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Abstract
The performance of binary classification tasks, such as

action classification and object detection, is often measured
in terms of the average precision (AP). Yet it is common
practice in computer vision to employ the support vector
machine (SVM) classifier, which optimizes a surrogate 0-1
loss. The popularity of SVM can be attributed to its empir-
ical performance. Specifically, in fully supervised settings,
SVM tends to provide similar accuracy to the AP-SVM clas-
sifier, which directly optimizes an AP-based loss. However,
we hypothesize that in the significantly more challenging
and practically useful setting of weakly supervised learning,
it becomes crucial to optimize the right accuracy measure.
In order to test this hypothesis, we propose a novel latent
AP-SVM that minimizes a carefully designed upper bound
on the AP-based loss function over weakly supervised sam-
ples. Using publicly available datasets, we demonstrate the
advantage of our approach over standard loss-based binary
classifiers on two challenging problems: action classifica-
tion and character recognition.

1. Introduction
Several problems in computer vision can be formulated

as binary classification tasks, that is, determining whether
a given input belongs to the positive or the negative class.
As a running example throughout this paper, we will con-
sider the task of action classification, that is, automatically
figuring out whether an image contains a person perform-
ing an action of interest (such as ‘jumping’ or ‘walking’).
The importance of binary classification has contributed to
the development of several supervised learning approaches,
where a binary classifier is estimated using datasets that
consist of training samples along with their class informa-
tion. One such binary classifier that is widely employed in
computer vision is the support vector machine (SVM) [22].
Given a fully supervised dataset, an SVM is learned by min-
imizing a convex regularized upper bound on the 0-1 loss
(that is, the loss is 0 for a correct classification and 1 for an
incorrect classification).

As the most commonly used accuracy measure for bi-
nary classification in computer vision is the average pre-
cision (AP) [5], the choice of SVM may appear surprising.
Specifically, while AP depends on the ranking of the sam-
ples, the 0-1 loss optimized by SVM is only concerned with
the number of incorrectly classified samples. The case for

its use appears even weaker when we consider that there
already exists a related classifier (henceforth referred to as
AP-SVM) that optimizes an AP-based loss function (hence-
forth referred to as the AP loss) [32]. However, a closer look
at the empirical evidence reveals the reasoning behind this
choice: SVM can be trained more efficiently, and provides
comparable accuracy to AP-SVM.

The above observation suggests that we should continue
to collect fully supervised datasets and use simple loss func-
tions. If the supervision entails labeling each sample with
its class, then this task does not appear to be daunting. How-
ever, recent research has shown that the key to achieving
high classification accuracy is to provide additional annota-
tions for each sample that can guide the classifier towards
the correct output [3, 7, 14, 28, 30]. Going back to the ex-
ample of action classification, it would be helpful to not
only know the class information of each image but the exact
location of the person in the image.

The need for complex additional annotations makes su-
pervised learning impractical. To overcome this deficiency,
researchers have started exploring weakly supervised learn-
ing [1, 4, 7, 10, 11, 15, 18, 17, 19, 24, 25], where the anno-
tations of some or all the samples contain missing informa-
tion. Not surprisingly, the convenience of using partial an-
notations comes at the cost of a significantly more challeng-
ing machine learning problem. Specifically, weakly super-
vised learning typically requires us to solve a non-convex
optimization problem, which makes it prone to converge to
a bad local minimum. Given the inherent difficulty of the
problem, we hypothesize that the choice of the loss function
becomes crucial in such settings. In order to provide empir-
ical evidence for our hypothesis, we propose a novel latent
AP-SVM framework that models the missing additional an-
notations using latent variables.

Our formulation differs from the standard latent struc-
tured SVM (latent SSVM) [31] for general loss functions
in three significant aspects. First, it uses a more intuitive
two-step prediction criterion, where the first step consists
of choosing the best latent variable for each sample and
the second step consists of ranking the samples. This is
in contrast to the latent SSVM formulation, which requires
the joint optimization of the latent variables and the rank-
ing. For example, in ‘jumping’ action classification, our
latent AP-SVM formulation would first pick out the bound-
ing box that is most likely to contain a ‘jumping’ person
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in each image, and then rank them. In contrast, the la-
tent SSVM formulation would require us to simultaneously
classify the samples as positive or negative, while picking
out the best bounding box for the positive images (bound-
ing box that is most likely to contain a ‘jumping’ per-
son) and the worst bounding box for the negative images
(bounding box that is least likely to contain a ‘jumping’
person). Second, using the above prediction criterion, the
parameters of latent AP-SVM are learned by minimizing
a tighter upper bound on the AP loss compared to latent
SSVM. Third, unlike latent SSVM, latent AP-SVM lends it-
self to efficient optimization during learning that is guaran-
teed to provide a local minimum or saddle point solution.
While the first of the aforementioned differences makes our
approach more intuitive, the latter two differences provide
a sound theoretical justification for its superiority to latent
SSVM. In order to demonstrate that the theoretical superi-
ority also translates to better empirical results, we provide
a thorough comparison of latent AP-SVM with the base-
line methods for two challenging problems: action clas-
sification and character recognition. For the sake of clar-
ity, we defer the details that are not essential for the un-
derstanding of the paper to the appendices provided in the
supplementary material. To facilitate the use of latent AP-
SVM, we have made our code and data available online at
http://cvit.iiit.ac.in/projects/lapsvm/.

2. Related Work
The popularity of support vector machine (SVM) [22] can

be gauged by its numerous applications in computer vision
including, image classification [13, 27], action classifica-
tion [3, 14, 30] and object detection [2, 23]. The main ad-
vantages of SVM are its well-understood connections to sta-
tistical learning theory [22] and the availability of efficient
algorithms to learn its parameters [8, 9, 20].

One of the disadvantages of SVM is that it optimizes the
0-1 loss instead of the average precision (AP) over the train-
ing dataset. This disadvantage can be addressed by using
the AP-SVM [32] to optimize an upper bound on the AP loss
over the training samples. However, empirically, the per-
formance of SVM is comparable to AP-SVM. Furthermore,
SVM requires less training time compared to AP-SVM.

Another important disadvantage of SVM is its inability to
handle missing information in the annotations. This prob-
lem is alleviated by latent SVM [7], which models missing
annotations as latent variables. The 0-1 loss based latent
SVM can be thought of as a special case of latent structured
SVM (latent SSVM) [21, 31], which optimizes a general loss
function. Latent SSVM has received considerable atten-
tion in the computer vision community [7, 11, 12, 24, 25,
26, 29], on tasks ranging from binary classification (such
as object detection) to structured output prediction (such
as semantic segmentation and indoor scene understanding).
While it can be employed to optimize the AP loss, we will

provide both theoretical and empirical arguments for the su-
periority of our novel latent AP-SVM formulation.

3. Preliminaries
Notation. We use a similar notation to [32]. The training
dataset consists of n samples X = {xi, i = 1, · · · , n} to-
gether with their class information. The indices for the pos-
itive and negative samples are denoted by P and N respec-
tively. In other words, if i ∈ P and j ∈ N then xi belongs
to the positive class and xj belongs to the negative class.
Furthermore, for each sample x, the dataset can also provide
additional annotations, which we denote by h. For example,
in action classification each sample represents an image and
the additional annotation h can represent the bounding box
of the person in the image. To simplify the discussion in
this section, we will assume that the additional annotations
h are known for all samples. In the next section, we will
describe the setting where the additional annotations are la-
tent. We denote the set of all additional annotations for the
positive and negative samples by HP = {hi, i ∈ P} and
HN = {hj , j ∈ N} respectively.

The desired output is a ranking matrix Y of size n × n,
such that (i) Yij = 1 if xi is ranked higher than xj ; (ii)
Yij = −1 if xi is ranked lower than xj ; and (iii) Yij = 0
if xi and xj are assigned the same rank. The ground-truth
ranking matrix Y∗ is defined as: (i) Y∗ij = 1 and Y∗ji = −1
for all i ∈ P and j ∈ N ; (ii) Y∗ii′ = 0 and Y∗jj′ = 0 for all
i, i′ ∈ P and j, j′ ∈ N .
AP Loss. Given a training dataset, our aim is to learn a
classifier that provides a high AP measure. Let AP(Y,Y∗)
denote the AP of the ranking matrix Y with respect to the
true ranking Y∗. The value of the AP(·, ·) lies between 0
and 1, where 0 corresponds to a completely incorrect rank-
ing −Y∗ and 1 corresponds to the correct ranking Y∗. In
order to maximize the AP, we will minimize a loss function
defined as ∆(Y,Y∗) = 1−AP(Y,Y∗).
Joint Feature Vector. For positive samples, the feature
vector of the input xi and additional annotation hi is de-
noted by Φi(hi). Similarly, for negative samples, the fea-
ture vector of the input xj and additional annotation hj

is denoted by Φj(hj). For example, in action classifica-
tion, Φi(hi) can represent poselet [14] or bag-of-visual-
words [3] features extracted from an image xi using the
pixels specified by the bounding box hi. Similar to [32],
we specify a joint feature vector of the input X, output Y,
and additional annotations {HP ,HN} as

Ψ(X,Y, {HP ,HN})

=
1

|P||N |
∑
i∈P

∑
j∈N

Yij(Φi(hi)− Φj(hj)). (1)

In other words, the joint feature vector is the scaled sum of
the difference between the features of all pairs of samples,
where one sample is positive and the other is negative.
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Parameters. The parameter vector of the classifier is de-
noted by w, and is of the same size as the joint feature vec-
tor. Given the parameters w, the ranking of an input X is
defined as the one that maximizes the score, that is,

Yopt = argmax
Y

w>Ψ(X,Y,H), (2)

where H is the set of all the given additional annotations.
Yue et al. [32] showed that the above optimization can be
performed efficiently by sorting the samples (xk,hk) in de-
scending order of the score w>Φk(hk).
Supervised AP-SVM. Given the input X, ranking matrix
Y, and additional annotations HP and HN , we would like
to learn the parameters of the classifier such that the AP loss
over the training dataset is minimized. However, the AP
loss is highly non-convex in w, and minimizing it directly
can result in a bad local minimum solution. To avoid this
undesirable outcome, Yue et al. [32] proposed the AP-SVM
formulation, which minimizes a regularized upper bound on
the AP loss. Specifically, the model parameters are obtained
by solving the following convex optimization problem:

min
w

1

2
||w||2 + Cξ, (3)

s.t. ∀Y : {w>Ψ(X,Y∗, {HP ,HN})
−w>Ψ(X,Y, {HP ,HN})} ≥ ∆(Y∗,Y)− ξ.

Intuitively, the above problem introduces a margin between
the score of the correct ranking and all incorrect rankings.
The desired margin is proportional to the difference in their
AP values. The hyperparameter C controls the trade-off be-
tween the training error and the model complexity.

Problem (3) is specified over all possible rankings Y,
which is exponential in the number of training samples.
Nonetheless, it can be solved efficiently using a cutting-
plane algorithm [32] (described in Appendix A).

4. Optimizing Average Precision with Weak
Supervision

The main deficiency of supervised learning is that it in-
volves the onerous task of collecting detailed annotations
for each training sample. Since detailed annotations are
also very expensive, such an approach quickly becomes fi-
nancially infeasible as the size of the datasets grow. In this
work, we consider a more pragmatic setting where the addi-
tional annotations HP and HN are unknown. For example,
consider ‘jumping’ action classification, where each input
represents an image that can belong to the positive class or
the negative class. In order to learn a classifier that can dis-
tinguish between ‘jumping’ and ‘not jumping’ images, we
only require image-level annotations instead of the bound-
ing box of the person in each image.

The convenience of not specifying additional annota-
tions comes at the cost of a more complex machine learning

problem. Specifically, we need to deal with two confound-
ing factors: (i) since the best value of the additional annota-
tion hi for each positive sample i ∈ P is unknown, it needs
to be imputed automatically; (ii) since a negative sample
remains negative regardless of the value of the additional
annotation hj , we need to consider all possible values of
HN during parameter estimation. In the ‘jumping’ action
classification example, this implies that (i) we have to iden-
tify the bounding box of the jumping person in all the posi-
tive images, and (ii) ensure that the scores of the identified
jumping person bounding boxes are higher than the scores
of all possible bounding boxes in the negative images. In
the following subsection, we describe how the standard la-
tent SSVM attempts to resolve these confounding factors in
order to optimize the AP loss. This will allow us to identify
its shortcomings and correct them with our novel formula-
tion in subsection 4.2.

4.1. Latent SSVM Formulation
Given an input X, the prediction rule of a latent SSVM

requires us to maximize the score jointly over the output Y
and the additional annotations H, that is,

(Yopt,Hopt) = argmax
(Y,H)

w>Ψ(X,Y,H). (4)

The parameters w of a latent SSVM are learned by minimiz-
ing a regularized upper bound on the training loss. Specifi-
cally, the parameters are obtained by solving the following
optimization problem:

min
w

1

2
||w||2 + Cξ, (5)

s.t. ∀Y,H : max
Ĥ
{w>Ψ(X,Y∗, Ĥ)}

−w>Ψ(X,Y,H) ≥ ∆(Y∗,Y)− ξ.

Intuitively, the above problem introduces a margin between
the maximum score corresponding to the ground-truth out-
put and all other pairs of output and additional annotations.
Similar to the supervised setting, the desired margin is pro-
portional to the AP loss.

There are three main drawbacks of the standard latent
SSVM formulation in the case of AP loss optimization. The
first drawback is the prediction rule. This is specified by
problem (4), which requires us to simultaneously label the
samples as positive or negative (optimize over Y) and find
the highest scoring additional annotations for the positive
samples and the lowest scoring additional annotations for
the negative samples (optimize over H) in order to maxi-
mize the score. This is in stark contrast to the prediction
rule of existing weakly supervised binary classifiers, which
first obtain the score of each sample by maximizing over
the additional annotations (regardless of whether they will
be labeled as positive or negative), and then ranking them



according to their scores. For example, in action classifi-
cation, we rank the images according to the highest scoring
bounding box of a person in each image. In other words, we
never compare the scores of particular choice of additional
annotations with a different set of additional annotations.
The second drawback is the learning formulation. This is
specified by problem (5), which provides a very loose up-
per bound on the AP loss. The third drawback is the op-
timization. Specifically, to the best of our knowledge, the
local optimum solution of problem (5) cannot be found ef-
ficiently due to the lack of an appropriate cutting plane al-
gorithm. For the details on the difficulty of optimization of
latent SSVM, as well as an approximate algorithm used in
our experiments, we refer the reader to Appendix C.

4.2. Latent AP-SVM Formulation
We now describe a novel latent AP-SVM formulation that

overcomes the three drawbacks of the standard latent SSVM
framework discussed in the previous section. Specifically,
latent AP-SVM uses an intuitive prediction rule, provides a
tighter upper bound on the AP loss, and lends itself to effi-
cient optimization.

4.2.1 Intuitive Prediction
We use a two-step prediction rule. In the first step, we ob-
tain the value of the additional annotations for each sample
by maximizing the score, that is,

hopt = argmax
h

w>Φ(h). (6)

Next, we obtain the optimal ranking Yopt for the additional
annotations Hopt, that is,

Yopt = argmax
Y

w>Ψ(X,Y,Hopt), (7)

where Hopt is the set of all the additional annotations ob-
tained by solving problem (6) for all samples. Similar to the
supervised setting, the optimal ranking is computed by sort-
ing the samples in descending order of their scores. Note
that our prediction rule is the same as the ones used in con-
junction with the current weakly supervised binary classi-
fiers [1, 7].

4.2.2 Tighter Bound on the AP Loss
We learn the parameters of latent AP-SVM by solving the
following optimization problem:

min
w

1

2
||w||2 + Cξ, (8)

s.t. ∀Y,HN : max
HP

{w>Ψ(X,Y∗, {HP ,HN})

−w>Ψ(X,Y, {HP ,HN})} ≥ ∆(Y∗,Y)− ξ.

Intuitively, the above problem finds the best assignment of
values for the additional annotations HP of the positive
samples such that the score for the correct ranking (which

places all the positive samples above the negative samples)
is higher than the score for an incorrect ranking, regardless
of the choice of the additional annotations HN of the nega-
tive samples.

It is worth noting the significant difference between the
optimization corresponding to latent AP-SVM and the stan-
dard latent SSVM. Specifically, in the constraints of prob-
lem (5), the values of the additional annotations for a cor-
rect and incorrect ranking are independent of each other. In
contrast, the constraints of problem (8) are specified using
the same values of the additional annotations. The follow-
ing proposition provides a sound theoretical justification for
preferring problem (8) over problem (5).

Proposition 1. The latent AP-SVM formulation provides a
tighter upper bound on the AP loss compared to the stan-
dard latent SSVM formulation (proof in Appendix D).
4.2.3 Efficient Optimization
The local minimum or saddle point solution of problem (8)
can be obtained using the CCCP algorithm [33], as described
in Algorithm 1. The algorithm involves two main steps. In
the first step (step 3 of Algorithm 1), it imputes the best ad-
ditional annotations HP of the positive samples given the
current estimate of the parameters. In the second step (step
4 of Algorithm 1), given the imputed values of HP , CCCP
updates the parameters by solving the resulting convex op-
timization problem. We discuss both these steps in detail
below.

Algorithm 1 The CCCP algorithm for parameter estimation
of latent AP-SVM.
Require: X,Y∗,w0, ε

1: t⇐ 0
2: repeat
3: For the current set of parameters wt, obtain the

value of the latent variables H∗P that minimizes the
objective function value of problem (8).

4: Update wt+1 by fixing the latent variables to H∗P
and solving the resulting convex problem.

5: t← t+ 1
6: until Objective function cannot be decreased below tol-

erance ε

Imputing the Additional Annotations. For a given pa-
rameter w, we need to obtain the values of the additional
annotations HP for the positive samples such that it min-
imizes the objective function of problem (8). Since w is
fixed, the first term of the objective function (that is, the
squared `2 norm of w) cannot be modified. Instead, we need
to minimize the slack ξ, which is equivalent to solving the
following problem:

min
HP

max
Y,HN

{∆(Y∗,Y)−w>Ψ(X,Y∗, {HP ,HN}) (9)

+w>Ψ(X,Y, {HP ,HN})}.



We refer to the above problem as output-consistent infer-
ence (since it fills in the missing information under the con-
straint that it is consistent with the output, that is, the opti-
mal ranking). Although problem (9) contains Y and HN ,
the following proposition shows that it can be optimized
easily with respect to HP .

Proposition 2. Problem (9) can be solved efficiently by in-
dependently choosing the latent variable for each positive
sample using the following criterion:

h∗i = argmax
hi

w>Φi(hi),∀i ∈ P (10)

(proof in Appendix E).

Updating the Parameters. Given the imputed latent vari-
ables H∗P , the parameters are updated by solving the follow-
ing convex problem:

min
w

1

2
||w||2 + Cξ, (11)

w>Ψ(X,Y∗, {H∗P ,HN})−w>Ψ(X,Y, {H∗P ,HN})
≥ ∆(Y∗,Y)− ξ,∀Y,HN .

Similar to supervised AP-SVM, the above problem can be
solved using a cutting plane algorithm. The computational
feasibility of the cutting plane algorithm relies on being able
to efficiently compute the most violated constraint. In our
case, the most violated constraint is found by solving the
following problem:

Ŷ, ĤN = argmax
Y,HN

{w>Ψ(X,Y, {H∗P ,HN})

−w>Ψ(X,Y∗, {H∗P ,HN}) + ∆(Y∗,Y)}. (12)

We refer to the above problem as loss-augmented inference
(since it augments the score of the ranking with its AP loss).
Note that, in contrast to supervised AP-SVM, we not only
need to optimize over the ranking Y, but also the variables
HN . The following proposition allows us to perform the
joint optimization efficiently.

Proposition 3. Problem (12) can be solved by first maxi-
mizing over HN using the following criterion:

h∗j = argmax
hj

w>Φj(hj),∀j ∈ N (13)

(proof described in Appendix E).
Using Proposition 3, problem (12) can be solved in two

steps. In the first step we maximize the loss-augmented
score over HN by maximizing the score of each negative
sample independently. The second step is to maximize the
loss-augmented score over Y, which is achieved using the
optimal greedy algorithm of Yue et al. [32] (described in
Appendix B).

5. Experiments
The previous section shows the theoretical benefit of la-

tent AP-SVM over the standard latent SSVM formulation,
namely that it minimizes a tighter upper bound on the AP
loss and allows for efficient inference, while using an intu-
itive prediction rule. We now show that the theoretical ben-
efits translate to improved empirical performance using two
important and challenging problems in computer vision.

5.1. Action Classification
Dataset. We use the PASCAL VOC 2011 [5] action classi-
fication dataset, which consists of 4846 images depicting 10
action classes. The dataset is divided into two subsets: 2424
‘trainval’ images for which we are provided the bounding
boxes of the persons in the image together with their action
class; and 2422 ‘test’ images for which we are only pro-
vided with the person bounding boxes.

Recall that our main hypothesis is that the challenging
nature of weakly supervised learning makes it essential to
use the right loss function during training. In order to
test this hypothesis, we use the ‘trainval’ images to create
five types of datasets that vary in their level of supervision.
Specifically, each type of dataset provides the ground-truth
additional annotations1 for S percent of the positive and the
negative samples, where S ∈ {0, 25, 50, 75, 100}. The ad-
ditional annotations for the remaining 100−S percent of the
samples are treated as latent variables. The putative values
of each latent variable are restricted to the top T = 20 boxes
obtained by a standard person detector [6]. During testing,
we use the learned parameters to classify the given person
bounding boxes in the ‘test’ dataset. The performance is
measured by submitting the scores of all the bounding boxes
to the PASCAL VOC evaluation server.

Features. Given a bounding box hi of the image xi, we
use the standard poselet-based feature vector [14] to spec-
ify Φi(hi). It consists of 2400 activation scores of action-
specific poselets and 4 object activation scores. In addition,
we use the score of the person detector [6], which results in
a 2405 dimensional feature vector.

Methods. We compare our latent AP-SVM formulation
with the baseline latent SVM that is commonly used in
computer vision. Latent SVM consists of two hyperpa-
rameters: (i) C, the trade-off between the regularization
and the loss; and (ii) J , the relative weight of the posi-
tive samples. In order to further strengthen the baseline,
we add robustness to outliers using a further hyperparam-
eter c. Specifically, we prevent the classifier from consid-
ering the most confusing c% bounding boxes in the nega-
tive samples under the constraint that at least one bound-
ing box is used per negative image. We obtain the best

1Additional annotation provided is the bounding-box obtained by a
standard person detector overlapping most with the ground-truth bound-
ing box in PASCAL VOC.



settings of the hyperparameters via a 5-fold cross valida-
tion, where the ‘trainval’ set is split into 1940 training im-
ages and 484 validation images. We consider the follow-
ing putative values: C ∈ {10−3, 10−2, . . . , 104}, J ∈
|P|+|N |
|P| ×{10−4, 10−3, . . . , 101} and c ∈ {0, 0.1, . . . , 0.9}

(note that, when c = 0, the resulting baseline is the stan-
dard latent SVM without robustness). In addition, we also
compare the performance of our latent AP-SVM with latent
SSVM. For the latent AP-SVM and latent SSVM, we only
need to specify a single hyperparameter C, whose value is
also obtained via 5-fold cross-validation. In order to miti-
gate the effects of initialization, we use 5 random seeds and
choose the one that provides the minimum objective value
for each method independently.
Complexity. The running time for latent AP-SVM and the
baseline methods is dominated by computation of the most
violated constraint. Empirically, we found that computa-
tion of most violated constraint in latent AP-SVM is around
5 times slower and 100 times faster compared to latent SVM
and latent SSVM respectively. However, latent AP-SVM does
not require any extra hyperparameter to weight the posi-
tive samples, therefore does not worsen the overall compu-
tational complexity compared to training latent SVM.
Results. Figure 1 shows the best mean AP value over
all 10 action classes obtained during 5-fold cross valida-
tion. Note that as the amount of supervision decreases, the
gap between our method and the two baselines steadily in-
creases. In the fully supervised setting, that is, S = 100,
latent AP-SVM provides statistically significant improve-
ments over latent SVM for only 4 out of 10 classes (using
paired t-test with p-value less than 0.05), with an overall im-
provement of less than 3%. Note that, for fully supervised
datasets, both latent AP-SVM and latent SSVM are equivalent
to the AP-SVM, and hence provide the same results. How-
ever, in the more interesting weakly supervised setting, that
is, S = 0, latent AP-SVM provides statistically significant
improvements over latent SVM for 6 out of 10 classes, and
an overall improvement of more than 5%. We note that,
for standard latent SVM, i.e., when c = 0, the mean AP ob-
tained during cross-validation over all ten classes is 39.5%.
Adding robustness and cross-validating c, we get an over-
all improvement of 2.4%. This illustrates that, by incorpo-
rating robustness, we get a stronger baseline than standard
latent SVM. Similarly, latent AP-SVM provides statistically
significant improvements over latent SSVM for 7 out of 10
classes and an overall improvement of more than 4%.

Table 1 shows the comparison of our latent AP-SVM with
latent SVM and latent SSVM on the test set. Note that we use
5 different random seeds for each method. The hyperparam-
eters are set using 5-fold cross-validation. Latent AP-SVM
classifier performs better than latent SVM for all 10 classes
with significant increase in performance for 4 classes. Over-
all, we get an improvement of 5.1% on the test performance

Figure 1. The best mean average precision over all 10 action
classes obtained during 5-fold cross validation. The x-axis cor-
responds to the amount of supervision provided. The y axis cor-
responds to the mean average precision. As the amount of su-
pervision decreases, the gap in the performance of latent AP-SVM

and the baseline methods increases, thereby illustrating the impor-
tance of using the correct loss function and the correct learning
formulation for weakly supervised learning.

compared to latent SVM. Similarly, latent AP-SVM classi-
fier performs better than latent SSVM for 8 out of 10 classes.
Overall, we get an improvement of 3.7% on the test perfor-
mance compared to latent SSVM.

Figure 2 exemplifies the significance of using the right
accuracy measure. It shows a sub-sequence of images from
two rankings predicted for the ‘ridingbike’ action. The top
and bottom rows are from the rankings predicted by latent
SVM and latent AP-SVM respectively. Latent SVM predicts 2
incorrect images out of 4 but makes mistakes in the top two
images. Whereas, latent AP-SVM makes the same number
of mistakes but for images at lower rankings (first and fourth
in this example). This may be explained by the fact that, in
terms of 0/1 loss both predictions are equivalent. However,
the bottom ranking sequence is preferred by a classifier that
is attempting to optimize the AP loss.

Figure 2. Top and bottom rows show a sub-sequence of images
from rankings predicted by latent SVM and latent AP-SVM respec-
tively for ‘ridingbike’ action class. Both first and second row have
two incorrect (highlighted by red border) and correct (highlighted
by green border) images each, but latent AP-SVM puts the incor-
rect images in the lower rank.



Method Jump Use Play Read Ride Ride Run Take Use Walk Overall
phone instrument bike horse photo computer

Latent AP-SVM 45.7 30.5 34.0 21.1 75.5 74.9 76.0 15.7 24.6 47.5 44.6
Latent SSVM 37.6 26.5 33.9 22.5 71.2 66.7 66.8 17.4 21.9 44.8 40.9
Latent SVM 36.9 28.0 32.2 20.6 65.3 68.2 63.5 13.4 21.6 45.7 39.5

Table 1. The average precision of latent AP-SVM and the baseline latent SVM and latent SSVM methods under weak supervision. The
training is performed over the entire ‘trainval’ dataset with S = 0 using the best hyperparameters obtained during 5-fold cross-validation.
The testing is performed on the ‘test’ dataset and evaluated on the PASCAL VOC server. The last column (‘Overall’) shows the mean
average precision over all ten action classes.

5.2. Character Recognition in Natural Images
Dataset. We use the IIIT 5K-WORD [16] scene text
dataset, which consists of 5000 cropped word images from
scene texts and born-digital images, which are divided into
2000 ‘trainval’ images and 3000 ‘test’ images. Each image
is annotated with the corresponding word, that is, a string
where each character is an upper case letter (‘A’ to ’Z’), a
lower case letter (‘a’ to ’z’), or a number (‘0’ to ’9’). In
addition, the dataset also provides the bounding boxes for
each character of the word, which we discard during learn-
ing. Instead, we treat the bounding box of the characters
as latent variables whose putative values are restricted to
T = 20 boxes obtained by a standard character detector [2].
Using this dataset, we perform binary classification for the
22 classes that contain at least 150 samples in the ‘trainval’
dataset.

Features. Given a character bounding box hi of the word
image xi, we use the histogram of oriented gradients
(HOG) [2] features to specify Φi(hi). The HOG features are
computed by resizing the bounding box to 48× 48 pixels.

Methods. We compare our latent AP-SVM formulation
with the baseline latent SVM. We use the same formulation
of the baseline latent SVM as described in the action clas-
sification experiments. All the hyper-parameters are once
again fixed using 5-fold cross validation over 80%/20%
splits of the ‘trainval’ dataset. Each method is initialized us-
ing 3 different random seeds and the solution corresponding
to the minimum objective value is chosen.

Results. Figure 3 shows the best AP values for all the 5
classes where the performance of latent AP-SVM is statisti-
cally different from that of latent SVM (using paired t-test
with p-value less than 0.05). Latent SVM provides statisti-
cally significant improvements over latent AP-SVM for only
1 class. In contrast, latent AP-SVM improves the perfor-
mance for 4 classes. In terms of the mean AP value, latent
AP-SVM provides an improvement of 6.3% for the 5 classes
shown in figure 3 and 3.2% over all 22 classes.

Figure 4 shows the AP values for the 5 statistically sig-
nificant characters on the ‘test‘ set. Similar to the cross-
validation results, latent AP-SVM outperforms latent SVM
for 4 out of the 5 classes. In terms of the mean AP value,
latent AP-SVM provides an improvement of 3.5% for the

5 classes shown in figure 4 and 2.7% over all 22 classes.
Comparison with latent SSVM and detailed results over all
22 classes are provided in the supplementary material.

Figure 3. The best average precision values for the 5 statistically
significant character classes obtained during 5-fold cross valida-
tion on the ‘trainval’ set of the IIIT 5K-WORD dataset. The x-axis
corresponds to the characters. The y axis corresponds to the av-
erage precision. Latent AP-SVM provides statistically significant
improvements over latent SVM for 4 out of the 5 characters.

Figure 4. The average precision values for the 5 statistically sig-
nificant characters obtained on the ‘test’ set of the IIIT 5K-WORD

dataset. The x-axis corresponds to the character categories. The
y axis corresponds to the average precision.

6. Discussion
We proposed a novel latent AP-SVM formulation that al-

lows us to learn accurate classifier parameters by minimiz-
ing a carefully designed difference-of-convex upper bound



on the AP loss. We showed the advantage of our approach
over latent SVM and the standard latent SSVM for action
classification and character recognition using standard, pub-
licly available datasets.

An interesting direction of future research would be to
extend the latent AP-SVM formulation to learn from images
that have been labeled by noisy tags. This will allow us
to exploit the large, freely available datasets provided by
photo-sharing websites (for example, Flickr or Picasa). The
large size of such datasets would also make it necessary to
improve the efficiency of the CCCP.
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