformation as given by [15]. Define

q(t) = B(t)/1/|3(t)| as the square-root velocity function
(SRVF) of 5. The action of a v € I on ¢ is given by
(¢,v) = (g o v)v/7, and now the group T acts by isome-
tries on the space of SRVF’s with respect to the .2 met-
ric. Therefore, if Qg is the set of all SRVF’s of By, the
space Qp/(SO(2) x T') is in one-to-one correspondence
with By /(SO(2) x T') and satisfies all three properties of a
section. Furthermore, the paper [15] shows that the .2 met-
ric of SRVF’s is equivalent to the elastic metric of curves.
Hence, an analysis on Qg /(SO(2) x I') is equivalent to that
of an affine-invariant analysis on B/(G, x I'), and it is in
fact an elastic shape analysis framework with respect to the
standard L2 metric. We denote S = Qy/(SO(2) x I) as
affine-invariant, elastic shape space.

Fig. 1 provides an illustration of this affine standardiza-
tion of curves. The image on the left shows four rows of
curves in 3, where objects in each row are within the same
affine orbit, and the image on the right shows the standard-
ized versions in By of each respective curve in the left im-
age. Within each row on the right, the curves are all the
same modulo rotation and re-parameterization.
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Figure 1. Affine standardization example.

2.2. Statistical Modeling

In order to build intrinsic statistical models on S, one
must first develop a set of algorithmic tools that use the
geometry of Qp to compute pertinent statistical quantities.

Bryner et al [3] describe geometry of Q, and we will not
repeat it here. Instead, we discuss the algorithms and sub-
routines necessary to compute an intrinsic sample mean and
covariance on S. These two statistics are then used to define
a Gaussian-type probability model of elastic shapes invari-
ant to affine transformation and re-parameterization. This
probability model is in turn used as a shape prior in our
Bayesian active contour framework, described later.

Statistical modeling on S requires the use of two algo-
rithms, one for mean calculation and one for covariance
calculation. Both make use of five subroutines that each
require as input a basis for IV, ( Qo). the normal space of Qg
at any point gq. The five subroutines are (1) Projection onto
the manifold, (2) Projection onto a tangent space, (3) Paral-
lel translation of a tangent vector, (4) Exponential mapping,
and (5) Inverse exponential mapping. An expression for the
basis of N,(Qy) as well as descriptions of Subroutines (1)—
(3) appear in [3]. Now, we provide Subroutines 4 and 5.

Given an element [g) € S and the shooting vector
v € Tig(S), the exponential mapping computes a point
[p] = exp(y(v) in S that represents the point that is reached
by traveling along a constant-speed geodesic starting at [g],
and with the initial velocity v. Subroutines 4 and 5 make
use of the fact that Qy C S°°, the unit hypersphere in L2
space, which has well-known analytical formulas for the ex-
ponential and inverse exponential mappings.

Subroutine 4 — Exponential Map: Given [q] € S, v €
Tiq(S), an integer n, and € > 0,

(i) If ||v|| < €, return [p] = [q], else

(ii) Let 6 = 1/n. Fori=1,...,n

(a) Compute quqy = exp,(0v) on S via the formula
Qodo = cos(8]|v][)q + sin(8l[o]) 72-
(b) Project [qaay) to S using Subroutine 1.

(c) Parallel translate v from Tiq(S) to Ty, ,.1(S) using
Subroutine 3. Let ¢ = qqqv-

(iii) Return [p] = [q].

The opposite of the exponential map, the inverse ex-
ponential map, computes a vector v = exp[;]l([p]) in
Tiq(S) that represents the shooting vector that satisfies
[p] = expy(v) given [p], [¢] € S. Since we wish to com-
pute statistics modulo rotation and re-parameterization on
the quotient space S, when computing this shooting vec-
tor v, we must select either ¢ or p and optimally rotate and
re-parameterize it to the other. This registration is accom-
plished using a combination of Procrustes rigid body align-
ment and dynamic programming (see [15]).

Subroutine 5 - Inverse Exponential Map: Given [g], [p] €
Sande > 0,

(i) Optimally rotate/register WLOG q to p.

(ii) Compute the arclength 6 = cos™'({q, p)).

(iii) If § < ¢ let v = 0, else compute v = exp, ' (p) in
T4(S*°) via the formula v = ﬁ"(e)(q — pcos(h)).

(iv) Project v to iy (S) via Subroutine 2.



Now we are ready to present the algorithms to com-

pute the mean [u] and the covariance K of a set
of n shapes {[¢;]} in S. A popular intrinsic mean
calculation is the Karcher mean, which is defined as
(1] = argming, s > ds([q], [¢:])2, where ds (-, -) is the
geodesic distance on shape space. An iterative algorithm to
find the Karcher mean of a set of shapes is outlined below.
The general idea is to update the current estimate [1,] in the
direction of the average shooting vector from [y;] to each
of data points {[g;]}
Algorithm (Karcher Mean): Let [119] € S be an initial es-
timate of the mean of {[¢;]}, e.g. let [po] = [q1]. Set j = 0.
(i) For each i = 1, ..., n, register/rotate g; to |j, and com-
pute v; = exp[jé] ([gi]) using Subroutine 5.

(ii) Compute the average direction v = % S v

(iii) If ||0|| is small, stop. Else, update [11;] by [p1j11] =
expy,,(00) via Subroutine 4, where & ~ 0.5.
(iv) Set 3 = j + 1 and return to step 1.

Once we have found a Karcher mean [u], we obtain the
Karcher covariance matrix via K = ﬁ Z?:l vivlT , where
the v;’s are shooting vectors from p to the respective g;’s,
each optimally rotated and registered to x. While in theory
v : [0,1] — R?is a vector valued function, in practice it
is computed using 7" equally spaced samples on the interval
[0, 1]. Therefore, v € R2*T or re-arranged to be R'*2T and
K is a 2T x 2T covariance matrix.

Algorithm (Karcher Covariance): Given a set of shapes
{lg:]} and its Karcher mean [p],
(i) Fori = 1, ..., n, register/rotate q; to u, and calculate the

shooting vector v; = exp@l([qi]) using Subroutine 5.

(i) Compute K = -3 | v;vl.

Now that we have the tools to compute a sample mean
and covariance of data on S, we can speak of defin-
ing a probability density function from the shape class
({lg:]}, p, K). There are many densities one can define on
S from ({[g;]}, i, K), but for this research we only consider
a truncated wrapped-normal density [1 1], which is formed
as follows. First, obtain the singular value decomposition of
K as[U, S,V] = svd(K), and let U,,, be the m-dimensional
principal subspace of 77, (S) defined as the first m columns
of U. The truncated wrapped-normal density is given as

1 1 oTS—1y vy ||2/62
fm(la)) = e O S ot I g e (1)

where v = exp;1 (la]), v = UL v is the projection of v into
Up, v, =v— Umv” , Sp, 1s the diagonal matrix containing
the first m singular values, J[u] is the Jacobian of the ex-
ponential mapping, and Z is the normalizing constant. The
scalar value ¢ is chosen to be less than the smallest singu-
lar value in .S,,. In other words, this density is defined as
a multivariate Gaussian density on U,, C Tj,)(S) wrapped
onto the manifold via the exponential mapping.

After computing the density in Eqn. 1, it is rather

straightforward to randomly sample from it. Since it is
not possible to visualize the density function itself, in or-
der to illustrate the shape variation explained in the density,
we show a number of random samples instead. Fig. 2 dis-
plays four shape models in this manner formed from the
same training data — 20 crown shapes from the well-known
MPEG-7 database — in different shape spaces. Applied to
each shape is a random orientation-preserving affine trans-
formation, and the resulting curves are then sampled to have
uniform speed parameterization. The shape spaces from top
to bottom are the level-set similarity-invariant space [12],
landmark similarity space [7], elastic similarity space [15],
landmark affine space [ 1], and elastic affine space. The sam-
ples in the two affine cases are displayed in two stages. The
left set of samples are in standard form, created in affine
space, while the right set are the same samples but with
a random orientation-preserving affine transformation re-
applied to them. In this manner we separate the shape vari-
ability and affine variability when forming random samples.
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Figure 2. Shape models from top to bottom:
and our elastic affine-invariant model.

From Fig. 2, one can see that the ability of the elastic
shape models to describe the underlying shape variation in
a complicated shape class is superior to the non-elastic ones
[12, 7, 1]. The mean shapes in the non-elastic models wash



out the defining crown features, such as the five points and
the flat bottom, while the elastic models do not. Further-
more, the random samples from all non-elastic models as
well as the elastic similarity model are not representative
of the training data. The elastic affine model is more ac-
curate and parsimonious than the elastic similarity model
since affine variability and shape variability are separated.
Thus, our elastic affine model is the superior choice in gen-
eral for a shape prior in a Bayesian active contour model.

3. Bayesian Active Contour Model

The problem of boundary extraction in our active con-
tour model can be posed as a maximum a posteriori (MAP)
estimation via the energy minimization

B = argmin (>\1Ei7nage (6) + )\QEsmooth (6) + A3Epll()7(ﬁ)) )

BeB

(2)
where the \;’s are user-defined constant weights. The terms
Eimage and Egp,00¢n, are common energy terms based on
given image pixel data and the smoothness of the evolving
boundary curve, respectively, while the term F,,;,, is the
novel term representing the shape prior energy functional
built from a wrapped-normal density on S. If Fy,4; repre-
sents the weighted sum of all the the energy functionals in
the model, the active contour evolution is given by the gra-
dient descent iteration 3,41 = Bn — €V Eiora1, Where e > 0
is a step size selected to maintain numerical stability.

Our research focuses on the influence of Fp.;, on ac-
tive contour evolution, and thus the formulation of Fjqge
and Egp00tn are less important for our overall exposition.
For this reason we have selected the relatively simple and
well-known Ej,,,q4. term based on “region competition”
and Ey,00tn term based on curvature smoothing. The ex-
plicit formula and reference for each of these functionals
are provided in [4]. The important point here is that F;;,qge
and Fg,,00tn are functionals of the curve 3, and their gradi-
ents VE;yqge and V Eg, 0011 are taken with respect to the
.2 metric of curves. Thus, in order for our active contour
evolution to be a true gradient descent flow [17], we must
take the gradient V E,,.;,, also with respect to the L2 metric
of curves.

Given a prior shape class ({[¢:]}, [u], K) in S, Eprior
B — R is defined as such:

1
5 llv = UnU o],
3)
where all terms are defined in the description of Eqn. 1.
Thus, minimizing E,,;,. corresponds to maximizing the
log-likelihood of the prior shape density. The global min-
imizer of this functional is the curve representation of the
mean [u]|. Note that v = exp[;]l([q]), where ¢ is the SRVF
of the standardized curve 8y € [8]. Even though the cal-

1
Epm’or(ﬂ) = ivT(Ums;LlUg)U +

culation of E,,,.;,, is based on an elastic shape distance be-
tween SRVF’s, we ultimately treat it as any black box func-
tional on L2 space. A numerical technique to approximate
the gradient of such a functional is given as follows. Select
an orthonormal basis for T3(B), say {b;,i = 1,2,...}. The
standard Fourier basis functions that are periodic on [0, 1]
serve as a basis for this IL? space. After truncating to the
first IV basis elements for practical implementation, a first
order numerical approximation is given as

N

VEprim’ (6) ~ Z

i=1

Eprior(ﬂ + Ebz) - Epm’m’ (ﬂ) b
€

i (4)

where € > 0 is sufficiently small. The full algorithm for
computing VE,,,.;o-(8) is given below.

Algorithm (VE,,.;, Calculation): Given a curve 3 € B,
(i) Standardize 3 to By and convert to SRVF representation
to obtain [g] € S.

(ii) Register/rotate 1 to q to obtain p* = O*(u,v*), and
calculate v = exp[;]l([q]) via Subroutine 5. Calculate
Eprior(8) via Eqn. 3.

(iii) For eachi =1, ..., N,

(a) Compute q;, the SRVF of B + €b,.

(b) Register/rotate y to q; using O* and v* from step 2, and
approximate v = expi‘]l([qj,]) via Subroutine 5. Calculate
Eprior (8 + €b;) via Eqn. 3.

(iv) Compute N Epyior () via Egn. 4.

Note that in step (iii-b) above, we compute an approxima-
tion of the term E,.;o- (8 + €b;) since we do not require
for each 7 an optimization over SO(2) x I". This would
be quite expensive computationally. The approximation is
valid since we assume e small enough, i.e. a small enough
perturbation of 3, that the values O* and * obtained from
optimizing y to g can be used for optimizing p to g;.

This completes our calculation of the shape prior gradi-
ent with respect to the I.? metric. Our formulation advances
the works of [8, 4] because in each of these papers, the au-
thors compute V E,,,.;,, with respect to the elastic metric on
shape space, which is inconsistent with the remaining en-
ergy functional gradients.

4. Experimental Results

Here, we evaluate the segmentation performance of mul-
tiple active contour models on various datasets. The contour
models use all possible combinations of the following tools
to formulate E,.;,, and its gradient: similarity-invariant
shape statistics (from [!5]), affine-invariant shape statis-
tics (developed here as an extension of [3]), elastic gradient
(from [8]), and L2 gradient (developed here). The Eprior
scenarios are thus given as (1) no shape prior, (2) similarity-
invariant with elastic gradient, (3) similarity-invariant with
1.2 gradient, (4) affine-invariant with elastic gradient, and



(5) affine-invariant with I gradient. Scenario (2) is ex-
actly the model presented in [4], while scenarios (3)—(5) are
novel to this paper. It is our proposition that scenario (5)
will yield the best segmentation results due to its robustness
to perspective effects as well as consistency of gradients.

In order to evaluate the accuracy of any segmentation
result, we compare the converged contour to the associ-
ated ground truth curve via two metrics: dgeod(-, ) and
dpin(-,+). The distance dgeoq is the geodesic distance on
similarity-invariant, elastic shape space [15]. The distance
dy;n 1s a binary image metric that measures the area of non-
overlapping regions and is defined in the following man-
ner. If B is the binary image obtained by the segmenta-
tion and B is the ground truth binary image, then we define
dyin(B, B) = area(BU B — BN B) /area(BU B). The val-
ues of these two metrics together show how accurately our
segmentation result matches the correct shape as well as the
correct location, orientation, and scale in the image. Note
that dgeoq € [0,7/2] and dpir, € [0,1], and in each case a
lower distance value corresponds to greater accuracy.

The average computational cost for 100 iterations of
each of the five scenarios, as computed in Matlab on a 2.8
gHz processor, are given in seconds as (1) 0.367, (2) 20.8,
(3) 26.0, (4) 38.9, and (5) 38.9. The affine cases are more
complex than the similarity cases due to the necessity to
standardize the active contour at each iteration. Most re-
sults shown in this section converged within 100-200 itera-
tions with an initialization fairly close to the true boundarys;
thus, the computational complexity remains in the realm of
practicality. Now, we present our segmentation results.

4.1. Multiview Curve Database (MCD)

The MCD [19] has been constructed from the MPEG-7
shape database. Here, a number of shapes were selected
and printed on white paper as binary images, where the
region enclosed by the shape was colored black. Varia-
tions of each shape were recorded by photographing the
printed shapes under seven different camera angles. Since
each shape in the MCD comes from one shape class in the
MPEG-7 database, we use that shape class to build a shape
prior for segmentation. Thus, we construct a scenario where
the test image is of a different perspective than the training
shapes and show the necessity of an affine-invariant shape
prior for accurate segmentation. In the following experi-
ment we introduce some occlusion to each skewed test im-
age and segment under the five given E,,.;,, scenarios.

Fig. 3 shows the segmentation results from two test im-
ages, and for each case we show eight images. From left
to right, top to bottom, the eight images are as follows: the
original image under centered camera view, the skewed and
occluded test image, segmentation under scenarios (1)—(5)
respectively, and the ground truth segmentation. Table 1
lists the values (dgeod, dpin) for each of the five scenarios

averaged over the seven different test images (camera an-
gles) for each shape. The segmentation is best in both in-
stances under scenario (5), the affine prior with .2 gradient.
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Figure 3. Segmentation results for occluded versions of the MCD
shapes “crown” (camera angle 5) and “fountain” (camera angle 4).

Prior Crown (# 1) Fountain (# 2)
(1) None (0.61,0.17) (0.60,0.19)
(2) EL. Sim | (0.37,0.23) (0.31,0.30)
(3) L2 Sim | (0.40,0.14) (0.23,0.12)
(4) EL. Aff | (0.55,0.16) (0.33,0.20)
(5) L2 Aff | (0.35,0.10) (0.17,0.067)

Table 1. Averaged segmentation results of occluded MCD shapes.

4.2. Leaf Segmentation

Another useful application of our affine-invariant con-
tour algorithm is the segmentation of leaves in images.
In the upper-left image of Fig. 4 we see the ground truth
boundary curves of 15 tulip poplar leaves that were ex-
tracted from images found in a Google Image search. No-
tice that in addition to the inherent leaf shape variability,
this data additionally exhibits an approximate affine vari-
ability due to imaging from different camera angles. Fig.
4 shows the resulting similarity and affine invariant elastic
shape models, and one can see from the random samples
that the affine-invariant model eliminates the perspective
variability while the similarity-invariant model does not.

Using the statistical models in Fig. 4 to build E,,,.;,,., we
segment two test images of tulip poplar leaves in a some-
what noisy background with target-like clutter. Fig. 5 from
left to right and top to bottom shows the test image and the
segmentation results from scenarios (1)—(5) respectively.
As in Table 1, Table 2 lists the pair (dgeoq, dpirn,) compar-
ing the segmentation result to ground truth in each of the 5
scenarios for both of the test images. Again as predicted,
scenario (5), the curve evolution using the L2 gradient of
the affine-invariant E,,,,, yields the best results.
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Figure 4. Elastic shape models of the tulip poplar leaf. Top:
Similarity-invariant. Bottom: Affine-invariant.
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Figure 5. Segmentation results for tulip poplar leaves.

Prior Leaf 1 Leaf 2

(1) None (0.83,0.32) (0.52,0.22)
(2) EL Sim | (0.35,0.13) (0.28,0.25)
(3)L%Sim | (0.23,0.11) (0.26,0.13)
(4) EL Aff | (0.22,0.11) (0.29,0.14)
(5) L% Aff | (0.18,0.096) (0.21,0.12)

Table 2. Segmentation results of the tulip poplar leaves.

4.3. SAS Shadow Segmentation

Here, we consider a dataset of imagery collected beyond
the visible spectrum, where we segment the shadows of a
cylinder target in synthetic aperture sonar (SAS) imagery.
Segmentation is typically difficult in the synthetic aperture
imaging modalities due to background noise, clutter, and
imaging artifacts. The SAS images were created from the
Shallow Water Acoustics Toolkit (SWAT), a program devel-
oped by the Naval Surface Warfare Center Panama City Di-
vision (NSWC PCD) that synthesizes SAS imagery of var-
ious targets in seabed environments [14]. The SWAT simu-
lator is considered accurate to reality and is widely used to
test automatic target detection and recognition algorithms
in place of real SAS data. This particular dataset consists

of imagery of the same cylinder target at different aspect
angles and ranges, which yields shadow signatures that ex-
hibit a shape variability that can be modeled by an affine
transformation. Fig. 6 shows an example of five images in
the SAS dataset, and Fig. 7 shows the similarity and affine
invariant shape models from 10 training shapes.

Figure 6. Example images from the PC SWAT cylinder database
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Figure 7. Elastic shape models of the SAS cylinder shadow. Top:
Similarity-invariant. Bottom: Affine-invariant.

Random Samples

Assuming that the ground truth shadow boundary curves
are available, we perform a cross-validation experiment for
each of the five scenarios. In each cross-validation iteration,
we select 10 images at random for training, form the shape
prior density on the appropriate shape space from the cor-
responding ground truth curves, and segment the remaining
90 test images with the influence of that shape prior. Af-
ter each segmentation we calculate the values (dgeod, dpin)
to ground truth. The averages of these two distance values
across all cross-validation iterations in each scenario are as
follows: (1) (0.28,0.14), (2) (0.21,0.12), (3) (0.17,0.099),
(4) (0.18,0.11), and (5) (0.17,0.090). Fig. 8 shows results
from two test images. The six segmentations in each case
shown from left to right and top to bottom are from sce-
narios (1)—(5), respectively, and ground truth. Although in
many instances, segmentation with scenarios (1)—(4) yields
acceptable results, there yet remain a few cases where it
fails. Notably, segmentation with (4) fails often as a result
of the segmentation flowing towards a different affine skew
than ground truth (see case # 1 in Fig. 8). Segmentation
with (5) corrects this issue due to its true gradient flow.

5. Conclusion

We present a Bayesian active contour model for image
segmentation that improves the state-of-the-art in two key



#1

#2

Figure 8. Segmentation results for the SAS database

aspects: (1) we use a shape prior term based on intrinsic
affine-invariant, elastic shape statistics, and (2) we perform
a true gradient descent flow to minimize the total energy
functional. Elastic shape analysis allows us to build shape
models that more accurately capture the underlying varia-
tion of complicated shape classes when compared to com-
mon extrinsic methods used in geometric active contours.
Furthermore, an affine-invariant shape model is robust to
perspective skew, allowing us to accurately segment when
either test or training images are taken with respect to differ-
ent camera angles. By computing the gradient of each of the
three energy functionals — E;nages Esmooths and Eppior —
with respect to the same (IL2) metric, the active contour evo-
lution becomes a true gradient descent flow along E}otq-
With such a flow, segmentation results in an optimal fitting
of both image and shape data.experimental results.
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