
Cut, Glue & Cut: A Fast, Approximate Solver for Multicut Partitioning

Thorsten Beier⋆ Thorben Kroeger⋆ Jörg H. Kappes Ullrich Köthe Fred A. Hamprecht
firstname.lastname@iwr.uni-heidelberg.de, kappes@math.uni-heidelberg.de

Abstract

Recently, unsupervised image segmentation has become
increasingly popular. Starting from a superpixel segmen-
tation, an edge-weighted region adjacency graph is con-
structed. Amongst all segmentations of the graph, the one
which best conforms to the given image evidence, as mea-
sured by the sum of cut edge weights, is chosen.

Since this problem is NP-hard, we propose a new ap-
proximate solver based on the move-making paradigm: first,
the graph is recursively partitioned into small regions (cut
phase). Then, for any two adjacent regions, we consider
alternative cuts of these two regions defining possible moves
(glue & cut phase). For planar problems, the optimal move
can be found, whereas for non-planar problems, efficient
approximations exist.

We evaluate our algorithm on published and new bench-
mark datasets, which we make available here. The proposed
algorithm finds segmentations that, as measured by a loss
function, are as close to the ground-truth as the global opti-
mum found by exact solvers. It does so significantly faster
then existing approximate methods, which is important for
large-scale problems.

1. Introduction
Segmentation is an important problem in computer vi-

sion as a first step towards understanding an image. Many
algorithms start with an over-segmentation into superpixels,
which are then clustered into “perceptually meaningful” re-
gions. Usually, the number of these regions is not known
beforehand.

Recently, the multicut formulation [9] (sometimes called
correlation clustering, [8]) has become increasingly popu-
lar for unsupervised image segmentation. Given an edge-
weighted region adjacency graph, the problem is to find the
segmentation which minimizes the cost of the cut edges.
Such an approach has been shown to yield state-of-the-art
results on the Berkeley Segmentation Database [4, 23, 2].

Unfortunately, solving the multicut problem is in general
NP-hard. Any exact solver will therefore be plagued by scal-

*Authors contributed equally.

ability issues. However, segmentation of images with ever
finer superpixel partitionings and of large volume images in
computational neuroscience [5] demand solutions to large
scale multicut problems. In this regime of large-scale prob-
lems, existing solvers either fail to find any solution after
a reasonable time, rely on suitable edge weights (such that
the problem decomposes naturally into independent subprob-
lems) or yield an approximate solution possibly far away
from the optimum.
Contribution. In this work we consider (i) a new perspec-
tive on solving the multicut problem by local move mak-
ing methods together with (ii) a new approximate multicut
solver called Cut, Glue & Cut (CGC). Furthermore, (iii) our
method avoids re-solving the same moves by tracking their
“dirtyness”, which decreases the runtime. (iv) An exten-
sive evaluation on existing and new benchmark datasets
shows that CGC provides results close to optimality and
equal application performance significantly faster than all
its competitors, both exact and approximative methods, and
gives new insights concerning the applicability of competing
methods. (v) Our C++ implementation of CGC is part of the
open-source OpenGM inference library [3].
Organization. In Sec. 2 we review two formulations of the
multicut problem. After discussing related work (Sec. 3),
we review the max-cut problem (Sec. 4). Based on a general
formulation of local partition moves on segmentations in
Sec. 5, we describe our new Cut, Glue & Cut algorithm in
Sec. 6. Extensive experiments on benchmark datasets are
presented in Sec. 7. Finally, we discuss our findings.

2. Problem Formulation
Let 𝐺 = (𝑉,𝐸,𝑤) be a weighted region adjacency graph

of nodes 𝑉 , representing superpixels, and edges 𝐸. The
function 𝑤 : 𝐸 → R assigns a weight to each edge. A
positive weight expresses the desire that two adjacent nodes
should be merged, whereas a negative weight indicates that
these nodes should be separated into two different regions.

A subgraph 𝐺𝐴 = {𝐴,𝐸𝐴, 𝑤} consists of nodes 𝐴 ⊆
𝑉 and edges 𝐸𝐴 := 𝐸 ∩ (𝐴 × 𝐴). We call a connected
component of nodes 𝑉 a region 𝑅 ⊆ 𝑉 . The edges between
𝐴 and 𝐵 form the set 𝐸𝐴−𝐵 := 𝐸 ∩ (𝐴×𝐵). We use the
shorthand 𝐴 := 𝑉 ∖𝐴 for the complement of 𝐴.

1

Each node 𝑖 is assigned a label L𝑖 ∈ {0, . . . , |𝑉 | − 1}.
Using the indicator function 𝛿(·), the multicut problem can
be written as a node labeling problem [7]:

argmin
L

⎧⎨⎩ ∑︁
𝑒=(𝑖,𝑗)∈𝐸

𝑤(𝑒) · 𝛿(L𝑖 ̸= L𝑗)

⎫⎬⎭ , (1)

where 𝛿(𝑎) = 1 if 𝑎 is true and 0 else. While (1) looks like
a common Potts energy without unary terms, there are some
crucial differences:
First, any weight 𝑤(𝑒∈𝐸) can be positive or negative.
Second, the lack of any unary data terms renders the problem
much harder and introduces ambiguity.
Third, the label space is large. In general we have to set
|L| = |𝑉 | to allow for the solution where every supervoxel
becomes its own region without having to solve the graph
coloring problem implicitly. For planar graphs, it would be
sufficient that L𝑖 ∈ {0, ..., 3} because any planar-graph is
4-colorable [6].

An alternative formulation of problem (1) is in terms of
binary edge indicator variables 𝑦 ∈ {0, 1}|𝐸|:

argmin
𝑦

⎧⎨⎩ ∑︁
𝑒=(𝑖,𝑗)∈𝐸

𝑤 (𝑒) · 𝑦𝑒

⎫⎬⎭⏟ ⏞
CUT𝐺(𝑦)

s.t. 𝑦 ∈ MC𝐺. (2)

A segmentation 𝑦 has an associated energy which is denoted
by CUT𝐺(𝑦). MC𝐺 is the set of all valid multicuts of 𝐺;
its convex hull forms the so called multicut polytope [9].
Restricting 𝑦 to MC𝐺 ensures that the labeling is consis-
tent: if 𝑦𝑖𝑗 = 1 then nodes 𝑖 and 𝑗 should be in separate
regions even after connected component labeling. Intuitively,
dangling line segments are forbidden in two dimensional
images, and punctured walls or faces are ruled out in three
dimensional images.

While any segmentation
⋃︀

𝑖 𝑅𝑖 ≡ 𝑉 is represented by
exactly one edge labeling 𝑦 ∈ MC𝐺, many labelings L
represent the same segmentation. Therefore, a multicut rep-
resentation (2) is preferrable to avoid large multiplicities of
local optima. However, an efficient handling of the multicut
polytope is essential.

3. Related Work
Applying state-of-the-art solvers for the labeling prob-

lem (1) is challenging since any permutation of the labelings
transforms an optimal solution into another optimal solution,
see [15] for more details and a recent review.

In general, 𝑦 ∈ MC𝐺 can be enforced by an exponen-
tial number of constraints [9], but in practice – for a given
objective function – a small subset of those are sufficient.
Therefore, a major branch of research has focused on cutting

plane approaches, either by solving a relaxation of (2) by a
sequence of linear programs [17, 18, 15, 11] or by solving
problem (2) exactly by a sequence of integer linear programs
[14, 4, 5, 15, 1, 2].

For the latter, one can avoid the cutting plane procedure
by lifting to the fully connected graph at the expense of
problem size [1]. For many image segmentation problems,
however, the size of the complete graph is prohibitively large.

Alush and Goldberger [1, 2] suggest to use partial optimal-
ity in order to decompose the problem into its positively con-
nected components, defined as the connected components
of the graph 𝐺′ = (𝑉,𝐸′) with 𝐸′ = {𝑒 ∈ 𝐸|𝑤𝑒 > 0}.
These problems are then separately solved to global optimal-
ity. While this recovers the true solution, it depends on the
weights 𝑤 whether a significant reduction of the problem is
possible.

Yarkony et al. [23] suggest a dual column-generating
method, called PlanarCC, which solves a relaxed linear pro-
gram by iteratively solving weighted two-coloring problems.
Because these sub-problems require planarity to be tractable,
PlanarCC is restricted to problems with planar structure.

Another branch of research has focused on specialized
move-making methods [16, 24, 7] that take the degener-
acy of the solution, due to label permutations in (1), into
account. Move-making algorithms maintain a valid solu-
tion (segmentation defined via L or, equivalently, 𝑦 ∈ MC)
throughout the optimization procedure. In each step, a
set of possible moves transforming the current segmenta-
tion is considered, and the move which realizes the maxi-
mal energy decrease is chosen. Therefore, the energy de-
creases monotonically until a (local) optimum is found. The
Kerninghan-Lin method [16], used in circuit-layout design,
applies a sequence of greedy local moves to neighboring
regions. Bagon [7] recently proposed an extension to the
𝛼-expansion move-making algorithm for solving multicut
problems, which handles the large label space and label am-
biguity in (1) by using dynamic label sets and additional
label fixing, respectively.

4. Max-Cut

The max-cut problem [10] (also known as the weighted
2-coloring problem) is a basic subproblem which has to
be solved in the Kerninghan-Lin method [16], Expand-and-
Explore [7], PlanarCC [23] and also our method.

The max-cut problem1 is the specialization of (1) for the
case of binary node labels L𝑖 = {0, 1}, given by

argmin
L∈{0,1}|E|

⎧⎨⎩ ∑︁
𝑒=(𝑖,𝑗)∈𝐸

𝑤(𝑒) · 𝛿(L𝑖 ̸= L𝑗)

⎫⎬⎭ . (3)

1For reasons of consistency, we consider wlog. minimization instead of
maximization.

initial 2-coloring connected components 2-coloring of each
component

done

connected components

done

2-coloring of each
component

done

done

done

done

end of cut phase
(5 sub-problems)

1

2
3

4
5

cut & glue phase
work on pair (3,4)

1

2

3
4
5

cut & glue phase
pair (3,4) result

repeat steps for all pairs of adjacent sub-problems

Figure 1: Left: Illustration of the cut phase. The steps are visualized as a tree. First, a weighted 2-coloring problem (3) is
solved on the initial superpixel adjacency graph of an image. A connected-component labeling yields the child nodes. For each
node, the sequence of solving (3) and connected component labeling are repeated. Whenever a weighted 2-coloring yields
only a single component, the energy cannot be decreased any further and the node has no children (“done”). Right: Illustration
of the glue&cut phase. In the illustrated move, the regions labeled 3 and 4 are first merged and then a new, better partition is
sought, which leads to a better global segmentation. This step is repeated until no more improvement is possible.

This should not be confused with the min-cut problem,
which refers to sub-modular “graphcut problems” with non-
negative edge weights 𝑤, for which a max-flow problem can
be formulated [19]. Intuitively, restricting the label space
to two labels (0 and 1) simplifies the problem. For planar
graphs, (3) can be solved by the Blossom algorithm [22] in
polynomial time. In general this problem is still NP-hard.
In response, Kerninghan and Lin have suggested a greedy
method for (3) used in the KL algorithm [16]. Recently,
Bagon [7] suggested to use QPBO-I [21] for (3). While this
LP relaxation often gives non-integral solutions for many
nodes, the improving extension (-I) [21] iteratively fixes
such nodes and therefore also deals with the ambiguity of
the problem.

In our experiments, we found that using QPBO-I per-
forms better than the greedy method used in the KL algo-
rithm, but slightly worse than optimal solvers (Sec. 7).

5. Partition Moves

In this section we define a class of moves which can be used
to iteratively improve segmentations. The Partition Move
Theorem shows that under some technical conditions, the
improvement of the local sub-problem leads to monotonous
improvement of the global energy.

Theorem: Partition Moves. Let 𝑦𝑡 ∈ MC𝐺 represent the
segmentation of 𝐺 at step 𝑡. Local partition moves are de-
fined over a subset 𝑆 ⊂ 𝑉 for which all edges crossing its
borders have to be labeled one: ∀ 𝑒 ∈ 𝐸𝑆−𝑆 : 𝑦𝑡

𝑒 = 1.
Let 𝐺𝑆 be the respective subgraph of 𝐺 and 𝑦̂ ∈ MC𝐺𝑆

represent a given valid segmentation of 𝑆. For the combined

segmentation

𝑦𝑡+1 :=

{︃
𝑦̂𝑒 𝑒 ∈ 𝐸𝑆

𝑦𝑡
𝑒 else

(4)

the following holds:
(i) 𝑦𝑡+1 ∈ MC𝐺.
(ii) CUT𝐺𝑆

(𝑦̂𝐸𝑆
) ≤ CUT𝐺𝑆

(𝑦𝑡
𝐸𝑆

) ⇒ CUT𝐺(𝑦𝑡+1) ≤ CUT𝐺(𝑦𝑡).

Proof. (i) Let us extend the local segmentation 𝑦̂ to 𝐺 with

𝑦̂𝐺 :=

⎧⎪⎨⎪⎩
𝑦̂𝑒 ∀𝑒 ∈ 𝐸𝑆

1 ∀𝑒 ∈ 𝐸𝑆−𝑆

0 ∀𝑒 ∈ 𝐸𝑆

Since (a) 𝑦̂𝐺 ∈ MC𝐺, (b) 𝑦𝑡+1 = OR(𝑦̂𝐺,𝑦
𝑡), and (c) the

set of multicuts is closed under the OR operation, (i) holds.
(ii) For CUT𝐺𝑆

(𝑦̂𝐸𝑆
) ≤ CUT𝐺𝑆

(𝑦𝑡
𝐸𝑆

), the energy after the
move can be written as:

CUT𝐺(𝑦𝑡+1) =
∑︁

𝑒∈𝐸𝑆

𝑤(𝑒)𝑦𝑡+1
𝑒 +

∑︁
𝑒∈𝐸∖𝐸𝑆

𝑤(𝑒)𝑦𝑡+1
𝑒

≤
∑︁

𝑒∈𝐸𝑆

𝑤(𝑒)𝑦𝑡
𝑒 +

∑︁
𝑒∈𝐸∖𝐸𝑆

𝑤(𝑒)𝑦𝑡+1
𝑒

=
∑︁

𝑒∈𝐸𝑆

𝑤(𝑒)𝑦𝑡
𝑒 +

∑︁
𝑒∈𝐸∖𝐸𝑆

𝑤(𝑒)𝑦𝑡
𝑒 = CUT𝐺(𝑦𝑡) �

To obtain an alternative segmentation 𝑦̂ on 𝐺𝑆 , one can
either (a) solve the multicut problem over 𝐺𝑆 (which is
smaller than 𝐺) or (b) restrict the subset of possible segmen-
tations, e.g. to all two-colorable segmentations of 𝐺𝑆 . If we
solve the problem to optimality and the current segmenta-
tion is in the feasible set of the move, it is guaranteed that
𝑦𝑡+1 never increases the energy. For approximate solutions
this is not the case; here the move should only be accepted

Algorithm 1: Cut, Glue & Cut algorithm
Input: weighted graph 𝐺=(𝑉,𝐸,𝑤)
Output: approx. solution 𝑄 to (1) for 𝐺

1 𝑄0 ← segmentation of 𝐺 into positively connected
components

2 for 𝑛 = 1 . . . 𝑛iter do
3 𝑄𝑛 ← cut phase(𝐺,𝑄𝑛−1) //Alg. 2
4 𝑄𝑛 ← glue cut phase(𝐺,𝑄𝑛) //Alg. 3
5 if 𝑄𝑛 = 𝑄𝑛−1 then
6 exit

in case of energy decrease. While (b) restricts the set of
possible moves, the problems become easier and in most
cases, a specific energy-decreasing sequence of two-coloring
moves (b) can generate the same segmentation as one single
𝑁 -coloring move (a) as sketched in Fig. 2. However, even if
an energy-decreasing sequence exists, finding this sequence
itself is a hard combinatorial optimization problem, which is
why we choose a greedy optimization approach.

6. Cut, Glue & Cut Algorithm
Overview The CGC algorithm (Alg. 1) always maintains a
valid partitioning of the graph, which is iteratively improved
by local moves which act on single or neighboring regions.
It works in two distinct phases: (i) recursive cut phase
(ii) glue & cut phase.

The cut phase recursively splits regions by solving max-
cut problems (3), finally yielding a finer, lower energy seg-
mentation driven by the problem’s weights. In the glue &
cut phase, any two neighboring segments are first merged
and then a new cut is sought between them by solving (3).
These two phases are repeated and the process stops when
the energy cannot decrease any further.

Cut Phase In the cut phase, the regions are recursively
split into smaller and smaller regions tuned to the weights 𝑤
until a local optimum is found. As cut moves we consider
the max-cut solution (3) for a single given region 𝑅 to find

Figure 2: Top: Solving the labeling problem (1) with more
than two colors allows for T-junctions. Bottom: A sequence
of two colorings can model the same T-junction and is often
energy-decreasing.

a better segmentation of the region 𝑦 ∈ MC𝐺𝑅
, and accept

the local move if the energy could be decreased compared to
the previous solution CUT𝐺𝑅

(𝑦𝑅) = 0. The Partition Move
Theorem then guarantees a monotonically decreasing global
energy for the segmentation.

The cut phase is illustrated in the left part of Fig. 1, and
is given as Algorithm 2. All regions are first inserted into a
queue 𝑄. While 𝑄 is not empty, take a region 𝑅 ∈ 𝑄, then
solve the max-cut problem (3) for 𝐺𝑅. Finally, a connected
component labeling of the solution defines a new set of
regions2. If the suggested cut reduces the local energy, we
add the induced regions to 𝑄. Otherwise, the energy of
region 𝑅 cannot further be reduced by this type of move;
region 𝑅 is marked as “done” and added to a list 𝑄′.

Algorithm 2: Cut phase
Input: weighted graph 𝐺 = (𝑉,𝐸,𝑤), segmentation

into regions given as queue 𝑄
Output: segmentation into smaller regions 𝑄′

1 𝑄′ ← ∅
2 while 𝑄 ̸= ∅ do
3 𝑅← queue pop(𝑄)
4 𝑦𝐸𝑅

← solve max-cut (3) for 𝐺𝑅

5 if CUT𝐺𝑅
(𝑦𝐸𝑅

) < 0 then
6 𝑄← 𝑄 ∪ connected components(𝑦𝐸𝑅

)

7 else
8 𝑄′ ← 𝑄′ ∪𝑅

Glue & Cut Phase In this phase, we consider Glue & Cut
moves of pairs of adjacent segments until the energy cannot
be decreased any further, yielding a better solution.

Intuitively, we expect that two common local operations
can decrease the energy: (i) merging two segments or (ii)
moving the boundary between two adjacent segments. This
motivates our algorithm:

We again apply the Partition Move Theorem from Sec. 5.
Given two adjacent regions 𝑅1, 𝑅2 in the current segmenta-
tion, we consider the merged region 𝑅 = 𝑅1 ∪ 𝑅2 (glue),
and find a new segmentation 𝑦̂ ∈ MC𝐺𝑅

(cut) by solving
the max-cut problem (3). The local move is accepted if
the energy CUT𝐺𝑅

(𝑦̂) is lower than the energy of the pre-
vious cut. The Partition Move Theorem then guarantees a
monotonically decreasing energy for the segmentation.

Formally, (Alg. 3 and Fig. 1, right), the glue & cut phase
starts from a given segmentation 𝑄. We first obtain its edge
labeling 𝑦̄. Initially, all edges 𝑒 ∈ 𝐸 are marked “dirty”.

2Note that in general there may be more than two connected regions,
cf. Fig. 1, initial 2-coloring.

3Note that by using 𝐸′ instead of 𝐸, we consider only one representative
edge for each boundary between two regions for performance reasons.

Algorithm 3: Glue & Cut phase
Input: weighted graph 𝐺=(𝑉,𝐸,𝑤), segmentation 𝑄
Output: improved segmentation 𝑄 wrt. (1)

1 mark all edges 𝑒 ∈ 𝐸 as dirty
2 𝑦̄ ← edge labeling(𝑄)
3 while true do
4 𝑐← 0

5 𝐸′ ← {𝑒 ∈ 𝐸𝑅1−𝑅2 |𝑅1, 𝑅2 ∈ 𝑄 adjacent}3

6 for 𝑒 = (𝑖, 𝑗) ∈ 𝐸′ do
7 if 𝑦̄𝑒 = 0 or 𝑒 is clean then
8 continue

9 find regions 𝑅1, 𝑅2∈𝑄, s.t. 𝑖 ∈ 𝑅1, 𝑗 ∈ 𝑅2

10 𝑆 ← 𝑅1 ∪𝑅2 //glue
11 𝑦𝐸𝑆

← solve (3) for 𝐺𝑆 //cut
12 mark edges 𝐸𝑆 clean (⋆)
13 if CUT𝐺𝑆

(𝑦𝐸𝑆
) < CUT𝐺𝑆

(𝑦̄𝐸𝑆
) then

14 𝑐← 𝑐+ 1
15 mark edges 𝐸𝑆−𝑆 dirty (⋆)

16 CC← connected components(𝑦𝐸𝑆
)

17 if |CC| > 2 then
18 mark edges 𝐸𝑆 dirty (⋆)

19 𝑄← 𝑄 ∖ {𝑅1, 𝑅2} ∪ CC
20 𝑦̄ ← edge labeling(𝑄)

21 if 𝑐 = 0 then
22 break

The following is repeated (line 3): For each pair (𝑅1, 𝑅2) of
adjacent regions we pick a single representative edge from
the shared boundary 𝐸 ∩ (𝑅1 ×𝑅2) to form the set 𝐸′ (line
5). Then, for each such representative 𝑒 = (𝑖, 𝑗) with 𝑦𝑒 = 1
and which is marked dirty, we find the best glue & cut move
as described above. If, after processing all 𝑒 ∈ 𝐸′, no move
could be performed, we break out of the outer loop (line 22).

Book-keeping of modified boundaries. In order to avoid
re-solving the same problem multiple times, the algorithm
marks edges as “dirty” or “clean”. If two adjacent regions
are only separated by clean edges, a glue & cut move is
not considered for this pair. In Alg. 3, statements related to
book-keeping are marked with (⋆).

Imagine an accepted glue & cut move on region 𝑅 which
yields exactly two regions𝑅1 and𝑅2. We mark the boundary
between𝑅1 and𝑅2, 𝐸∩(𝑅1×𝑅2), as clean, since re-solving
(3) for 𝑅1 ∪𝑅2 would again lead to the same two-coloring
into 𝑅1 and 𝑅2. However, if an adjacent pair (𝑅1, 𝑅3) is
chosen subsequently, a glue & cut move could alter region
𝑅1 into 𝑅′

1. Therefore, a move between 𝑅′
1 and 𝑅2 could

improve the energy again. To allow this move it is necessary
to mark the boundary of 𝑅′

1 ∪𝑅2 as dirty. Note that for the

case where an accepted move yields more than two regions,
bookkeeping as above would not be correct and the internal
edges of 𝑅 have to be marked dirty.

7. Experiments
We evaluate the performance of our Cut, Glue & Cut

algorithm on two different 2D segmentation benchmarks as
well as on a new 3D volume segmentation benchmark

Algorithms. For our CGC algorithm, we consider three
variants: CGC-𝐵 does not do book-keeping, CGC-𝑃 does
not use the globally optimal Blossom solver for planar
max-cut problems, but rather uses the approximate QPBO-I.
CGC-𝑃𝐵 does not do book-keeping while using QPBO-I as
max-cut solver.

We compare against the following algorithms:
Kerninghan-Lin (KL, [16]), Planar Correlation Clus-
tering (PlanarCC, [23]), Expand-and-Explore [7], LP-based
cutting plane method of a relaxed problem (MC-R), integer
linear program based cutting plane method (MC-I), which
always finds the globally optimal solution. MC-R and MC-I
use facet-defining separation procedures and bounding
techniques as described in [15]. We use the publicly
available C++ implementation in OpenGM 2.1.1 [3] for
KL, MC-R and MC-I. For Expand-and-Explore, we use the
publicly available code4 of the corresponding authors. For
PlanarCC, we kindly obtained the implementation by the
authors of [23]. While both are implemented in MATLAB,
all computation-heavy parts are delegated to C++ functions
via MEX wrappers, such that our comparison is fair.

For PlanarCC, we follow the suggestion of the authors
to stop the algorithm after 40 iterations for better runtime.
Without this, for several instances, PlanarCC does not con-
verge after one hour. With more iterations, the energy of the
solutions improves slightly but at the expense of significantly
longer runtime.

Note that in the Expand-and-Explore algorithm, each
binary sub-problem includes by construction unary terms,
which leads to non-planar sub-problems even when the orig-
inal problem is planar.

2D segmentation We consider planar 2D segmentation
problems derived from the Berkeley segmentation database
(BSD300): (i) models from [4] (test data, 100 instances) and
(ii) models from [23] (training data, 200 instances). While
the former uses local edge likelihoods learned by a Random
Forest, the latter uses global probability of boundary (gPb).
Furthermore, they obtain edge weights 𝑤 from the edge
probabilities p𝑒 using different parameterizations. In [4],

𝑤𝑒 = log

(︂
p(𝑦𝑒 = 0)

p(𝑦𝑒 = 1)

)︂
+ log

1− 𝛽

𝛽
(5)

4http://www.wisdom.weizmann.ac.il/˜bagon

http://www.wisdom.weizmann.ac.il/~bagon

(a) original image (b) superpixels (c) first two coloring (d) end of cut phase (e) CGC

(f) MC-I (global opt.) (g) MC-R (h) PlanarCC (i) Expand & Explore (j) Kerninghan-Lin

Figure 3: Comparison of the different multicut algorithms for a model from [4], based on the superpixel segmentation in
(b). The colored boundaries indicate true positives (yellow), false negatives (red), false positives (blue) and true negatives
(invisible) with respect to the globally optimal solution (f). Top: The image (a) is partitioned into superpixels (b). A single
two-coloring leads to (c) and the cut phase ends with (d). The final output of the CGC algorithm is (e). Bottom: Results of
various competitive methods.

is chosen while [23] use

𝑤𝑒 = log

(︂
1− gPb𝑒

gPb𝑒

)︂
+ 𝛾. (6)

Results for both datasets and different values of 𝛽 and 𝛾
are shown in Fig. 4b and 4a. MC-I finds the global optimum
for all instances. The left plots show the average energy
distance (mean gap) to the optimum. Among all approximate
methods, CGC performs best. Concerning runtimes, CGC
has robustly low runtime for a wide range of parameters
𝛽, 𝛾.

A more detailed comparison for 𝛽 = 0.33, as used in
[13], and 𝛾 = 0.3 can be found in Tab. 2, left and right,
respectively. These tables additionally show how often the
methods find the global optimum (best), and how often they
were able to verify the optimality by themselves (ver. opt).
For Tab. 2, left, groundtruth segmentations and superpixels
were available, such that we can calculate the Variation of
Information (VI, [20]). Interestingly, the globally optimal
solution does not necessarily give the best segmentation as
measured by the VI (but approximately, VI distance gets
larger with increasing energy as expected). This means
that in practice, it is sufficient to run the much faster CGC
algorithm, see also Fig. 3.

Table 1: Performance of various multicut solvers on in-
stances derived from [5] (8 instances, cube length 𝑁 = 400
voxels). See Tab. 2 for a column legend. ver. opt. is seven
for MC-I, else zero.

algorithm runtime value bound best VI

ogm-KL 85.06 sec −53476.75 −∞ 0 4.6930
Expand&Explore 1087.84 sec −57054.25 −∞ 0 3.1228

CGC−𝑃 64.95 sec −57206.18 −∞ 1 2.1514

MC-R 4121.08 sec −20111.68 −58774.97 0 4.0600

MC-I 745.53 sec −57319.41 −57386.73 7 1.8539

3D segmentation For 3D segmentation, recently Kappes
et al. [13] released a benchmark dataset. However, this only
includes one small and one huge instance. Therefore, we
derive a more comprehensive set of instances with volumes
of 303 up to 4503 voxels from the models in [5], available
as part of the OpenGM benchmark [12]. Results are shown
in Fig. 4c and for volumes of 4003 are detailed in Tab. 1.

Based on the energy difference of CGC and CGC-𝑃 for
the planar models, we expect reduced performance for the
non-planar case of 3D volume image segmentation (Fig. 4c).
Still, with a runtime as fast as KL (the fastest algorithm

0 0.5 1 1.5 2 2.5 3

0.125
0.25
0.5
1
2
4
8
16

𝛾

m
ea

n
ga

p
to

op
tim

um

0 0.5 1 1.5 2 2.5 3

0.05

0.25

1

4
8

32

𝛾

m
ea

n
ru

nt
im

e
(s

ec
.) Planar-CC

Expand & Explore
CGC

CGC-𝑃
MC-R
MC-I
KL

(a) Evaluation on the planar model from [23] for different boundary penalties 𝛾, averaged over 200 instances

0.1 0.5 0.9

0.5

1

2

4

8

16

32

64

𝛽

m
ea

n
ga

p
to

op
tim

um

0.1 0.5 0.9

0.05

0.25

1

4
8

32

𝛽

m
ea

n
ru

nt
im

e
(s

ec
.) Planar-CC

Expand & Explore
CGC

CGC-𝑃
MC-R
MC-I
KL

(b) Evaluation on the planar models from [4] for different boundary penalties (𝛽), averaged over 100 instances

90 150 300 450
0

200

400

600

800

1,000

𝑁

di
st

an
ce

to
op

tim
al

en
er

gy

90 150 300 450
0

600

1200

𝑁

m
ea

n
ru

nt
im

e
(s

ec
.)

Expand & Explore
CGC−𝑃

MC-R
MC-I
KL

(c) Evaluation on a new 3D segmentation benchmark for different volume sizes 𝑁3 averaged over 8 instances

Figure 4: Evaluation on various benchmark datasets. Left: Gap to the global optimal energy (MC-I) averaged over all
instances. Right: Mean runtime of the methods. For both 2D and 3D images, CGC outperforms all competitors in terms of
runtime. On 2D images, CGC gives better results in terms of energy than all competitive approximative methods. Only Integer
Multicut (MC-I) gives better partitions in terms of energy but is significantly slower. For 3D volume image segmentation, the
approximate MC-R method beats CGC−𝑃 , though at significant runtime cost. CGC is not applicable due to lack of planarity.

considered), CGC-𝑃 is able to obtain much lower-energy
solutions and lies between MC-I, MC-R and Expand & Ex-
plore. For instances with 4003 voxels, MC-I was only able
to find for 7 out of 8 instances the global optimum within
one hour (Tab. 1).

8. Conclusion

We have presented a new approximate solver, called Cut,
Glue & Cut (CGC) for planar and non-planar multicut prob-
lems based on the move-making paradigm. It works in two

phases: in the Cut phase, a low energy segmentation tuned
to the problem’s weights is created by recursively solving
2-coloring problems, either using the Blossom method (for
planar problems) or QPBO-I. In the Glue & Cut phase, two
adjacent sub-problems are first merged (glue) and then a pos-
sibly better cut is sought between them (cut). This process is
repeated until no energy improvement is possible anymore.
The experimental evaluation shows that CGC is considerably
faster than existing methods while able to match an exact
solver in quality, as measured by the Variation of Information
on 2D images.

Table 2: Mean runtime, energy and bound (if available) for different multicut solvers. Also shown is how often each method
finds the global optimum (“best”), and how often a method is able to verify the optimality by itself (“ver. opt”). Execution
was aborted after one hour. Best values are marked in bold. Left: Summary over the models from [4], 100 instances. The
VI column reports the Variation of Information [20]. Right: Summary over the models from [23], 200 instances. Without
superpixel maps available, VI could not be calculated.

algorithm runtime value bound best ver. opt VI

KL 4.96 sec 4608.57 −∞ 0 0 2.6431
Expand & Explore 2.90 sec 4486.57 −∞ 1 0 2.9153

CGC-𝑃𝐵 6.35 sec 4466.80 −∞ 1 0 2.5247

CGC-𝑃 5.35 sec 4466.80 −∞ 1 0 2.5247

CGC-𝐵 0.63 sec 4445.06 −∞ 23 0 2.5355
CGC 0.42 sec 4445.06 −∞ 23 0 2.5355

MC-R 5.16 sec 4447.47 4442.34 35 35 2.5490
Planar-CC 5.20 sec 4450.73 4437.29 9 8 2.5603

MC-I 2.20 sec 4442.64 4442.64 100 100 2.5363

algorithm runtime value bound best ver. opt

KL 0.04 sec −73.41 −∞ 45 0
Expand & Explore 0.03 sec −89.90 −∞ 130 0

CGC-𝑃𝐵 0.03 sec −89.45 −∞ 104 0

CGC-𝑃 0.03 sec −89.45 −∞ 104 0

CGC-𝐵 0.03 sec −92.25 −∞ 185 0
CGC 0.03 sec −92.25 −∞ 185 0

MC-R 3.48 sec −91.70 −92.39 181 180
Planar-CC 0.36 sec −92.16 −92.39 184 174

MC-I 29.80 sec −92.35 −92.35 200 200

References
[1] A. Alush and J. Goldberger. Ensemble segmentation using

efficient integer linear programming. Pattern Analysis and
Machine Intelligence, 34(10):1966–1977, 2012. 2

[2] A. Alush and J. Goldberger. Break and conquer: Efficient
correlation clustering for image segmentation. In 2nd Inter-
national Workshop on Similarity-Based Pattern Analysis and
Recognition, 2013. 1, 2

[3] B. Andres, T. Beier, and J. H. Kappes. OpenGM: A C++
library for Discrete Graphical Models. CoRR, abs/1206.0111,
2012. http://hci.iwr.uni-heidelberg.de/
opengm2/. 1, 5

[4] B. Andres, J. H. Kappes, T. Beier, U. Köthe, and F. A. Ham-
precht. Probabilistic image segmentation with closedness
constraints. In ICCV, pages 2611–2618. IEEE, 2011. 1, 2, 5,
6, 7, 8

[5] B. Andres, T. Kroeger, K. L. Briggman, W. Denk, N. Korogod,
G. Knott, U. Koethe, and F. A. Hamprecht. Globally optimal
closed-surface segmentation for connectomics. In ECCV,
pages 778–791. Springer, 2012. 1, 2, 6

[6] K. Appel and W. Haken. Every planar map is four colorable.
Illinois J. of Mathematics, 21(3):429–490, 1977. 2

[7] S. Bagon and M. Galun. Large scale correlation clustering
optimization. CoRR, abs/1112.2903, 2011. 2, 3, 5

[8] N. Bansal, A. Blum, and S. Chawla. Correlation clustering.
Machine Learning, 56(1-3):89–113, 2004. 1

[9] S. Chopra and M. Rao. The partition problem. Mathematical
Programming, 59(1-3):87–115, 1993. 1, 2

[10] M. M. Deza and M. Laurent. Geometry of cuts and metrics,
volume 15. Springer, 1997. 2

[11] T. Finley and T. Joachims. Supervised clustering with support
vector machines. In ICML, pages 217–224. ACM, 2005. 2

[12] J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnörr,
S. Nowozin, D. Batra, S. Kim, B. X. Kausler, T. Kröger,
J. Lellmann, N. Komodakis, B. Savchynskyy, and
C. Rother. A comparative study of modern inference tech-
niques for structured discrete energy minimization prob-
lems. CoRR, abs/1404.0533, 2014. http://hci.iwr.
uni-heidelberg.de/opengm2/. 6

[13] J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnörr,
S. Nowozin, D. Batra, S. Kim, B. X. Kausler, J. Lellmann,
N. Komodakis, et al. A comparative study of modern infer-
ence techniques for discrete energy minimization problems.
In CVPR, 2013. 6

[14] J. H. Kappes, M. Speth, B. Andres, G. Reinelt, and C. Schnörr.
Globally optimal image partitioning by multicuts. In EMM-
CVPR, pages 31–44. Springer, 2011. 2

[15] J. H. Kappes, M. Speth, G. Reinelt, and C. Schnörr. Higher-
order segmentation via multicuts. CoRR, abs/1305.6387,
2013. 2, 5

[16] B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure
for Partitioning Graphs. The Bell system technical journal,
49(1):291–307, 1970. 2, 3, 5

[17] S. Kim, S. Nowozin, P. Kohli, and C. D. Yoo. Higher-order
correlation clustering for image segmentation. In NIPS, 2011.
2

[18] S. Kim, S. Nowozin, P. Kohli, and C. D. Yoo. Task-
specific image partitioning. Transactions on Image Process-
ing, 22(1-2):488–500, 2013. 2

[19] V. Kolmogorov and R. Zabih. What energy functions can be
minimized via graph cuts? Pattern Analysis and Machine
Intelligence, 26(2):147–159, 2004. 3

[20] M. Meilă. Comparing clusterings by the variation of informa-
tion. In Learning theory and kernel machines, pages 173–187.
Springer, 2003. 6, 8

[21] C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer.
Optimizing binary MRFs via extended roof duality. In CVPR,
2007. 3

[22] N. N. Schraudolph and D. Kamenetsky. Efficient exact infer-
ence in planar ising models. In NIPS, 2009. 3

[23] J. Yarkony, A. Ihler, and C. C. Fowlkes. Fast planar correla-
tion clustering for image segmentation. In ECCV. Springer,
2012. 1, 2, 5, 6, 7, 8

[24] L. Zhao, H. Nagamochi, and T. Ibaraki. Greedy splitting
algorithms for approximating multiway partition problems.
Mathematical Programming, 102(1):167–183, 2005. 2

http://hci.iwr.uni-heidelberg.de/opengm2/
http://hci.iwr.uni-heidelberg.de/opengm2/
http://hci.iwr.uni-heidelberg.de/opengm2/
http://hci.iwr.uni-heidelberg.de/opengm2/

