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Abstract

We present a tool for re-ranking the results of a specific
query by considering the (n+1)×(n+1) matrix of pairwise
similarities among the elements of the set of n retrieved re-
sults and the query itself. The re-ranking thus makes use of
the similarities between the various results and does not em-
ploy additional sources of information. The tool is based on
graphical Bayesian models, which reinforce retrieved items
strongly linked to other retrievals, and on repeated cluster-
ing to measure the stability of the obtained associations.
The utility of the tool is demonstrated within the context of
visual search of documents from the Cairo Genizah and for
retrieval of paintings by the same artist and in the same
style.

1. Introduction
Searching digital collections as part of ongoing research

is inherently different from everyday use of Internet search
engines. A scholar is often interested in gathering all results
relevant to her work and is not satisfied with just the most
relevant one that best matches the intent of the query. Our
focus is on large-scale digital collections, where a query can
retrieve thousands of results. Many of these results might
be irrelevant, but many might require a careful considera-
tion. In order to provide practical tools for researchers us-
ing such a system, we develop methods that consider the
various retrieved documents and identify coherent groups
that include the query. Thus the exploration time needed to
examine query results is reduced by having group elements
reinforce each other, ultimately pointing the researcher’s at-
tention to results that are more likely to match the query in
a meaningful way.

One collection that we consider in this work is the digi-
tal collection of the Cairo Genizah manuscripts, comprising
157,514 fragments collected and maintained by the Fried-
berg Genizah Project [4]. The Cairo Genizah is a large
collection of discarded codices, scrolls, and documents,

written predominantly in the 10th to 15th centuries, and
which is now distributed in over fifty libraries and collec-
tions around the world. The texts are written mainly in He-
brew, Aramaic, and Judeo-Arabic (in Hebrew characters).
Genizah documents have had an enormous impact on 20th
century scholarship in a multitude of fields, including Bible,
rabbinics, liturgy, history, and philology. Most of the mate-
rial recovered from the Cairo Genizah has been digitized
and cataloged. Unfortunately, pages and fragments from
the same work may have found their way to disparate col-
lections around the world and some fragments are very dif-
ficult to read. Scholars have therefore expended a great deal
of time and effort on manually rejoining fragments of the
same original book or pamphlet.

Previously, a visual similarity measure was devel-
oped [20], which is used to find pages that are likely to
have originated from the same original manuscript, before
the vicissitudes of the Genizah separated them. Such groups
of pages are called joins and are of great importance in the
study of the Cairo Genizah.

This visual similarity is used for searching joins in the
following manner. A researcher points to a fragment or a
shelfmark of interest in the digital Genizah database and the
system returns the shelfmarks of Genizah fragments that are
the most similar to the query. In a system recently put on-
line (www.jewishmanuscripts.org), the results are
presented fragment after fragment, and the researcher can
explore the list for as long as she wishes. It is our goal to
build algorithmic tools to help her explore more efficiently,
ranking the more relevant results higher. We base our work
on the assumption that if several fragments are similar to
the query fragment and to each other, then this group as a
whole is more likely to be of interest than a random set of
visually-different retrieval results.

The second collection we consider is a large dataset of
digitized art images obtained from the visual art encyclo-
pedia www.wikipaintings.org thoroughly covering
Western and modern art. For each image, available meta-
data includes artist name and nationality, art movement,
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content, etc. We automatically evaluate the retrieved results
by regarding images painted by the same artist and catego-
rized as the same art movement and content as similar.

2. Related Work
Query-driven image retrieval contributions are mainly

concerned with finding an informative visual representa-
tion. Ranking images by their similarity to the query of
interest provides an effective way to scan the dataset for rel-
evant images. However, this method considers only direct
correlation with the query. The retrieved images collected
also correlate with each other to varying degrees, and from
these local correlations one would like to better infer their
relevancy to the query at hand. That is, a candidate rele-
vancy is estimated not merely by its similarity to the query,
but also by its similarity to other promising candidates.

One possible way to achieve similarity betterment is by
enhancing the similarity between reciprocal nearest neigh-
bors as suggested in [13]. Another alternative is to em-
ploy graphical models for information retrieval, examined
in the context of personalized web search in [2], where
retrieval results are improved by exploiting associations
among items and by regarding personal preferences. Fusion
of query-specific ranking orders based on various similarity
measures is suggested in [22]. Each ranking is represented
as a weighted graph, and all graphs are integrated into a
single graph. The final ranking is chosen either by employ-
ing the pageRank method or by finding the maximal weight
density in the integrated graph.

Graphical models are suited to our data since we wish
to build upon local correlations among small subsets of the
images. These local correlations can be effectively repre-
sented as edges in a graphical model. In addition, graphical
models enable reasoning about hidden long-range correla-
tions, through connectivity and influences. This “act locally
infer globally” capability made graphical models an effec-
tive tool for various clustering-like problems, such as im-
age segmentation, object detection, pose estimation of hu-
man bodies from images, and depth estimation in stereo im-
ages. Previous research on graphical-model based cluster-
ing [17] assumes that the number of classes is known in
advance. Pedestrian grouping identification with graphical
models [12] encourages transitivity by adding constraints
for all triplets of pedestrians. Similar transitivity constraints
were subsequently used at a much larger scale to cluster Ge-
nizah documents in a semi-supervised manner [21].

Finding the maximum a-posteriori (MAP) assignment in
a graphical model involves searching in exponentially large
space. The MAP problem can be described by a linear pro-
gram, where the variables of the program are zero-one prob-
ability distributions that agree on their marginal probabili-
ties. Since this linear program has integer constraints, it
has high complexity. In the last decade a considerable ef-

fort was made to construct a scalable solver for large-scale
linear programs. One of the first approaches was based on
spanning trees over the graphical models and is known as
tree re-weighted belief propagation [19]. This line of work
is continued by [6, 15], presenting the convex belief prop-
agation algorithms for inference. This approach emerges
from methods that decompose the large-scale MAP infer-
ence into many small-scale MAP inference problems, with
interdependent messages sent along the edges of the graph-
ical model. In our work, we employ the distributed method
of [15], and contribute a heuristic method to select the pa-
rameter of the inference algorithm.

The variables inferred from the graphical model can ei-
ther be used to form improved similarity scores to re-rank
the images with regard to the query of interest or as interme-
diate results that are further processed. We suggest the spec-
tral clustering co-occurrence stability method described in
Section 4, which employs the spectral analysis of [11] and
finds a stable re-ranking of the images by repeated runs of
k-means. Stability of spectral analysis often refers to the
stability of the clusters derived from the spectral data (con-
tinuous clustering) and the stability of the clusters obtained
by employing k-means afterwards (discrete clustering). The
stability of the clustering method can be analyzed by testing
the influence of small perturbations in the data [10] and is
arguably an appropriate measure of clustering-method qual-
ity [1]. Our perspective is somewhat different and more lo-
cal: we consider only the cluster that contains the query at
hand and rank highly those documents that tend to co-occur
with it. The idea of finding a good ranking based on co-
occurrence frequencies also appears in [8] in the context of
personalized web search. However, our method of finding
co-occurrences is unsupervised, while that setting is super-
vised multi-label classification, with classes referring to ge-
ographical location, the content of the page, etc. The term
“cluster” is used in that paper to describe a set of documents
tagged by the same label.

3. Similarity Betterment

We deal with a very noisy similarity matrix, in the con-
text of query-driven image retrieval. Ranking the images
by their similarity to the query of interest provides a base-
line way to scan the dataset for relevant images. However,
this method considers only direct correlation with the query
and ignores correlations among candidate images. We try
to leverage these local correlations to better infer the re-
sults’ relevancy to the query at hand. The applicability of
a candidate image is estimated both by its similarity to the
query and by its similarity to other leading candidates. We
concentrate on the n top candidates according to the initial
similarity matrix, and aim to improve their ranking with re-
gards to the query of interest.
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3.1. Model Variables

We employ a tailor-made graphical model solution, in
which binary variables lij denote linking between the query
of interest and one of the candidates or between pairs of
candidates, and the consistent grouping constraint is mod-
eled as multiple transitivity constraints between the linking
variables. The prior probabilities of the lij variables are
derived from the pairwise handwriting-based image simi-
larity of i and j, and are expressed by the pairwise models
γij(lij). For two images that are visually similar, γij(1) is
close to one, and close to zero otherwise, and vice versa for
dissimilar images. Our model assigns the potential of the
top t ranked candidates to 1 (in our experiments, t is set to
10), since empirically these candidates are often linked to
true matches or are a match themselves.

3.2. Transitivity Constraints

We examine triplets of pairs, (lqi, lqj , lij), where q is the
query of interest. Transitivity is violated in assignments that
contain a single zero value, as one image is similar to both
other images but they are not similar to each other.

Let q be the query index, then for each pair (i, j) of im-
ages, the transitivity potential χ(lqi, lqj , lij) equals 0.9 if
(lqi, lqj , lij) = (1, 1, 1) and 0.1 otherwise.

After applying subsampling (see Sect. 3.3), the triplets
remaining in the model are those suspected as transitivity
violating groups. The chosen potential function pushes to-
wards assigning (1, 1, 1) to their corresponding variables.

In comparison, the transitivity potential in [21, 12],
can either increase or decrease the beliefs of the im-
ages suspected as violating transitivity. Their potential
function assigns low values to the transitivity violation
states ((0, 1, 1), (1, 0, 1), (1, 1, 0)), and high values to all
other states, whether they encourage transitivity (that is,
(1, 1, 1)) or solve the violation by ignoring high similari-
ties ((0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 0, 0)). Empirically, our
transitivity potential outperforms the transitivity potential
previously proposed, for our application.

3.3. Subsampling Transitivity Potentials
Due to the large scale of our datasets, subsampling of

the transitivity constraints is required. In [21], all triplets of
images are considered, and the sub-sampling selects triplets
with energy above a predefined threshold. The transitivity
violation in their model is measured by the energy function

γij(1)γik(1)γjk(0) + γij(1)γik(0)γjk(1)

+γij(0)γik(1)γjk(1) .
(1)

Unlike [21], we consider only triplets containing the
query and use our own energy function, which has a trade-
off parameter β, to weight the minimal potential with regard
to the other potentials. Without loss of generality, for every

triplet (i, j, k), let (j, k) be the pair with the minimal poten-
tial value, γjk(1) = min(γij(1), γik(1), γjk(1)), then our
violation energy function is

E(lij , lik, ljk) = γij(1) + γik(1) + β γjk(0). (2)

We set β to 2 in all of the experiments, as transitivity is
likely to exist when two images resemble a third image with
high probability, and we want to find these cases for low
γjk(0) values. Subsampling is performed by calculating the
energy scores and selecting the N maximal triplets. In our
experiments N = 2000.

3.4. Optimization Problem

Our formalization of the model follows [15], and for con-
sistency we denote by xα the variables involved in each
transitivity constraint (lij , ljk, lik). Beliefs are denoted bij
and bα. The variational entropy H(b) is approximated by

H̃(b) =
∑
α

cαH(bα) +
∑
ij

cijH(bij),

The objective function of our Convex Belief Propagation
optimization problem is given by

max
∑
α,xα

bα(xα) lnχα(xα) +
∑
ij,lij

bij(lij) ln γij(lij) + εH̃(b),

(3)
s.t. ∀i, j, lij , α ∈ Nij ,

∑
xα\lij bα(xα) = bij(lij), where

γij and χα are the potentials and Nij stands for all nodes α
for which lij ∈ xα. Parameter ε is set to 1 in our experi-
ments.

3.5. Calibration of the Trade-off Parameters

The objective function presented in Eq. (3) contains the
potential functions γ and χ, and the entropy approximation.
The entropy approximation consists of an entropy expres-
sion for each factor lij and xα, weighted by the trade-off
parameters cij and cα, respectively. Each lij variable has
exactly one matching entropy expression, and the default
assignment of cij = 1 for all H(bij) expressions is rea-
sonable. However, the calibration of cα is not straightfor-
ward and has to be done with care [5]. The complication
stems from the difference in |Nij |, the number of neighbor-
ing transitivity factors of the variables lij .

Let lqi be a binary variable that denotes linking between
the query and some candidate i, then lqi may have (up to
subsampling) a neighboring transitivity factor per each can-
didate j 6= i . For a binary variable lij , denoting the link
between two candidates, on the other hand, the only possi-
ble factor is for α = (lqi, lqj , lij).

Since each transitivity factor has a matching entropy ex-
pression, the belief of nodes lqi with many neighboring
factors is strongly influenced by the entropy expressions
H(bα). As entropy is maximized when all states are equally
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(a) (b) (c)
Figure 1. The belief of the chosen pair (i, j) inferred by the graphical model (explained in the text) as a function of (a) the number of
transitivity factors when cα = 1, (b) the value of cα when the number of transitivity constraints is fixed to 98, and (c) the number of
transitivity factors when cα is calibrated as suggested.

probable, their distribution is pushed towards uniform dis-
tribution. Let |Nα| = (|Nij | + |Nik| + |Njk|)/3 be the
average number of neighbors of the binary variables in α.
To limit the effect of the entropy expressions on the beliefs
of the binary variables, cα is set to η/|Nα|. The parameter
η is manually set to 0.1 in our experiments.

We synthetically demonstrate the effect of imbalanced
entropy maximization expressions on the model’s beliefs.
The synthetic data contains a random continuous similarity
matrix S ∈ [0, 1]100×100, Sii = 1 for i = 1, . . . , 100. One
pair of nodes with matching variable lij is randomly chosen
and its similarity is set to γij(1) = 0.9. We examine the im-
pact of adding a subset of the transitivity factors containing
i, j and a third node k from the remaining 98 nodes, with
a constant potential function χ(lij , lik, ljk) = 0.5 for every
state of the variables and various cα values.

Figure 1(a) shows the belief of lij as a function of the
number of transitivity factors (0 to 98) when cα = 1. When
none of the transitivity factors is added, the belief equals the
prior, bij(1) = 0.9. As more factors are added, the belief
approaches the uniform distribution value of 0.5. This be-
havior illustrates the problem of adding transitivity factors
without balancing their matching entropy expressions.

Figure 1(b) depicts the inferred belief of lij as a func-
tion of the cα when all 98 transitivity constraints are added.
When the entropy expressions are not weighted (cα = 1), the
belief of lij goes to uniform distribution. However, when
cα approaches the reciprocal value of the transitivity count,
the belief is closer to the prior similarity, implying that this
choice of the cα value re-balances the objective function.
Finally, Figure 1(c) depicts the belief of lij as a function of
the number of transitivity factors, when cα is calibrated as
suggested here. As can be seen, the belief of lij remains
close to the prior probability.

4. Spectral Clustering Co-occurrence Stability
To reinforce congruent groups of similar images that are

similar to the query as well, we employ a second method
on the similarity matrix derived from the graphical model.
The similarity between i and j is the belief bij(1) of the

graphical model. Our method uses spectral clustering as
described in [11].

The spectral clustering algorithm receives an affinity ma-
trix A ∈ [0, 1]nxn that represents the pairwise similarities
within a set of n elements. Let D be the diagonal matrix
with elements Dii =

∑n
j=1Aij . The normalized Laplacian

of A is calculated as L = D−1/2AD−1/2. Let X be a ma-
trix whose columns are the s eigenvectors corresponding to
the s largest eigenvalues of L, with rows normalized to unit
vectors. Each row inX can be regarded as an s-dimensional
representation of the elements. These s-dimensional vec-
tors are clustered by employing the k-means algorithm.

The Spectral Clustering Co-occurrence Stability (SCCS)
algorithm works as follows: first, the spectral embedding
of the data (X) is found. Then, k-means is applied repeat-
edly for either a fixed or varying number of clusters, with
random initialization. In all of our experiments we employ
k-means 200 times and set the number of clusters to 100.
The computed relevancy score of an image (its similarity
to the query) is the frequency in which it was clustered to-
gether with the query image. Given the high number of re-
trieved images (3000 in the Genizah datasets, 500 in the Art
dataset), the noisy nature of the similarity matrix, and the
large number of clusters, it is not surprising that the results
of the clustering algorithm depict a large amount of vari-
ability between runs. This variability translates to rather
continuous relevancy scores in all of our experiments.

5. Datasets

5.1. Synthetic Dataset

We simulate pairwise similarities between 1200 images
by randomly generating a 1200×1200 matrix whose values
are normally distributed around 0.3. We create 40 imbal-
anced classes of images by sampling for each class a prior
probability from the distribution [0.2 . . . 1] and dividing by
the sum of all 40 samples. Each image is randomly assigned
to a class based on these priors. For each image, one to three
pairwise similarities with class members are increased to
values normally distributed around 0.9.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (o) (p) (q)
Figure 2. Samples of the Geneva join from which query (a) was taken. Fragment (b) was discovered by our retrieval method. The graphical
model ranks all joins except (o), (p) and (q) among the top 50 candidates, with a significant enhancement over the raw similarity score –
over 90 positions – for fragments (c), (d) and (e). Fragments (o), (p) and (q) are upgraded to the top 50 candidates in the SCCS step.

5.2. Genizah Datasets

The digital image collection of Cairo Genizah
manuscripts contains 157,514 fragments. We exper-
iment with two subsets of the Genizah, the Geneva
benchmark, and a well-studied dataset containing halakhic
books.

For each Genizah shelfmarks, a pre-processing step is
applied. First, handwriting-based image properties are cal-
culated for all images, as described in [20]. Each image
is segmented into fragments that are binarized and aligned
horizontally by rows. Keypoints are then detected in the im-
age by identifying connected components, and local SIFT
descriptors are calculated. All descriptors from the same
image are combined into one vector using bag-of-features
with a 500 keywords dictionary.

The similarity scores employ both simple and learned
similarity scores and combine several scores together by the
stacking technique. The similarity scores were taken from
[20].

The Geneva Genizah Collection is a small collection of
150 Genizah fragments that were brought from Cairo to the
Bibliothèque Publique et Universitaire of Geneve in 1896
and were stored there for over a century. Since their re-
discovery in 2005, they have been studied intensively, and
recently a full catalog of the collection was published [14].

Halakhic Books. A second dataset contains a few dozen
joins of halakhic books from the eighth and ninth cen-
turies [18], found manually by carefully inspecting all re-
lated Genizah fragments.

5.3. Art Dataset

We present a new dataset describing 81,449 unique dig-
itized paintings, covering almost the entire Western and
modern art. This dataset was collected from the visual art
encyclopedia www.wikipaintings.org, a complete

and well-structured online repository of fine art. We will
make the dataset collected publicly available.

For each painting, there exists metadata specifying the
artist name and nationality, art movement, year of creation,
material, technique, painting dimensions and the gallery it
is presented at. This collection contains over a thousand dif-
ferent artists, and is categorized to 27 art movements such
as renaissance and impressionism, and to 45 genres such as
abstract, graffiti and landscape.

We describe a painting by its gray level texture infor-
mation, based on Steerable Filter Decomposition descrip-
tors. These descriptors approximate a matching set of
Gabor filters with different frequencies and orientations.
The descriptors are 28-dimensional, consisting of the mean
and variance of a low pass filter, a high pass filter, and
12 sub-band filters from three scales and four orientation
decompositions. The mean and variance roughly corre-
spond to the sub-band energy, and characterize the strokes
utilized by the artist [3, 23]. We used the matlab im-
plementation of steerable pyramid feature extraction de-
scribed in [16], available at live.ece.utexas.edu/
research/quality. The pairwise similarity is mea-
sured by the euclidean distance between descriptors.

6. Experiments
We evaluate the unique contribution of employing the

graphical model and the SCCS technique 1 by comparing
the final retrieval accuracy of our method to the interme-
diate results, that is to the retrieval given by the “vanilla”
image-based similarity scores and to the retrieval of the be-
liefs learned by the graphical model.

We then compare our method to method [21]. Their
method is also motivated by the Genizah dataset, and shares

1The code is available at http://www.cs.tau.ac.il/˜wolf/
rerank.html
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the aim of finding joins of images, as well as the use of a
graphical model. We compare the retrieval of their learned
beliefs, and also after applying our spectral clustering vari-
ant on these beliefs.

Finally, we compare to both ranking by Graph-pageRank
and Graph-density suggested in [22], and use their publicly
available code. These methods are designed for fusion of
multiple ranking lists based on different similarity matri-
ces. We only have one similarity matrix that defines a sin-
gle ranking order, which can explain the low performance
of these methods in our experiments.

We conduct the experiment on the synthetic data over 40
queries, one per class. The percentage of members of the
class containing the query that are ranked among the top 50
retrieval results is reported in Table 1.

In the two Genizah experiments, shelfmarks from either
one of the the Genizah subsets are used as the query source.
The parameter n is set to 3000, and performance is evalu-
ated by measuring the percentage of the known joins that are
retrieved among the 50 highest ranked results. The results
are presented in Table 1. The contribution of both the simi-
larity betterment and the SCCS step is evident, and there is
a large performance gap compared to previous work.

Our retrieval method discovered an unknown join by
querying a fragment from the Geneva benchmark, shown
in Figure 2(a). The new join, shown in Figure 2(b), is cata-
loged as a page from the Babylonian Talmud tractate Yeva-
mot, and was identified by a Talmud expert as a small part
of another page already recorded as a join. The new join
was ranked 468 by the raw similarity scores, a position typ-
ically overlooked by researchers, and was advanced by our
method to the top 50. The Geneva catalog contains accurate
and up-to-date information on the joins in the collection;
hence a new join discovered by our method is surely un-
known to the Genizah research community.

According to the Geneva catalog there are 27 known
joins of the queried fragment, 22 out of them are in the
Friedberg Genizah collection. The raw similarity scores of
seven of these fragments were ranked bellow 3000 and dis-
carded before the graphical model step, and one fragment
for each of the remaining 15 joins was ranked among the 50
highest scores by our system. The retrieved fragments are
presented in Figure 2(c)–(q).

A known join successfully retrieved by a query from the
halakhic book dataset is shown in Figure 3. The fragments
shown in (a)–(h) belong to the British Library collection.
Query (a) and fragment (b) are erroneously identified in the
library’s catalog [9] as separate from the other fragments.
The raw similarity scores retrieve (b), as well as fragments
(c) and (d) from the group that does not contain the query.
Our method was the only one to associate three additional
members from the second group, shown in (e), (f) and (g).
Three known joins, (h), (i) and (j), are ranked below 50 by

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)
Figure 3. Samples from one join of the halakhic book dataset. (a)
is the query fragment. Fragment (b) is the most similar and is
retrieved with (c) and (d) by the raw similarity scores. Fragments
(e), (f) and (g) are retrieved exclusively by our method, while (h),
(i) and (j) are retrieved by none of the compared methods.

all compared methods.
For the Art dataset, we randomly query 100 paintings,

and use n = 500. For evaluation, images painted by the
same artist and categorized as belonging to the same art
movement and genre are regarded as similar. The accu-
racy presented in Table 1 is the ratio of similar paintings
(by the above definition) out of all possible true matches
(recall rate), among the top 100 retrieved images (as op-
posed to the top 50 retrievals in the Genizah dataset). We
look further down the list since this similarity is very noisy.

Figure 4 shows three query images from the Art dataset.
For each query, we show two images that are categorized
by the same painter, movement and genre as the query, one
of them is ranked by our method within the highest 100
candidates, and the other is ranked bellow 100.

In Figure 5, we show images whose ranking significantly
increased due to the transitivity constraints in the graphical
model. The query image is presented in (a), the ranking of
image (b) climbed from 123 to 65, and the ranking image
(c) increased from 114 to 83.

7. Discussion

Our method combines two different approaches - simi-
larity betterment by graphical models and Spectral Cluster-
ing Co-occurrence Stability based on spectral analysis. The
experiments demonstrate that the contributions of these two
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Method Geneva Halakhic Books Art Synthetic
Similarity scores 44.76% 51.07% 26.37% 17.32%
Belief-based similarity scores [12] 39.05% 46.79% 26.37% 15.10%
Belief-based similarity scores (ours) 53.33% 52.55% 29.67% 38.31%
Similarity scores + SCCS 74.29% 42.50% 26.37% 53.16%
Belief-based similarity scores [12] + SCCS 63.81% 55.35% 28.57% 45.05%
Belief-based similarity scores (ours) + SCCS 77.14% 59.47% 32.97% 56.66%
Graph-pageRank [22] 45.71% 52.06% 25.27% 17.15%
Graph-density [22] 45.71% 51.89% 23.08% 17.24%

Table 1. Comparison of various retrieval methods on the tested benchmarks. The results depict the recall rate within a fixed number of the
top listed results. See text for the description of the methods.

Pellegrini et al. [12] Wolf et al. [21] Our model
Inference Dual Decomposition [7] Dual Decomposition [7] message passing [15],

adjusted cα assignment
Subsampling not required uses the energy function in uses the energy function in
transitivity factors Eq. 1 Eq. 2
Transitivity potential penalize transitivity violations same as Pellegrini et al. encourage linked triplets

(1,1,0),(1,0,1),(0,1,1) (1,1,1)
Prior probability similarity values similarity values similarity values + increased

prior of top candidates
Table 2. A summary of our contributions to the graphical model compared with [12, 21]. These modifications were made in response to
the needs of the specific problem of query-based retrieval. Implementation details are described in Section 3.

Query Retrieved Missed

Figure 4. Images from the Art dataset. Each row shows a query,
one similar image retrieved and one missed by our method. From
top to bottom: Monet, cityscape, impressionism; Levitan, land-
scape, realism; Konchalovsky, landscape, post-impressionism.

steps, which both tap into group congruency, albeit using
very different approaches, partly overlap. It is worth not-
ing that the graphical model suggested in [12] and [21],
which partially resembles our similarity betterment method,
was not designed to be query specific, and therefore it does
not consistently improve retrieval results. The main differ-

(a) (b) (c)
Figure 5. Ranking enhancement due to transitivity association. (a)
is the query. (b) and (c) are the paintings with enhanced re-ranking.
Painted by Sam Francis, abstract genre, abstract expressionism.

ences between the suggested model and the previous ones
are summarized in Table 2.

The SCCS procedure, while highly effective on the Ge-
nizah dataset, was much less effective on the Art dataset.
We hypothesize that this stems from lack of transitivity vi-
olation triplets in the Art data.

The Graph-pageRank and Graph-density methods
of [22], which were designed primarily to combine multi-
ple similarities together, are not competitive in the context
of our experiments, but did extremely well (in the original
paper) when combining local and holistic features. Note
that the nature of our experiment is different, since previous
work focused on the fusion of ranking from various sources,
while we deal with a single, very noisy, similarity matrix.
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Our method is partly motivated by join-finding based on
handwriting similarity, in the Cairo Genizah. Digital pale-
ography holds the promise of scalability: it allows process-
ing of sizable collections of images, and even more practi-
cally at the moment, the comparison of all small subsets of
such collections, thereby finding links that were previously
unknown. As the Genizah visual search engine is making
its online debut as one of the first digital paleography tools
that are fully accessible to the non-technical research com-
munity, an effort is made to closely match the work patterns
that are employed by the scholars when using more tradi-
tional tools. Some researchers consider the search engine to
be an “extended search engine” and feel comfortable scan-
ning the results obtained by it, looking for the images that
are of interest to them. Other researchers expect the system
to provide more structured results and are not satisfied with
linear scanning of lists. This is a separate research direction
not developed here.

8. Summary
In this work we explore the use of re-ranking tools in or-

der to improve the list of retrievals returned by the visual
search. We demonstrate that such a treatment can produce
meaningful results on the “front page” of the results, pro-
vide new insights, and help locate unknown joins. We sug-
gest a graphical model adapted for query specific retrieval
that focuses on factors containing the query variable, and
strengthens specific transitivity connections through the po-
tential function. The model parameters are set such that the
entropy expressions in the objective function remain pro-
portional and do not artificially force the beliefs to uniform
probability. Our Spectral Clustering Co-occurrence Stabil-
ity score measures the relevancy of an image to the query
by the frequency of their co-occurrences within the same
cluster as it emerges from multiple k-means runs.

By using scalable and distributed inference methods, the
underlying computational tasks are solved in minutes and
can be further sped up by using multiple machines and by
caching previous computations. For the exploration of the
Genizah dataset, it is our plan to suggest the use of pre-
computed results obtained by our re-ranking method to each
feasible Genizah query.
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