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Abstract

Long-term modeling of background motion in videos is
an important and challenging problem used in numerous
applications such as segmentation and event recognition. A
major challenge in modeling the background from point tra-
jectories lies in dealing with the variable length duration of
trajectories, which can be due to such factors as trajecto-
ries entering and leaving the frame or occlusion from dif-
ferent depth layers. This work proposes an online method
for background modeling of dynamic point trajectories via
tracking of a linear subspace describing the background
motion. To cope with variability in trajectory durations,
we cast subspace tracking as an instance of subspace es-
timation under missing data, using a least-absolute devi-
ations formulation to robustly estimate the background in
the presence of arbitrary foreground motion. Relative to
previous works, our approach is very fast and scales to ar-
bitrarily long videos as our method processes new frames
sequentially as they arrive.

1. Introduction

Background subtraction of video is a longstanding prob-
lem in computer vision. The basic problem is to distinguish
portions of the scene which are moving from those parts
which remain still. For scenes in which the camera is static,
there exists a number of approaches for pixel-wise modeling
of the background [9, 12]. For a dynamic camera, however,
pixel-wise modeling is no longer possible without motion
compensation. In these cases, the image motion provides
an extremely useful cue for distinguishing portions of the
scene which appear to be moving due to the camera move-
ment from parts which are truly moving.

In this vein, factorization-based methods [24] have seen
much development in motion segmentation from point tra-
jectories, where trajectories are typically produced via opti-
cal flow. A requirement of such methods is for the trajectory
durations to all be equivalent. However, in many real-world

Figure 1. Given a frame from a video with a moving camera, we
show the color-mapped error of the trajectory coordinates pro-
jected onto our dynamically tracked subspace, capable of handling
trajectories entering and leaving the frame. Given the subspace we
can segment background from foreground, shown on the right.

scenes, trajectories typically have widely varying durations
due to trajectories entering and leaving the frame as a re-
sult of the camera moving or from self-occlusion of objects
at different depth layers. While recent works have explic-
itly dealt with the problem of long-term point trajectories of
varying duration for motion segmentation [5, 15, 18], along
with extensions to background modeling [11], such meth-
ods face significant scalability issues in the number of tra-
jectories. Indeed, as dense optical flow algorithms continue
to scale and approach interactive rates for large resolution
video [21, 22], background modeling of point trajectories
should also be able to scale just as gracefully.

In this paper we address the problem of online back-
ground modeling of dense point trajectories. Assuming that
camera motion is well-modeled by a low-dimensional linear
subspace [23], our goal is to determine this subspace in the
presence of trajectories dynamically entering and leaving
the video. Unlike previous robust factorization-based ap-
proaches which use a sliding window [20], we employ sub-
space tracking to find the subspace at every frame. In par-
ticular, we show that as the ambient space dimensionality
(number of trajectories) of the subspace changes, the frame-
to-frame change in the subspace is well-bounded. This per-
mits us to draw from subspace tracking techniques which
handle missing data [12, 7], where we consider trajectories
entering and leaving the video as missing data. By employ-
ing a suitable robust energy, we are able to simultaneously
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separate the foreground from the background and update the
subspace at every frame even in the presence of significant
frame-to-frame changes in the number of trajectories. An
overview of our approach is shown in Figure 1.

Our main contribution is a simple, fast, and scalable
method for estimating background point trajectories under
a moving camera. We demonstrate improved performance
over existing methods which estimate the foreground in a
sliding window fashion. Our method is also competitive
with recent global offline motion segmentation methods
while achieving several orders of magnitude improvement
in computational time.

1.1. Related Work

Background modeling of point trajectories can be con-
sidered an instance of motion segmentation in the context
of multibody factorization methods [25, 24, 19, 10]. Such
methods segment motion by factorizing the matrix com-
posed of all point trajectories using the fact that an or-
thographic camera model results in the trajectory matrix
having rank at most 4 for a single rigid object, while for
the background it is at most rank 3 [23]. However, as
such methods rely on a matrix factorization, it is required
that the point trajectories are equivalent length. Although
some methods can handle small variability in the trajectory
lengths [19, 10], in practice they tend to scale poorly in the
number of trajectories.

More recent methods have considered ways of directly
estimating the background motion under an orthographic
camera model in a scalable manner with support for vary-
ing trajectory duration. The work of [20] performs matrix
factorization in a sliding window fashion to identify back-
ground trajectories using RANSAC to robustly estimate the
subspace. Another way of estimating the background is
to decompose the point trajectory matrix into a low rank
component to represent the background and a group-sparse
component to represent the foreground [8] – such an ap-
proach can also use a temporal sliding window. Choos-
ing the window size, however, is nontrivial in both cases,
as there is a delicate tradeoff in supporting a large number
of trajectories and having sufficient evidence to determine
background trajectories.

To generalize the orthographic camera model, the work
of [14] uses a Bayesian filtering framework to estimate ap-
pearance and motion models for background subtraction at
the pixel level. This approach requires a high-quality seg-
mentation at the first frame in order to reliably track subse-
quent frames. This can be problematic for long sequences
containing complicated camera motion, due to the need to
repeatedly reset the appearance and motion models and re-
compute the segmentation.

The works of [5, 18] model motion by constructing an
affinity matrix over all trajectories, measuring commonal-

ity in translational [5] or similarity [18] transformations,
and performing spectral clustering to arrive at a segmen-
tation. These approaches handle variable-length trajecto-
ries by only measuring similarity across trajectories shar-
ing common time intervals. This was recently extended to
the online setting for background subtraction in [11], where
Laplacian eigenmaps from the affinity matrix are used to
represent the trajectories. A merging of the segmented
trajectory clusters is then performed to identify segments
which belong to the background. However, this affinity ma-
trix will necessarily be dense for common point trajectories,
hence the need to perform spectral clustering or construct
Laplacian eigenmaps limits such methods to sparse trajec-
tories.

Our approach is based on recent work related to on-
line subspace tracking in the presence of missing data.
GROUSE [1] tracks a subspace from incomplete data vec-
tors via optimization on the Grassmanian manifold through
efficient rank-1 subspace updates. A crucial element of
GROUSE is that it is possible to estimate with high prob-
ability the residual error of projecting an incomplete data
vector onto a subspace, as studied in [2]. This was extended
in GRASTA [12] to handle outliers in the (incomplete) data
vectors and subsequently applied to the problem of pixel-
wise background estimation from video. Our approach is
similar to GRASTA, as we also robustly track a subspace in
the presence of outliers (i.e. foreground). However, there
are two main challenges in leveraging GRASTA for trajec-
tory modeling: 1) under dynamic dimensionality the sub-
space representation no longer lies on the Grassmanian, and
2) the subspace update needs modification as processing tra-
jectories results in an update which is no longer rank-1.

Our method is inspired by PETRELS [7], which simi-
larly tracks a subspace from incomplete data, but performs
updates per-dimension. We extend this to the case where
dimensions are dynamically added and removed.

2. Subspace Tracking with Changing Dimen-
sions

Our approach for distinguishing foreground motion from
background motion relies on maintaining a stable back-
ground model via subspace tracking. Given an estimate of
the background subspace, we can project the set of trajec-
tory coordinates at each frame onto the current subspace
estimate in order to determine which trajectories are fore-
ground and which are background. In this section, we dis-
cuss how to track a linear subspace when the ambient di-
mension is continually changing – the following section dis-
cusses how to estimate the foreground from the subspace
via sparse estimation.



2.1. Subspace Tracking of Point Trajectories

Assume that the set of input point trajectories con-
sists entirely of background motion and assume that this
background motion follows an orthographic camera motion
model. If we are tracking p points in each frame over f
frames, the tracked pixel coordinates can be stacked into a
matrix P ∈ Rp×2f , where Pi,2j and Pi,2j+1 are respec-
tively the x and y component of the i’th pixel coordinate at
frame j – this corresponds to batch processing of trajecto-
ries. Assuming that the points are centered, under an or-
thographic camera model this matrix is at most rank 3 and
admits the following factorization [23]:

P = XCT =
x1 y1 z1

x2 y2 z2

...
...

...
xp yp zp


v11 w1

1 · · · v1f w1
f

v21 w2
1 · · · v2f w2

f

v31 w3
1 · · · v3f w3

f

 ,
where X and C respectively represent the shape and camera
parameters of the trajectories. Up to a linear transformation,
X represents the corresponding 3D coordinates of the tra-
jectories.

In the case where trajectories are dynamically going in
and out of frame, obtaining such a factorization becomes
challenging. We instead propose to dynamically track the
rows of X, rather than assume they remain fixed. Although
it should only require 3 measurements to obtain a valid rep-
resentation of each row, updating X via subspace tracking
allows us to update each row so that either: a) it converges,
b) it updates in order to accommodate the change in a row
which has been added or removed, or c) its motion changes
so that it no longer lies in the background.

More specifically, suppose that at time twe have our cur-
rent shape subspace estimation Xt−1 ∈ Rd×3, and we want
to update to Xt ∈ R(d+a)×3 based on the (mean-centered)
coordinates of the trajectories at t, denoted xt ∈ Rd+a and
yt ∈ Rd+a, where a is the number of trajectories added
at frame t. Furthermore, assume that r point trajectories
were removed at frame t. We define our diagonal sampling
matrix St, where St is 0 for a point which has either been
added or removed, and 1 otherwise. Hence, Stxt and Styt

effectively zeros out coordinates which have been added or
removed since frame t− 1.

We aim to find Xt by minimizing the following energy:

Xt = argmin
X

t∑
i=1

λt−i min
vi,wi

(‖Si(Xvi − xi)‖22 + (1)

‖Si(Xwi − yi)‖22),

where 0 < λ ≤ 1 represents the discount factor: the smaller
the λ, the less influence previous subspace estimates have
on estimating Xt.

Similar to PETRELS [7], we alternate between finding
the camera parameters vt and wt, and subsequently updat-
ing Xt based on the camera parameters. Note that the up-
date is at the pixel coordinate level: we estimate vt and
wt from Xt−1, and Xt from vt and wt, rather than sep-
arately performing these steps sequentially. We first solve
for the following, where we assume that a additional rows
have been added to Xt−1 at indices where St = 0:

(vt,wt) = argmin
v,w

‖St(Xt−1v − xt)‖22 + (2)

‖St(Xt−1w − yt)‖22.

We note that points which have been added or removed are
not considered – deleted trajectories should play no role in
the estimation, whereas new trajectories do not yet have a
subspace representation, i.e. it is unclear what their cor-
responding rows in Xt−1 should be. Nonetheless, as il-
lustrated in previous works [2, 1, 7], this estimation of v
and w is an excellent approximation to the scenario of hav-
ing complete knowledge of the removed coordinates and the
subspace representation of the added rows.

We may now estimate each row of Xt that has not been
removed, denoted Xj

t for row j, as:

Xj
t = argmin

Xj

t∑
i=tj

λt−i((vᵀ
i X

j − xji )
2 + (wᵀ

i X
j − yji )2),

(3)
where tj is the frame index when the row first arrived. Upon
differentiating, we obtain the following linear system:

t∑
i=tj

λt−i(viv
ᵀ
i + wiw

ᵀ
i )Xj =

t∑
i=tj

λt−i(xjivi + yjiwi).

(4)
We slightly depart from Equation 1 by also updating the
newly added rows, via a least-norm solution. This serves
as a robust means of bootstrapping the subspace for added
trajectories. In the next frame we use these rows as part of
the subspace, while trajectories which have been removed
are discarded from the subspace. This linear system may be
recursively defined solely based on the current frame, hence
we need only solve a 3× 3 linear system for each row.

2.2. Conditions for Successful Tracking

There are two main conditions for subspace tracking to
perform well: 1) the subspace should be sufficiently inco-
herent, and 2) the subspace should be slowly changing. We
recall that the incoherence φ of a subspace X is:

φ(X) =
d

3
max

i
‖PUei‖22, (5)

where PU is the subspace projection operator and ei is the
canonical basis vector: 1 at index i and 0 elsewhere. Empir-
ically, we find that the shape subspace X is highly incoher-
ent, that is, φ(X) tends to be very small – this corroborates



Figure 2. We show the performance of our subspace tracker in tracking exclusively background motion. Here we show a frame from a
handheld camera video, the color-mapped projection error, and the mean projection error (corresponding to the left y-axis), comparing
sequential coordinate updates versus coupling the pixel coordinates in the tracker. Note the stability of our method as trajectories are
added/removed (corresponding to the right y-axis).

the results of [6], illustrating that in practice most subspaces
should be incoherent. Regarding the second condition, we
have the following result:

Theorem 2.1 Let Xt−1 ∈ Rd×3 and Xt ∈ R(d+a)×3 be
the ground truth shape subspaces composed of orthonormal
columns, such that there exists a new points at time t, and
without loss of generality, these correspond to the last a
rows of Xt. Furthermore, let X̂t−1 ∈ R(d+a)×3 have its
first d rows be Xt−1 and its last a rows be 0. Then:

‖(I− X̂t−1X̂
ᵀ
t−1)Xt‖

2

F
≤ 3aφ(X)

d
. (6)

Proof Let S be a diagonal sampling matrix where Si,i = 1
for i ≤ d and Si,i = 0 for d < i ≤ a. Note that the first d
rows of Xt span the same subspace as Xt−1. Hence for a
given column u of Xt, we have:

‖(I− X̂t−1X̂
ᵀ
t−1)u‖

2

2
= (7)

‖(I− X̂t−1X̂
ᵀ
t−1)(Su− (I− S)u)‖

2

2
=

d+a∑
i=d+1

u2i .

Applying this to each column of Xt and summing up, we
obtain:

‖(I− X̂t−1X̂
ᵀ
t−1)Xt‖

2

F
=

d+a∑
i=d+1

‖Xi
t‖

2

2. (8)

Note that φ(X) can also be expressed as: d
3 maxi ‖Xi

t‖
2

2,
hence the bound follows. We also note that a similar (and
tighter) bound can be obtained in projecting X̂t−1 onto the
orthogonal complement of Xt.

Hence, we see that projecting Xt onto the orthogonal com-
plement of Xt−1 – a common measure of proximity be-
tween subspaces [2] – is bound by the incoherence, so we
impose no additional conditions on the subspace as tradi-
tional subspace tracking methods which deal with missing
data. We simply require that the number of dimensions
which are added and removed are bounded.

2.3. Tracking Camera Motion

We first demonstrate our method’s capability in tracking
a scene consisting of strictly background motion. We have
taken a video from a camera phone of an outdoor scene con-
sisting of varying degrees of motion, where the scene also
contains different depth layers. At each frame, after updat-
ing the subspace, we project the trajectory coordinates onto
the subspace and measure error by computing the distance
from the ground truth point to its projected point, where we
plot the mean error over all trajectories at each frame. In or-
der to show the benefit of performing the subspace update
at the pixel coordinate level, we also show the performance
of subspace tracking through sequentially updating the sub-
space by the x coordinates, followed by the y coordinates.

See Figure 2 for the results, where we have set λ = 0.98.
Note the benefit of coupling the x and y coordinates in
the update, rather than processing them separately in se-
quence. Furthermore, note that our method remains quite
stable when the percentage of trajectories being added and
removed is rather large. Since the discount factor λ is some-
what high, this is indicative that the camera motion results
in a slowly changing subspace, and demonstrates our ability
to capture the overall motion.

3. Robust Dynamic Subspace Tracking

The energy defined by Equation 1 is inappropriate for
handling foreground motion. Assuming that foreground tra-
jectories are poorly modeled by the background subspace,
their incorporation into the subspace update will pollute the
background model. Hence we use a least absolute devia-
tions formulation for updating the background, similar to
the approach of [12]. This allows us to simultaneously up-
date the background motion and estimate the foreground
trajectories. We depart from [12] by enforcing sparsity at
the coordinate level and use a more robust norm.

More specifically, at frame t suppose we have our sub-
space from the previous frame Xt−1, and we want to obtain



a robust estimate of vt and wt from the new coordinates
xt and yt. We cannot assume that coordinates are mean-
centered, as foreground trajectories will result in an erro-
neous center. To account for this, note that for uncentered
trajectories the subspace is at most dimension 4 with the
vector of all ones in its column space. Hence, throughout
we assume that Xt ∈ Rd×4 with its last column comprised
of all ones and vt,wt ∈ R4, where the last entries of vt and
wt comprise the center, denoted mt.

For notational clarity and without loss of generality, at
frame i assume that Xi, xi, and yi have already taken into
account the sampling matrix Si. Let ci = [vi wi] and for
a given point index j let pj

i = [xji y
j
i ]ᵀ. Our least absolute

deviations energy is defined as:

Xt = argmin
X

t∑
i=1

λt−i min
ci

 d∑
j=1

‖cᵀi X
j − pj

i‖
p

2

 , (9)

where p < 1 defines the choice of norm. Note that by cou-
pling the x and y coordinates, this ensures a sparse solu-
tion at the pixel coordinate level. Furthermore, in using a
lp norm with p < 1 we can not only detect the foreground
trajectories, but also reduce the impact of these foreground
trajectories in estimating vt and wt, giving us a more robust
background representation.

Similar to the least squares formulation, we alternate be-
tween estimating the camera parameters v and w, followed
by updating the subspace. The group least absolute devia-
tions energy for estimating the camera parameters at frame
t is:

(vt,wt) = argmin
c

d∑
j=1

‖cᵀXj
t−1 − pj

t‖
p

2
. (10)

We minimize this energy by employing the alternating di-
rection method of multipliers (ADMM) [3]. To this end,
Equation 10 can be reformulated as the following energy by
introducing a pair of sparsity vectors sx and sy:

min

d∑
j=1

(√
(sjx)2 + (sjy)2

)p

s. t. (11)

Xt−1v + sx = xt

Xt−1w + sy = yt.

The augmented Lagrangian of this formulation is then:

L(v,w, sx, sy,αx,αy) =

d∑
j=1

(√
(sjx)2 + (sjy)2

)p

+αᵀ
x(Xt−1v + sx − xt) + αᵀ

y(Xt−1w + sy − yt)

+
ρ

2
(‖Xt−1v + sx − xt‖22 + ‖Xt−1w + sy − yt‖22).

We minimize the Lagrangian through ADMM [3], where
we use the group shrinkage operator for the lp norm defined
in [16], which works at the pixel coordinate level. Note that
the shrinkage operator results in v and w influencing one
another, where a foreground trajectory will result in both sx
and sy to be of large magnitude.

In updating the subspace, we note that by fixing v and
w, minimizing Equation 9 also results in another least ab-
solute deviations problem. However, its solution cannot be
recursively defined, hence it would be prohibitively expen-
sive to solve at each frame. We find that solving for the
subspace via Equation 4, with the coordinates subtracted by
the mean mt, still provides a robust and stable solution, and
in practice is comparable to the solution of Equation 9. This
is due to the per-row update scheme: trajectories which are
in the background will receive the same update in this sce-
nario, while foreground trajectories will receive a slightly
noisier update. Note that if a trajectory in the foreground
eventually stops moving in the scene it will gradually be-
come a background trajectory through this update scheme,
depending on the discount factor λ.

3.1. Trajectory-Level Segmentation

At each frame the likelihood that a given point belongs
to the foreground or the background can be estimated by
associating each point pj

i the following score based on the
point’s projection onto the current subspace estimate:

s(pj
i ) = ‖cᵀi X

j
i − pj

i‖2. (12)

However, using this directly to segment trajectories may re-
sult in spurious outliers: a trajectory which should be in
the background may occasionally have points that are in the
foreground due to poor optical flow estimation, while a tra-
jectory which should be in the foreground may have points
that are in the background due to insufficient foreground
motion evidence. To cope with these cases, we employ a
Markov Random Field (MRF) model to obtain a more ro-
bust segmentation in an online fashion by considering the
full history of point scores for a given trajectory.

Let T = {tj}mj=1 be the set of all trajectories up to and
including frame t and let lj ∈ {b, f} be the background
or foreground label associated with a trajectory tj . The
trajectory-level segmentation can be found at frame t by
finding the labeling l with smallest MRF energy:

E(l) =
∑
tj∈T

φ̄t(lj) +
∑

tj ,tk∈T
ψ̄t(lj , lk), (13)

where φ̄t(lj) is the unary cost of assigning label lj to trajec-
tory tj and ψ̄t(lj , lk) is the pairwise cost of assigning labels
to different trajectories. Both terms represent the average of



the 1 . . . t per-frame trajectory costs:

φ̄t(lj) =
1

t

t∑
i=1

φi(lj), ψ̄t(lj , lk) =
1

t

t∑
i=1

ψi(lj , lk), (14)

where φi(lj) and ψi(lj , lk) are respectively the frame-
specific unary and pairwise costs for tj (and tk for ψi) at
frame i.

Unary Cost: To construct a reliable cost for label as-
signment, we observe that the distribution of scores from
Equation 12 are consistently similar across all frames – it is
low for points in the background and rapidly increases for
points in the foreground. This motivates the following cost
function:

φi(lj) = δb + (δf − δb)e
−(H(s(p

j
i
))−βk)

2

2σ2 , (15)

where δf = δ(lj = f) and δb = δ(lj = b) for delta function
δ, H(x) is x for x > 0 and 0 otherwise, and βk is the
kth smallest score in frame i. Hence scores less than βk
are considered likely to be in the background; otherwise,
likelihood is determined via a Gaussian centered at βk with
variance σ = 10(βk − β0).

Pairwise Cost: The pairwise term encourages spatially
adjacent trajectories to have the same label. For point pj

i

associated with trajectory tj at frame i, let pk
i be the point

associated with trajectory tk; then the pairwise term is sim-

ply: ψN (ti, tj) = e
−||pj

i
−pki ||

2

2σ2p , where σp = 8. Note that
maintaining a running average in ψ̄t encourages spatiotem-
poral coherency in label assignment.

At any frame a segmentation can be obtained by updat-
ing the unary and pairwise costs and minimizing the energy
in Equation 13 via graph cuts [4]. We use the approach
of [13] to efficiently compute the labeling in an online fash-
ion, where after each frame, the previous labeling and graph
are updated to reflect the current frame information and tra-
jectories which are no longer present are removed.

4. Results

We demonstrate the benefits of our approach, denoted
STUDD for Subspace Tracking under Dynamic Dimension-
ality, in several ways. We use the Berkeley motion seg-
mentation dataset [5] to illustrate how our approach pro-
duces high-quality background estimation, scales to a large
number of trajectories, and benefits dense trajectory seg-
mentation for producing full image segmentation. Further-
more, we have produced a dataset intended to show how
our method excels at background subtraction for long du-
ration scenes containing very complex camera motion and
foreground.

Name RANSAC LRGS STUDD
people1 0.992 0.999 0.999
people2 0.989 0.991 0.999
cars1 0.875 0.585 0.944
cars2 0.960 0.973 0.987
cars3 0.933 0.984 0.976
cars4 0.983 0.994 0.992
cars5 0.967 0.982 0.989
cars6 0.973 0.956 0.998
cars7 0.980 0.989 0.993
cars8 0.935 0.655 0.989
cars9 0.953 0.763 0.952
cars10 0.810 0.604 0.969
marple1 0.775 0.765 0.973
marple2 0.832 0.844 0.933
marple3 0.840 0.819 0.927
marple4 0.820 0.819 0.858
marple5 0.919 0.922 0.941
marple6 0.668 0.668 0.714
marple7 0.746 0.795 0.848
marple8 0.835 0.862 0.921
marple9 0.472 0.506 0.557
marple10 0.984 0.982 0.930
marple11 0.978 0.982 0.985
marple12 0.846 0.862 0.944
marple13 0.809 0.841 0.894
tennis 0.968 0.984 0.983

Table 1. A comparison between our method (STUDD) and the
methods of [20] and [8], evaluated on the benchmark dataset of [5]
for dense tracks. Here we list the average background f-measure.

Implementation Details For all examples, we have set
the discount factor to λ = .98, the lp norm to p = .1, and
the threshold index k in βk to 20% of the number of trajec-
tories at the given frame. We found our method to be quite
robust to variability in these parameter settings. We produce
labels for trajectories only when their trajectory duration is
at least 4, as we find their subspace representation to be sta-
ble beginning at this duration.

4.1. Berkeley Motion Segmentation Dataset

For this dataset, we first compare to factorization-based
sliding window methods [20, 8], denoted RANSAC and
LRGS respectively. A window size of 4 was used in order
to perform a fair comparison with our method. The optical
flow tracker of [21], with a subsampling factor of 2 was used
to obtain dense point trajectories. To measure segmentation
quality the background f-measure averaged over all ground
truth frames was used and is defined as f = 2PR

P+R where
P and R respectively represent the precision and recall of
classifying background.

See Table 1 for the results. As shown, in general we
obtain superior results across the dataset at comparable run-
ning times – see Table 2 for computational timings. We



Name RANSAC LRGS STUDD
Time (s) 0.788 1.061 1.833

Table 2. The average per-frame running time in seconds for the
results shown in Table 1.

Dataset F-Measure Time (s)
HOM STUDD HOM STUDD

moseg 0.938 0.885 10.778 0.055
moseg* 0.937 0.911 10.726 0.052

Table 3. Comparison between [18] (HOM) and our method using
averaged f-measures on the marple and tennis datasets [5] in the
first row, and the same set with marple9 excluded in the second
row. We obtain competitive results with 2 orders of magnitude im-
provement in running times, measured as average time per frame.

perform particularly well for longer sequences, i.e. the
marple videos, demonstrating the long-term stability of our
approach, whereas [20, 8] are unable to discern the back-
ground due to insufficient evidence in the temporal window.

We also compared our method to the high-order spectral
clustering approach of [18]. As [18] produces a full motion
segmentation, we take the background in each frame as the
label which comprises the most trajectories. Due to scala-
bility limitations of [18], we generate a sparse trajectories
set via [21] using a subsampling factor of 8 for tracking.
See Table 3 for the results. We obtain competitive, albeit
slightly worse results. This is typically due to when a per-
son begins to move in later frames, since our approach will
initially classify the trajectory as background when they are
not moving (i.e. marple9). However, note that our method
is roughly 2 orders of magnitude faster, and does not require
processing the trajectories in batch.

To demonstrate the impact of using sparse trajectories
for dense image segmentation, we have taken the results
of [18] at a trajectory subsampling factor of 8 and com-
pared to our method for a subsampling factor of 2, using
the method of [17] to obtain a full image segmentation. See
Figure 3 for the results. We observe that our dense trajec-
tory labeling produces superior image segmentation results
compared to a sparser labeling, where there may be insuffi-
cient evidence for the foreground.

4.2. Long-Term Motion

Last, we have produced a dataset consisting of a long
and complex video sequence. We have taken a nearly 2000
frame single camera shot sequence from the film “Magno-
lia”, and labeled 22 of these images for ground truth. We
compare our method to [20, 8] – see Table 4 for average
f-measure results and Figure 4 for qualitative results. In
order to test the sensitivity to window size, we evaluate
these methods with windows of 4, 10, and 15. Interest-
ingly, the best window size need not be the largest possi-
ble, demonstrating the sensitivity to the choice of a tempo-
ral window. Furthermore, we note that a larger window size

Figure 3. The method of [17] (top row) is applied to 8x subsampled
segmented trajectories from [18] as compared with the 2x subsam-
pled segmented trajectories from our method (bottom row). Note
the utility of dense trajectories in supporting appearance-based
dense image segmentation. The background f-measure for [18]
is 0.990, and is 0.995 for STUDD.

STUDD RANSAC LRGS
w=4 w=10 w=15 w=4 w=10 w=15

0.877 0.841 0.843 0.827 0.857 0.868 0.791
Table 4. A comparison of the “Magnolia” sequence, in average f-
measure, where for RANSAC and LRGS the window sizes are set
to 4, 10, and 15. Note the sensitivity to the window size, whereas
STUDD naturally adapts to the dynamic trajectories.

results in fewer trajectories labeled per-frame. By main-
taining a continuously-changing subspace we can achieve
stable and denser background segmentation results.

5. Conclusions
We have presented a method for segmenting foreground

and background trajectories from moving camera videos
via subspace tracking under changing dimensionality. Our
method is highly scalable in terms of the number of trajecto-
ries and performs segmentation in an online manner, hence
it can work alongside dense optical flow methods. A limi-
tation of our approach is that certain scenes can violate the
orthographic camera assumption, where our subspace will
fail to capture the full background. We plan to investigate
our subspace tracker in the context of multiple types of mo-
tion [25], in order to extend our method to arbitrary motion
segmentation.
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