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Abstract

We address the problem of large-scale fine-grained vi-
sual categorization, describing new methods we have used
to produce an online field guide to 500 North American bird
species. We focus on the challenges raised when such a sys-
tem is asked to distinguish between highly similar species of
birds. First, we introduce one-vs-most classifiers. By elim-
inating highly similar species during training, these classi-
fiers achieve more accurate and intuitive results than com-
mon one-vs-all classifiers. Second, we show how to esti-
mate spatio-temporal class priors from observations that
are sampled at irregular and biased locations. We show
how these priors can be used to significantly improve per-
formance. We then show state-of-the-art recognition per-
formance on a new, large dataset that we make publicly
available. These recognition methods are integrated into
the online field guide, which is also publicly available.

1. Introduction
Classification is one of the most fundamental problems

of computer vision. It is generally assumed that objects
are first detected at a basic level (e.g., bird) and then fur-
ther distinguished with finer granularity (e.g., Tufted Tit-
mouse). While most efforts have focused on basic level cat-
egorization, there has been exciting recent progress in fine-
grained visual categorization (FGVC). Methods have been
demonstrated in many domains, from shoes [5] to motor-
cycles [13], but biological categories–species and breeds–
have been especially well-studied, with work tackling sub-
category recognition of flowers [25], trees [14], dogs [1],
butterflies [8], birds [4], and insects [17]. These biological
domains, where taxonomy dictates a clear set of mutually
exclusive subcategories, are wonderfully well-suited to the
problem, and recognition systems in these domains are of
practical use in ecology and agriculture [2, 17].
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Figure 1. The Birdsnap web site, online at birdsnap.com.

Many of these applications require systems that scale to
hundreds or even thousands of categories. A recent anal-
ysis [24] has shown that while state-of-the-art recognition
methods perform well at basic-level recognition even on a
1000-category dataset such as that in the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC), these meth-
ods often confuse subcategories. This is intuitive; within the
domain of a single basic-level category, visual similarity in-
creases with the number of subcategories, often producing
sets of subcategories that are nearly indistinguishable.

In this work, we approach the problem of large-scale
fine-grained visual categorization by detailing methods
needed to produce a digital field guide to 500 North Amer-
ican bird species. This online field guide, Birdsnap, avail-
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Figure 2. Sample images from the Birdsnap dataset, with bounding boxes and part annotations.

able at birdsnap.com, is a complete working system with a
state-of-the-art visual recognition component that identifies
birds in uploaded images. Figure 1 shows the home page.
The 500 species (subcategories) have extensive visual over-
lap, with species within many genera, e.g., terns (Sterna),
scrub-jays (Aphelocoma), and some sparrows (Melospiza),
exhibiting only slight visual differences. To address this,
we introduce two ideas that mitigate complications arising
from large numbers of highly similar subcategories.

The first we call “one-vs-most” classification, a replace-
ment for one-vs-all classification, which is popular in fine-
grained recognition (e.g., [4, 21]). One-vs-all classifiers can
have particular difficulty with highly similar classes, as each
one-vs-all classifier finds samples very similar to the posi-
tive class in the negative training set. We show that reducing
this difficulty in the training set leads to better results.

Our second method is based on the observation that mod-
ern cameras embed more than image data in the images they
capture. In particular, many cameras sold in recent years are
phones, and embed the time and location of capture in the
image files they produce. Biological categories in particular
often have a well-studied geographic distribution, and it is
wasteful not to use this information. For migratory animals,
the distribution depends on time as well as location, and we
will show how the estimation and use of a spatio-temporal
prior dramatically improves classification accuracy.

Finally, a key requirement of a field guide is to instruct
the user on how to distinguish visually similar species. We
present a fully automatic method for providing this instruc-
tion, with better results than our previous method [3].

Details of the methods used to produce the Birdsnap field
guide are laid out in Sections 3-6, after a discussion of the
most closely related work in Section 2. For completeness,
we summarize the main contributions of this paper below:

1. We release and give a complete description of a work-
ing online field guide to 500 of the most common
North American bird species.

2. We propose “one-vs-most” classification, a method for
improving the accuracy of multiclass recognition when
subsets of the classes are nearly indistinguishable.

3. We introduce a spatio-temporal prior on bird species.
We show how to estimate this prior from an
irregularly-sampled dataset of 75 million sightings
records, and show that use of the prior provides sig-
nificant improvement in classification accuracy.

4. We present state-of-the-art bird species recognition re-
sults, with higher accuracy on a more difficult dataset
than previous work.

5. We release the Birdsnap dataset for fine-grained vi-
sual classification, with 49,829 images spanning 500
species of North American birds, labeled by species,
with the locations of 17 body parts, and additional at-
tribute labels such as male, female, immature, etc.

6. We present a method for automatically illustrating the
differences between similar classes.

2. Related Work
Much recent work in fine-grained visual categoriza-

tion has focused on species identification, with work on
leaves [14, 25], flowers [19, 25], butterflies [8, 29], in-
sects [17], cats and dogs (e.g., [16, 21]), and birds (e.g.,
[4, 6, 7, 8, 12, 30, 32, 33]). In most of this work, features
are extracted from discriminative parts of the object, and
used in a set of one-vs-all classifiers. Our one-vs-most clas-
sifiers use the POOF features introduced in [4] due to their
excellent reported results in bird classification.

The large amount of recent work on fine-grained recog-
nition of birds has been spurred by the availability of the
excellent CUB-200 dataset [28]. Unfortunately CUB-200
includes species from many parts of the world but does not
provide coverage of all or most species for any one part
of the world. Our dataset covers all the commonly sighted
birds of the United States, allowing us to produce a useful
regional guide, and is over twice the size of CUB-200.

The first modern, illustrated field guide to birds was Pe-
terson’s A Field Guide to the Birds [22], published in 1934,
with many successors. Online or mobile app guides in-
clude translations of paper guide books [18] and digital-
only guides [20], but do not offer automatic recognition.
Compared to existing digital guides that perform automatic
recognition, Leafsnap [14] and the Visipedia [6] iPad app,
our guide covers more species and requires less user effort.
The generation of the “instructive,” part of Birdsnap (not
the automatic recognition component) is based on [3], with
improvements described in Section 8.

3. The Birdsnap Dataset
Our dataset contains 49,829 images of 500 of the most

common species of North American birds. There are be-
tween 69 and 100 images per species, with most species
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Figure 3. One-vs-most classifiers (top) improve both overall accuracy and the consistency and “reasonableness” of classification results.
Here, they return the correct species at rank 4, with the top 5 results all terns (like the correct species). One-vs-all classifiers (bottom) omit
the correct species from the top 5, and include a gull, a swallow, and a sandpiper. The supplementary material shows additional examples.

having 100. Each image is labeled with a bounding box
and the location of 17 parts (see Figure 2). Some images
are also labeled as male or female, immature or adult, and
breeding or nonbreeding plumage.

The images were found by searching for each species’
scientific name on Flickr. For species for which this did
not yield enough images, we ran additional searches using
the common names. The images were presented to label-
ers on Amazon Mechanical Turk, with illustrations of the
species from a field guide, for confirmation of the species,
and to flag images with no birds or multiple birds, or non-
photographs. Labelers also marked the locations of the 17
parts. All labeling jobs were presented to multiple labelers,
and images with inconsistent results were discarded.

Our dataset is similar in structure to CUB-200 [28], but
has three important advantages. First, it contains two-and-a-
half times the number of species and four times the number
of images. Second, it covers all the most commonly sighted
birds in one part of the world (the United States), which lets
us build a tool that is useful in that region. Third, our dataset
better reflects the appearance variation within many species.
In particular, many bird species exhibit sexual dimorphism,
with males and females having very different appearance.
For example, in the red-winged blackbird, only the male has
the distinctive red markings on the wing. CUB-200 contains
only male red-winged blackbirds, while our dataset contains
a mix of males and females.

4. One-vs-Most Classifiers
A fundamental problem in fine-grained visual catego-

rization is how to handle subcategories that are nearly in-
distinguishable. In the bird world, an example of this prob-
lem is the terns, comprising ten species across six genera
in our dataset, all of very similar appearance. If we train
a discriminative one-vs-all classifier in the usual way for,
say, the Common Tern, that classifier will be trained based
on a positive set with images of just the common tern and
a negative set that includes, in addition to non-terns, im-

ages of nine different species that look very much like the
positive species. A classifier in this situation is very likely
to latch on to accidental features that distinguish the Com-
mon Tern from other terns only in this particular training set
and de-emphasize significant features that distinguish terns
from non-terns.

To mitigate this issue, we omit from the negative training
set all images of the k species most visually similar to the
positive species (we use the similarity measure described in
[3]). We call the resulting classifier a one-vs-most classifier.
When the classifier omits similar terns from the negative
training set, it is free to take advantage of features shared
by terns (but different from other birds) as well as features
that are unique to the common tern. Given a training set
and a similarity measure, we choose the best value for k by
evaluating performance on a held out set.

Note that one-vs-most classifiers can be implemented as
a special case of cost-sensitive learning [9], by setting the
cost of misclassification as the k most similar species to
zero. However, while cost-sensitive learning usually sacri-
fices accuracy for lower cost, we will show in Section 6 that
one-vs-most classifiers lead to both more reasonable (lower
cost) errors and a reduction in overall error rate.

Birdsnap uses a set of one-vs-most SVMs based on
POOFs, which are shown to be excellent features for bird
species identification in [4]. Using one-vs-most classifiers
brings a significant boost to accuracy. In addition, we find
a qualitative benefit. Figure 3 shows the top 5 species re-
turned for a query image of a Common Tern. The one-vs-all
classifiers return two terns (very similar to the correct class),
a gull (somewhat similar), and two “very wrong” species.
The one-vs-most classifiers return 5 tern species, all very
similar to (or equal to) the correct species. This pattern oc-
curs for many queries; the one-vs-all classifiers, whether or
not they find the correct species, often include species that
are very different from the query image. Even when the
rank-1 species is correct, this is a poor user experience. Re-
sults from the one-vs-most classifiers are more consistently
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Figure 4. Fixed-time slices of our spatio-temporal prior show the
Barn Swallow arriving from South America during its spring mi-
gration (above) and established in its summer grounds (below).
Brighter regions indicate higher likelihood of a sighting.

similar to the query image. Experiments in Section 6 show
the advantage of one-vs-most classifiers in both accuracy
(Figures 5 and 7) and consistency (Figure 6).

5. A spatio-temporal prior for bird species
Prior knowledge can improve the performance of clas-

sification systems. A spatio-temporal prior is attrac-
tive for bird species identification, because the density of
bird species varies considerably across the continent and
throughout the year, due to migration. We see this in Fig-
ure 4, where slices of our spatio-temporal prior reveal the
migration pattern of the Barn Swallow.

There is previous work using spatial priors to improve
vision performance. For example, in pedestrian detection,
knowledge of the ground plane and street layout can restrict
a detector to regions of interest [10]. However, we are not
aware of any work estimating spatio-temporal priors from
large-scale observations to improve classification.

In order to combine a spatio-temporal prior with classi-
fiers, we must convert the classifier output to a probability.
As suggested by [31] we use the method of Platt [23] to
produce probabilities from the output of the SVMs. This
gives an estimate of P (s|I) for each species s given image
I , but these estimates may not be consistent with a single
probability distribution. [31] note that simply normalizing
the probabilities so that

∑
s P (s|I) = 1 works well in prac-

tice, and we follow this suggestion. To take advantage of
the location x and date, t at which the photo was captured,
we wish to find P (s|I, x, t). Bayes’ rule gives us

P (s|I, x, t) = P (I, x, t|s)P (s)/P (I, x, t). (1)

We assume the image and the (location, date) pair are con-
ditionally independent given the species, so this becomes

P (s|I, x, t) = P (I|s)P (x, t|s)P (s)/P (I, x, t). (2)

Applying Bayes’ rule to P (I|s) and P (x, t|s), we get

P (s|I, x, t) = P (s|I)P (I)

P (s)

P (s|x, t)P (x, t)

P (s)
P (s)/P (I, x, t)

∝ P (s|I)
P (s)

P (s|x, t), (3)

where we have dropped all factors that do not depend on s,
as they will not affect the classification decision. P (s|I)

P (s) is
the calibrated classifier score (P (s) appears in the denomi-
nator because in training the classifier we first equalize the
number of images for each species). P (s|x, t) is the spatio-
temporal prior for the species.

5.1. Adaptive kernel density estimation of the
spatio-temporal prior

In this section we construct an estimate for the prior
probability that a bird observed at a given location and date
belongs to a particular species. We use this prior to improve
recognition performance of our classifiers (Section 5) and
create visualizations that illustrate the varying distribution
of a species throughout the year, or to provide a guide to the
current species that one might observe at a particular place
and time (Section 7).

Our prior is based on over 75 million records of North
American bird sightings provided by eBird [26]. In addi-
tion, we make use of structural knowledge that some birds
migrate annually, while others may remain year-round at a
given location. We combine this information by first ap-
plying a variant of adaptive kernel density estimation to
densely approximate the probability density of expected
bird observations throughout the year in all parts of the US.
We then post-process this density for each species to de-
termine whether that species has been observed to migrate,
and to determine the timing of migrations.

We wish to estimate the prior probability of a bird ob-
servation, P (s|x, t), i.e. the probability that an observation
made at time t and location x is of species s. As the density
of a bird species displays much greater variation through-
out the year than across different years [11], we let t denote
a day and month, pooling data across years. Although we
have a large volume of observational data available, direct
estimation of the probability from this data is problematic,
because of the uneven distribution of observations. Birding
observations are concentrated near areas of high population
density and/or at locations known to attract a wide variety
of birds (for example, a high proportion of observations in
New York City are reported from Central Park), and may
occur disproportionately at certain times of year.

To deal with sparse data, we use adaptive kernel density
estimation. First, we divide our problem into two parts. We
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k = 0 (r1: 64.9%, r5: 79.8%)

k = 5 (r1: 66.5%, r5: 81.0%)

k = 10 (r1: 66.4%, r5: 81.8%)

k = 15 (r1: 66.6%, r5: 82.4%)

Figure 5. As we increase k, accuracy of the one-vs-most classifiers
initially increases at all ranks. Results for additional values of k,
shown in Table 1, are omitted for clarity.

estimate the density that any observation will occur at (x, t),
and we also estimate the density of observations of species
s at (x, t). P (s|x, t) is then the ratio of these two densities.

We use a balloon estimator [27]:

f̂(y) =
1

nh(y)d

n∑
i=1

K

(
yi − y

h(y)

)
. (4)

Here, f̂(y) is the estimated density at y = (x, t), n is
the number of samples, d is the dimension of the space,
yi = (xi, ti) is the ith sample, K is the kernel, in our case
a Gaussian, and h is the bandwidth, which depends on the
location and time, y, at which we are estimating the density.
As noted by [27], the estimated density does not globally
integrate to 1, but this is not a problem in our context, since
we are taking the ratio of two estimates in which the same
h is used for bandwidth. We set h, the standard deviation
of the Gaussian, to half the distance to the 500th-nearest ob-
servation. We sum only over nearby observations, as distant
observations contribute only small values to the sum. So we
take

P (s|x, t) ≈

∑
yi∈N(y),s K

(
yi−y
ho(y)

)
∑

yi∈N(y) K
(

yi−y
ho(y)

) . (5)

The sum in the numerator is only over observations of
species s. Note that ho depends on all observations, not just
those of species s. We take N(y) to include all observa-
tions within a distance of 2h from y, guaranteeing that the
estimate will be derived from a neighborhood containing at
least 500 observations.

Even when we restrict sums to N(y), this computation
is potentially expensive. For this reason, we begin by dis-
cretizing all observations into spatio-temporal cubes with
a spatial width of one-quarter degree of latitude/longitude

k rank 1 rank 3 rank 5 rank 10
0 0.649 0.753 0.798 0.846
1 0.658 0.755 0.799 0.851
3 0.660 0.762 0.807 0.863
5 0.665 0.768 0.810 0.863
7 0.666 0.779 0.816 0.869
10 0.664 0.783 0.819 0.872
15 0.666 0.785 0.824 0.873
20 0.661 0.786 0.823 0.877
30 0.657 0.792 0.836 0.879
40 0.659 0.790 0.830 0.885
50 0.648 0.787 0.830 0.882

Table 1. Accuracy of the one-vs-most classifiers increases at all
ranks as k increases to 15. Beyond k = 15, high-rank accuracy
continues to increase, but rank-1 accuracy decreases.

and a temporal width of six days. This allows us to repre-
sent many observations with a single point, weighted by the
number of observations. Distance calculations are done in
units of these cubes, so a spatial distance between observa-
tions of a quarter degree is “equal” to a temporal distance
of six days for purposes of kernel calculation.

The problem of building spatio-temporal models of
species distribution has been previously studied in the ecol-
ogy literature. [11] contains a discussion of a number of
prior methods, and proposes a new method in which spa-
tially overlapping decision trees are combined to estimate
the density of species observations. The input to the deci-
sion tree classifiers is a location and time, along with other
meta-data about that location such as the elevation and type
of land cover. Intuitively, one expects that this type of in-
formation can be useful, although [11] do not compare to
a model that does not use this information. Unfortunately,
while interesting, their system is rather complex, and they
do not describe all parameters needed to replicate their re-
sults, nor do they make an implementation available for pur-
poses of comparison.

6. Experiments on the Birdsnap Dataset
We hold out a test set of 2443 images–two to five per

species–and train on the rest. Where images for a species
include multiple images from a single Flickr account, we
ensure those images are all in training or all in test, to avoid
having test images of the same individual bird at the same
time and place as any training image.

We learn 5000 random POOFs [4] from the training
images using the labeled part locations, then extract the
POOFs for one-vs-most training using detected part loca-
tions. We use the part detector of [15], which includes a
random component, so we run it three times on each train-
ing image to augment the training set. This gives 250-285
training (image, parts) pairs per class, from which we use
the 200 most accurate detections, reasoning that if the part
detection fails badly, classification cannot succeed. Each
one-vs-most classifier is a linear SVM trained on these 200
positive samples and 100 samples (randomly chosen from
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Figure 6. Mean visual distance between query species and returned
species. One-vs-most classifiers return species that are more simi-
lar to the query species.

the 200) for each negative class. The extra positive samples
improve the balance of the training set.

Many birds form flocks, and photographs often contain
multiple birds–not always of the same species. To resolve
this ambiguity and reduce response time, we ask users to
click the rough location of the head and tail, giving us an
approximate bounding box. This limits the search space
considered by the part detector. In experiments, we gen-
erate these click locations by randomly perturbing the true
location of the eye and tail in x and y by up to an eighth of
the side length of the bounding box .

As with the images, we hold out a random subset of the
bird sightings for testing. The North American portion of
the eBird dataset includes 6,249,584 checklists–lists of the
birds seen by an observer on a particular outing–with a total
of 76,833,202 individual bird sightings. We hold out a ran-
domly selected ten percent of the checklists for testing, and
estimate the spatio-temporal prior from the remainder.

Each submission to the identification system consists of
an (image, location, date) triple. We construct a test set by
first choosing a random 10,000 sightings from the held-out
eBird data, yielding a set of 10,000 (species, location, date)
samples. For each sample, we randomly choose an image
of that species from the held-out image set. This produces
a test set of 10,000 (image, location, date) triples.

First, we seek the optimal value of k for the one-vs-most
classifiers, i.e. how many species should be left out of the
negative training sets. Figure 5 and Table 1 show accuracy
within the top r guesses for several values of k. We see
that while rank-1 accuracy peaks at 5 ≤ k ≤ 15, rank-5
accuracy increases through k = 30, and rank-10 through at
least k = 40. This is expected: at higher ranks, it is less
useful to distinguish between highly similar species. For
Birdsnap, we choose k = 15, which produces a nice boost
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Labeled parts (r1: 79.9%, r5: 95.1%)

One−vs−most + S−T prior (r1: 66.6%, r5: 82.4%)

One−vs−all + S−T prior (r1: 64.9%, r5: 79.8%)

One−vs−most (r1: 48.8%, r5: 71.4%)

One−vs−all (r1: 48.5%, r5: 68.6%) [4]

Figure 7. The one-vs-most classifiers and spatio-temporal prior
each contributes significantly to overall performance. The dashed
line, using labeled part locations, shows hypothetical performance
with human-level part localization.

at rank 5 without sacrificing accuracy at rank 1.
Figure 6 demonstrates the effect seen qualitively in Fig-

ure 3: that the top few species returned by the one-vs-most
classifiers are more consistently similar to the query species
than those returned by one-vs-all classifiers. We use the vi-
sual distance measure of [3], normalized so that the average
distance between species is one, and find the mean over the
test set of the distance from the species of the query image
to the species returned at rank r. As suggested by Figure 3
and confirmed by Figure 6, the species returned by our one-
vs-most classifiers are more visually similar to the query
species than those returned by one-vs-all classifiers.

Figure 7 shows the contributions of the one-vs-most clas-
sifiers and the spatio-temporal prior over the standard one-
vs-all classifiers (equivalent to one-vs-most with k = 0)
without the prior. Note that this baseline–POOF-based one-
vs-all classifiers–is the method of [4], which reports state of
the art results on CUB-200. We see that at rank 5, the prior
increases accuracy from 68.6% to 79.8%. This translates to
a reduction in error rate of 35.6%, i.e. 35.6% of the errors
of the baseline system are corrected by use of the spatio-
temporal prior. Use of the one-vs-most classifiers brings
rank-5 accuracy to 82.4%, an additional 12.9% reduction in
error rate. Figure 7 also shows our system’s accuracy if we
use the manually labeled part location at training and test
time. With manually labeled parts we achieve 79.9% accu-
racy at rank 1 and 95.1% at rank 5. The large boost from
using manually labeled parts suggest there is still plenty of
room for improvement in part detection.

7. Visualizing species frequency and migration
The density estimation method described in the previous

section smooths our observation data and fills in the prior in
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Figure 8. Species density over time in a fixed location. The “raw density” is the estimate from Section 5.1. Applying a median filter and
adaptive threshold lets us recognize the Wild Turkey as present year round, despite the low frequency.

locations with few observations. Still, some noise remains.
We can use structural knowledge of bird migrations to re-
duce this noise. For example, if we can determine that a
bird has migrated away from a location in the winter, a few
scattered observations can be treated as noise, and thresh-
olded to zero. There is particular value in determining when
a species is not present at a location, because we can use this
knowledge to limit the species shown to a user browsing lo-
cal birds. Also, we provide users with information about the
timing of migration, which is of general interest.

Figure 8 shows the densities of three species. While most
estimated densities are smooth over time, some rarely re-
ported species, such as the Wild Turkey, have noisy densi-
ties. To smooth the noise without moving the edges, where
the bird transitions between presence and absence, we apply
a median filter. We then apply an adaptive threshold of 20%
of the peak density to determine presence and absence.

At each location, a species can exhibit one of the follow-
ing patterns of presence and absence:

1. in some locations, never present,
2. in some locations, present year-round, e.g., the Wild

Turkey in Chilmark, MA,
3. in the summer or winter grounds, present during one

interval, e.g., the Barn Swallow in Cornwall, CT, or
4. on the migration route, present during two intervals,

e.g., the Scarlet Tanager in Key West, FL.
(The examples are shown in Figure 8.) The 20% thresh-
old is chosen empirically to make most species follow these
patterns. To give users a sense of the bird activity around
them, we give them the option of only showing birds that
are currently in their area. Birds that follow the third pat-
tern (indicated by two transition points during the year) and
are close to transition are marked as “arriving” or “depart-
ing,” while birds following the fourth pattern are marked as
“migrating through.”

8. Illustrating field marks
A traditional field guide is not a black box that identi-

fies birds. Rather, through text and illustrations, it describes
the distinguishing features, or field marks, of each species.
This allows the user to justify the identification decision,
and, once the field marks have been learned, to make future
identifications without reference to the guide.

To achieve this in our online field guide, we illustrate,
for any pair of similar species (si, sj), features that effec-

tively discriminate between them. To find such features,
we consider a set of POOFs [4] as candidates. A POOF
is a scalar-valued function trained to discriminate between
two species based on features extracted from a particular re-
gion. We take the set of all POOFs trained on (si, sj) and
rank them by classification accuracy on a held-out set using
a simple threshold classifier. Then we illustrate each of the
top-ranked POOFs with a pair images, one of si and one of
sj , overlayed with ellipses that approximate the region used
by the POOF, following the method of [3]. Each image pair
illustrates a field mark.

The region used by each POOF is roughly set by the
choice of two parts to an ellipse covering those two parts.
Ellipses for different POOFs can have significant overlap,
for example the POOF based on the beak and the crown
often overlaps with that based on the beak and the fore-
head. To present a list of distinct field marks, we filter the
ranked list of POOFs based on the Tanimoto similarity of
the two ellipses, which is the ratio of the ellipses’ intersec-
tion to their union. We define a Tanimoto score between
two POOFs that discriminate between species si and sj as
the mean Tanimoto similarity between the ellipses drawn by
the two POOFs, taken over the held-out images of si and sj .
We exclude any POOF whose Tanimoto score with a higher-
ranked, non-excluded POOF is above a threshold. We find
that a threshold of 0.05 gives a clear distinction between
POOFs in the final list. Birdsnap displays the image pairs
for the top three POOFs in the filtered list, with ellipses.

We previously [3] proposed a similar method for display-
ing differences between classes, but with a different ranking
function and without filtering the ranked list of POOFs. The
new ranking function, classification accuracy, is simpler and
more intuitively related to our goal (to find POOFs that suc-
cessfully discriminate between the classes). Figure 9 shows
illustrated images for the top three field marks distinguish-
ing the Great Egret and the Snowy Egret by both methods,
and particularly shows the need for the filtering step. Addi-
tional examples are included in the supplementary material.
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