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Abstract

Scribbles in scribble-based interactive segmentation
such as graph-cut are usually assumed to be perfectly accu-
rate, i.e., foreground scribble pixels will never be segmented
as background in the final segmentation. However, it can
be hard to draw perfectly accurate scribbles, especially on
fine structures of the image or on mobile touch-screen de-
vices. In this paper, we propose a novel ratio energy func-
tion that tolerates errors in the user input while encour-
aging maximum use of the user input information. More
specifically, the ratio energy aims to minimize the graph-
cut energy while maximizing the user input respected in
the segmentation. The ratio energy function can be exactly
optimized using an efficient iterated graph cut algorithm.
The robustness of the proposed method is validated on the
GrabCut dataset using both synthetic scribbles and manual
scribbles. The experimental results show that the proposed
algorithm is robust to the errors in the user input and pre-
serves the “anchoring” capability of the user input.

1. Introduction
Image segmentation/object selection is widely used in

image processing. While fully-automatic segmentation
methods can provide satisfactory result in some cases, hu-
man interaction is needed to produce high quality segmen-
tation in more challenging images. Among various in-
teractive approaches, two of the most popular ones are
the boundary-based segmentation[9] and the scribble-based
segmentation[11, 12, 1, 6, 8, 7]. The boundary-based in-
teractive segmentation such as intelligent scissors [9] re-
quires the user to trace the whole boundary of the ob-
ject, which is usually time-consuming and tedious for users.
Scribble-based interactive segmentation, on the other hand,
is based on a number of foreground and optionally back-
ground scribbles. The algorithm will automatically label
the pixels as either foreground or background based on the
information such as location, color, texture, etc. provided
by the scribbles.

Classical scribble-based interactive segmentation takes
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Figure 1. The proposed method tolerates errors in user-specified
scribbles and is better at segmenting fine structures in an image.

the scribbles as hard constraints, i.e., all foreground and
background scribbles are guaranteed to be foreground and
background, respectively, in the segmentation results. This
requires the scribbles to be highly accurate, otherwise the
segmentation gets compromised. This requirement can be
hardly met on the mobile touch-screen devices, which has
increasingly found wide applications. Even on a big screen
with a mouse, it is hard to draw perfectly accurate scrib-
bles on challenging images with fine structures, such as a
thin bush stem or legs of a table. The scribble-based ap-
proaches have been widely used in image editing [1, 6] and
image segmentation [2]. In the interactive image editing,
users first specify sparse scribbles and the corresponding
edits to be performed on each scribble, such as tone, color
and/or material changes. These edits are then propagated to
all the other pixels in the image with a modulated “editing
strength”, which can be seen as a certain soft segmentation.

An et al. [1] formalizes the image editing problem as a
quadratic optimization problem based on the pixel affinity
matrix in the pixel appearance space. The affinity matrix
is defined on all pairs of pixels. A low-rank stochastic ap-
proximation is applied to obtain an approximate solution.
This method does not build an explicit appearance from the
whole set of scribbles, instead it builds an implicit model by
propagating information between all pairs of pixels. This
method relies on that information propagation among all
pairs of pixels to tolerate user input errors. Li et al. [6]
observed that the optimization formulation in An et al.’s
work [1] essentially is a smooth function with a sparse set of
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constraints. Based on this observation, they approximately
decomposed the given editing strength on the scribble pix-
els into a series of radial-based editing functions. The edit-
ing strength on all the other pixels are then interpolated us-
ing these radial-based editing functions for their appearance
representation. This method runs extremely fast. However,
the quality of the results highly depends on the represen-
tation capability of the series of radial-based editing func-
tions for the user’s intentions. In addition, both An et al.’s
and Li et al.’s methods only produce a continuous “editing
strength” map, which reflects how similar each pixel is to
the foreground seed, instead of binary segmentation.

Various methods have been proposed to alleviate the
problem of user input errors in the binary image segmen-
tation. Liu et al.’s method [8] allows the user to override
the erroneous scribbles by specifying new scribbles, which
overlap partially with the inaccurate old scribbles. The new
scribbles are then enforced as new hard constraints while
the old scribbles are regarded as soft constraints for the seg-
mentation. Clearly, this method still highly replies on the
accuracy of the new scribbles. Sener et al. [11] developed
an error-tolerant interactive segmentation method using dy-
namic and iterated graph-cuts. Essentially, the method re-
moves the inaccurate scribble pixels from being used as
seeds with some heuristics in the preprocessing step. Subr
et al. [12] make use of a dense conditional random field
(CRF) to infer the segmentation from possibly inaccurate
scribbles. The dense CRF model contains a simple unary
term and a fully connected CRF among all pairs of pixels in
the image. To solve the dense CRF, they embedded pixels
in a low-dimensional Euclidean space with a metric that ap-
proximates the desired high-dimensional affinity function.

We introduce a novel ratio-form energy function which
consists of a graph-cut energy term to utilize both region
and boundary information from the input image, and a user-
scribble utility term to encourage the user scribbles to be
respected. Essentially, optimizing the ratio energy function
is equivalent to minimizing the graph-cut energy while at
the same time respecting the user input as much as possible.
The user scribbles are enforced as a soft constraint instead
of a hard constraint, which allows the proposed method to
tolerate user input errors. In contrast to the methods which
deal with user-input errors using heuristics such as Sener et
al.’s work [11], a global optimization framework is utilized
to handle the user input errors. Comparing to the fully con-
nected CRF method [12], our method enjoys the sparsity of
the constructed graph from the neighborhood setting, as in
the graph cut method [2]. Our experiments demonstrated
that the energy function in the proposed method can be op-
timized efficiently and can produce spatially coherent seg-
mentations.

2. Methods
We formalize the segmentation problem as the optimiza-

tion of a ratio energy in which the numerator is the graph-
cut energy and the denominator is a utility function which
increases as more user input is respected.

2.1. Energy Formulation

The energy we aim to minimize is

E(x) =
Egc(x)

M + U(x)
, (1)

in which x ∈ LP is the labeling of all the pixels P from a
binary set of available labelings L = {‘ob′, ‘bg′}.
Egc(x) is the graph-cut energy [2], which consists of

a region term Dp(xp) and a boundary term Vpq(xp, xq)
(Eq.(2)). The region term measures how likely each pixel p
belongs to object (‘ob’) or background (‘bg’). Unlike clas-
sical graph-cut [2] which assigns infinite region term weight
to seed pixels to ensure them as hard constraint, we assign
region term weights to seed pixels just like any other non-
seed pixels. Thus no hard constraint is enforced in Eq.(2).
The boundary term Vpq(xp, xq) penalizes the discontinuity
between the object and background, that is, Vpq(xp, xq) is
the penalty of assigning labels xp and xq to two neighboring
pixels p and q according to the neighborhood settingN . We
use 8-neighborhood setting for the rest of the paper. More
precisely,

Egc(x) =
∑
p∈P

Dp(xp) + η
∑

(p,q)∈N

Vpq(xp, xq), (2)

where, η is a balancing constant between the region term
and the boundary term. Vpq = 0 if xp = xq , and Vpq > 0 if
xp 6= xq .
U(x) is a nonnegative utility function which increases

as more user input information is respected in the segmen-
tation result. Assume that SF and SB are the sets of pixels
included in the foreground and background scribbles, re-
spectively. Denote by db(xp) the distance between pixel p
and the nearest scribble boundary. Two user input utility
functions that we use in this paper are defined, as follows.

U1(xp) =


1 if p ∈ SF and xp = ‘ob′

1 if p ∈ SB and xp = ‘bg′

0 otherwise
(3)

U2(xp) =


db(xp)

2 if p ∈ SF and xp = ‘ob′

db(xp)
2 if p ∈ SB and xp = ‘bg′

0 otherwise
(4)

The first utility function U1(xp) simply counts the number
of the user scribble pixels that are respected in the final seg-
mentation. This utility function is used when large amount



of user input error is expected (such as in the image edit-
ing application), since in this case we usually do not know
which portion of seed is more important than the other por-
tions. The rational behind the design of the utility func-
tion U2(xp) is that a user is more likely to draw a scribble
whose centerline is correct while the boundary of the scrib-
ble has more bias to be wrong (such as in the image segmen-
tation application). This utility function is used when we
expect the user to make small mistakes that mostly happen
around the scribble boundary. For example, a careful user
may rarely make any mistake except at drawing scribbles on
very thin structures such as table legs. More sophisticated
U(x) can be designed as long as it increases while more
user input information is respected, and is nonnegative for
all configurations due to optimization consideration.
M is a constant that controls how “flexible” the method

is w.r.t. user-specified scribbles. The larger M is, the
more scribble pixels are likely to be allowed foreground-
background swap in the segmentation. To see this, imagine
the extreme case in which M � U(x), then essentially the
denominator of Eq.(1) is constant M and we are just opti-
mizing the numerator, which is the graph-cut energy. Note
the seed pixels are regarded equivalent to those non-seed
pixels in numerator. In this case, seed pixels have no spe-
cial roles at all in the energy function, and cannot “anchor”
segmentation anymore. In our experiment, we set M to be
a multiple of the maximum possible utility function value.

M = α
∑
p∈P

[U(xp = ‘ob′) + U(xp = ‘bg′)] (5)

Note that by minimizing the energy function in Eq.(1), we
attempt to minimize the graph-cut energy Egc(x) while
maximizing the respect to the user input scribbles. The opti-
mization process is to find out the “best” set of scribble pix-
els such that the swap of their foreground-background labels
enables the maximum reduction of the energy Egc(x) (i.e.,
those erroneously identified as foreground or background
scribbles), thus achieving our goal of error-tolerance.

2.2. Optimization of Ratio Energy

We use Newton’s method for ratio optimization [3] to
minimize the ratio energy function R(x) = P (x)/Q(x), in
which functions P,Q : X → R,X = 2V and Q(x) ≥
0,∀x ∈ X . The main idea is to iteratively minimize a
related linear function instead of the ratio function until
convergence. The optimal solution of the ratio energy is
given by the optimal solution of the linear function after
convergence. The related linear function, which is called
λ-function, is defined as

EλR(x) = P (x)− λQ(x) (6)

More formally, the Newton’s method for ratio optimiza-
tion is defined in Alg.1. Theorem.1 claims the correctness

of the algorithm. In our experiment, Alg.1 always con-
verged in a few iterations (less than 5 iterations).

Input: Min-ratio problem minx∈X R(x)
Output: Opt sln x∗ for λ∗ = minx∈X R(x)
Select some x0 ∈ X . λ0 ← R(x0). k ← 0.
while λk 6= λk−1 do

Compute xk+1 = argminx∈X E
λk

R (x) and
λk+1 ← R(xk+1)
k ← k + 1

end
return x∗ = xk and λ∗ = R(x∗)

Algorithm 1: Newton’s method for ratio optimization

Theorem 1. [3] Algorithm 1 outputs an optimal solution to
minimizingR(x) = P (x)/Q(x). In addition, the generated
sequence {λk} is strictly decreasing, i.e., λk+1 < λk.

For Alg.1 to work properly, the λ-function in Eq.(6)
needs to be efficiently optimized. Note that in Eq.(1),
P (x) = Egc(x) is the graph-cut energy consisting of a
unary term and a pairwise term, and Q(x) = M + U(x)
is a unary function of x. Thus, the λ-function, as shown
in Eq.(7), consists of only unary terms and a pairwise term,
which can be optimized by the graph-cut method. Since M
is a constant, the removal of M in the linear form of the
optimization problem does not affect the final solution.

Eλ(x) = Egc(x)− λU(x) (7)

As a result, we will use graph-cut to optimize λ-function in
each iteration. Instead of computing a new max-flow from
scratch, we used the dynamic graph-cut implementation [4]
to reuse results from previous iteration as an initialization.
Note we do not need to modify the weights of all arcs in
the graph for each iteration. Since U(x) is nonzero only for
those user scribble pixels, thus, only the weights of those
arcs associated with scribble pixels need to be updated in
each iteration, and there are no weight changes for all the
other arcs from one iteration to another. Thus, the overhead
of updating arc weights are pretty light during the whole
optimization process, and the algorithm runs efficiently in
practice. Fig.2 shows the graph construction.

3. Experiments
3.1. Experiment Settings

To validate our algorithm, we use GrabCut dataset [10],
which contains 50 images including a variety of objects
such as person, car, goat, etc. Ground truths for all 50 im-
ages are available.

In this paper, we used some simple cost function de-
signs for each term in the energy function to achieve our
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Figure 2. Only arcs connected to scribble pixels need to update
their weights in each iteration. All other arcs have constant
weights during all iterations. (Best viewed in color.)

goal of proof-of-the-concept. More comprehensive cost
designs will likely improve the performance of our pro-
posed method. The region term is generated by building
two Gaussian Mixture Models (GMM) for foreground and
background, respectively, in the Lab color space. These two
GMM models are then applied on all pixels to generate the
region term. The boundary term is obtained by computing
the gradients on a smoothed image with the bilateral image
filtering. For the weighting coefficient η between the re-
gion term and the boundary term in the graph-cut energy in
Eq.(2), we set it to be 1 for all of our experiments. For those
experiments in which the number of the erroneous scribble
pixels is expected to be small (Sec.3.3), we use the util-
ity function Eq.(4). Otherwise, we use the utility function
Eq.(3). The coefficient α in Eq.(5) is set to be 1 for the ex-
periments in Sec.3.3, to strongly enforce the user scribbles
as anchor points. It’s set to be 10 for those experiments in
Sec.3.2 to tolerate large synthetic scribble errors, and is set
to 100 for the experiments in Sec.3.4 to allow even larger
and more spatially coherent scribble errors. We will discuss
the issue of choosing appropriate α parameter in Sec.4.

Two metrics are used to measure the segmentation ac-
curacy: the labeling accuracy and the Dice similarity co-
efficient. The metric labeling accuracy is defined as per-
centage of pixels correctly labeled in the final segmentation.
More precisely, assume that TP, TN, FP, and FN represent
the number of pixels that are true positive, true negative,
false positive, and false negative, respectively, in the seg-
mentation. Then the labeling accuracy = TP+TN

TP+TN+FP+FN .
The second metric is the Dice Similarity Coefficient (DSC),
which measures the overlap between two segmented object
volume. Suppose we have two segmentations O1 and O2

for the object, the DSC between the two segmentations is
defined as 2|O1∩O2|

|O1|+|O2| , or equivalently 2TP
2TP+FP+FN .

Compared to the labeling accuracy, the computation of
DSC does not rely on TN, which means that DSC is not
sensitive to large areas of background in the image. For an

image with large background, a segmentation even assign-
ing every pixel to be background will have high labeling
accuracy. However, DSC is able to tell that there is zero
overlapping between the segmented object and the ground
truth in this case.

To demonstrate our algorithm’s ability to handle user in-
put errors (i.e., the user scribble pixels with wrong fore-
ground/background labels), we compare our segmentation
result to the classical graph-cut method [2] which regards
the seeds (i.e., the user input scribbles) as a hard constraint.
We also compare the proposed method to Subr et al.’s ap-
proach [12], which also tolerates the user input errors using
an optimization framework. The author’s publicly available
code is used in our comparison. There are multiple tunable
parameters in their implementation, an oracle is used to test
all possible combinations of the parameters to find the one
that results in best accuracy. The resulting set of parameters
is used in the comparison.

3.2. Experiment using Synthetic Scribbles

To quantitatively measure how robust the proposed al-
gorithm is provided different degrees of user input errors,
we follow the procedure used in Subr et al.’s work [12].
First 50 foreground pixels and 50 background pixels are
randomly selected based on ground truth. They are assigned
as foreground or background scribbles, respectively. Then
an error-zone for each image is defined as background pix-
els that are less than a distance D from the foreground, in
which D is defined as 5% of the image diagonal (Fig.3(b)).
We randomly select 0 to 50 pixels in the error zone and as-
sign them as foreground scribbles to simulate different de-
grees of user input errors.

Note in our experiment, the randomly selected points
are dilated by a radius of 5 pixels before they are used as
scribbles, in contrast to the isolated pixels used in [12]. Be-
cause isolated point cannot effectively anchor segmentation
in the graph-cut method. Moreover, our manual scribble in
the next experiment has a width of 10 pixels. Dilating the
randomly selected pixels by a radius of 5 will result in a
small circle that’s similar to a point scribble drawn manu-
ally (Fig.3(c)). We randomly select 0, 5, 10, 20, 30, 40, 50
erroneous sample pixels from error zone to simulate the er-
ror percentage of 0%, 10%, 20%, 40%, 60%, 80%, 100%
in the user input. Fig.3 shows one set of synthetic scribbles
which contains 20 erroneous samples from the error zone.

The performance of each method is shown in Fig.4. We
can observe that all methods perform quite well when no
error is in user input. However, as more and more user input
errors are added in the scribbles, the performances of graph-
cut and Subr’s method [12] get compromised quickly, while
our method stays performing pretty well.

The reason that Subr’s method’s performance is worse
than the graph-cut based approaches could be due to the use
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Figure 3. Error zone mask and a set of synthetic scribbles. The
foreground scribbles consists of 50 foreground pixels and 20 error
zone pixels. The background scribbles consists of 50 background
pixels.

of a fully-connected CRF model, instead of a sparse MRF
model as used in the graph-cut based approaches. Thus,
it generates a less coherent segmentation since it can eas-
ily propagate (wrong) information to remote pixels (see the
third row in Fig.6). In fact, as more and more errors are
added to the user input, Subr’s method can quickly propa-
gate those erroneous information to remote pixels instead of
stopping the error in a small local region.

3.3. Experiment Aiming for High Accuracy

The scribbles drawn by users aiming high segmenta-
tion accuracy may not make as much mistake as shown in
Fig.1(a). In this case, the user input error usually comes
from drawing scribbles on fine structures such as the bush
stem, vase handle, sheep legs shown in the second row of
Fig.5. To validate our algorithm for this type of user input,
a user was asked to draw scribbles on all 50 images in Grab-
Cut dataset manually in a natural way, i.e., the user neither
intentionally makes mistake, nor makes excessive efforts to
accurately draw the scribbles. As a result, no scribble errors
are found in 20 images out of 50. The remaining 30 images
have scribble errors in different degrees. On average, each
of those 30 image scribbles contains 1.5% errors, i.e., 1.5%
of the foreground scribble pixels are actually background
with respect to the ground true. The maximum scribble er-
ror is 8.4%.

The proposed robust segmentation (RS) method,
the graph-cut (GC) method, and Subr’s error-tolerant
method [12] are used to segment those 20 im-
ages with error-free manual scribbles (reported as
“RS/GC/Subr’s(correct)” in Table.1), and those 30 im-
ages with erroneous manual scribbles ((reported as
“RS/GC/Subr’s(error)” in Table.1)). To gain better under-
standing about how the errors affect the performance of
graph-cut, we use an oracle to correct the errors by remov-
ing erroneous foreground scribble pixels that are actually
background. Then, the graph-cut method runs on those

Table 1. Manual scribble experiment result.
method (scribble type) DSC (%) label accuracy (%)
Subr’s [12] (correct) 92.88 96.77

GC (correct) 97.64 98.91
RS (correct) 97.65 98.92
Subr’s (error) 82.68 92.23

GC (error) 95.19 98.44
RS (error) 95.26 98.46

GC (err-corrected) 95.72 98.61
Subr’s (all) 86.76 94.05

GC (all) 96.17 98.63
RS (all) 96.22 98.64

GC(all, err-corrected) 96.49 98.73

corrected scribbles and reported as “GC(err-corrected)” in
Table.1. Note that this method is not really a fair reference.
It can be excessively “accurate” because when the oracle
removes the scribble pixels outside the object, it is actually
drawing the perfect boundary locally using the ground
truth.

Table.1 shows the performance of each method. When
no error happens, both the proposed method and the graph-
cut method achieve high accuracy. But when the user scrib-
bles contain errors, the proposed method performs better
than the graph-cut method due to its tolerance of user input
errors. The difference in accuracy metrics does not seem
very high, which is understandable because users only make
small errors around object boundary. However, the bound-
ary accuracy of the segmentation indeed is improved by us-
ing the proposed robust segmentation method. Fig.5 shows
the improved boundary by using the proposed method.

In the first column of Fig.5, the stem segmented by the
proposed method is much thinner than graph-cut, which is
closer to the ground truth. The proposed method also gener-
ates more accurate vase handle in the second column, more
accurate sheep and person legs in the third and forth col-
umn. Subr’s method performs even worse than the graph-
cut method. It usually does not generate a spatially coherent
segmentation and propagates errors in the segmentation to
remote regions from the erroneous scribbles, as shown in
the third row in Fig.5.

For the 30 images with erroneous scribbles, the proposed
robust segmentation result corrected 60.1% of the erroneous
scribble pixels on average.

3.4. Illustrative Results

Scribbles with large errors frequently happens on mobile
touch-screen devices due to the use of less accurate point-
ing devices (such as fingers). In these experiments, the user
scribbles contain much more errors. Illustrative results are
shown in Fig.6. Subr’s method can easily propagate fore-
ground scribble errors to background due to its fully con-
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Figure 4. DSCs and the labeling accuracies of Subr’s error-tolerant segmentation method, the graph-cut method, and the proposed robust
segmentation method, given different percentage of errors in randomly-generated synthetic user input.

nected CRF formulation, as shown in the bear and the lady
images. Another issues is that it does not generate spa-
tially coherent segmentation for textured object, as shown
in the grave tombstone and the sheep images. The graph-
cut method uses the user scribbles as hard seeds, and thus is
not able to correct errors in user input. In contrast, the pro-
posed method performs very well in this type of situation.

One interesting case is the sheep (last column in Fig.6).
In order to separate the two legs shown in the image, the
user adds one background scribble between them. Graph-
cut simply follows the boundary of the added background
scribble to separate the two legs. Our proposed method,
however, is able to reject part of the erroneous background
scribble pixels and segments the two legs with higher accu-
racy.

4. Discussion

Ratio energy has been used for image segmentation in
different ways. Wang et al.[13] used a ratio energy maxi-
mizing the average intensity difference between foreground
and background for segmentation. Kolmogorov et al.[5] al-
leviates the shrinkage bias of graph-cut segmentation by
using foreground volume as the denominator in the ratio
energy. Here we use a different idea that the denomina-
tor is a utility function which encourages the user input to
be respected as much as possible. How strong this encour-
agement is can be tuned by the parameter M in Eq.(1), or,
equivalently α in Eq.(5). Thus, we can adjust the proposed
method for users of different styles as we have shown in the
different experiments in Sec.3.2, 3.3, 3.4.

To choose an appropriate α value, the basic guideline is
that the larger α is, the more tolerant of user input errors
the algorithm is. In Fig.7(b), although by using α = 1 our
method can tolerate the erroneous scribble at head, it does
not tolerate many other errors of the scribble. In Fig.7(c),
with α = 10 the proposed method is doing a much better
job. However, there is still erroneous segmentation at the
elbow. In Fig.7(d), using α = 100, our method achieves the
best segmentation among the uses of those three α values.

On the other hand, a large α value means that the “an-
choring” ability of the scribble pixels is reduced. In chal-
lenging images, the “anchoring” ability can be crucial to the
correct segmentation. Fig.8 shows a challenge case of chee-
tah. When α = 1, the paws and the tail of the cheetah are
correctly segmented by following the guidance of the fore-
ground scribbles. However, when α = 100, the paws and
part of the tails are incorrectly segmented as background.

Thus, for those images with the expectation of large user
input errors, we can use large α value to accommodate those
errors. For challenge images (e.g, with very fine structures,
or similar foreground and background profile), the “anchor-
ing” ability can be crucial to the accurate segmentation.
Thus a small α value should be selected, and users are ad-
vised to provide more accurate scribbles in order to achieve
an accurate segmentation.

However, we should note that no matter what α value
is chosen, if the evidence for the foreground/background
shown by the graph-cut energy is strong enough, the erro-
neous scribbles can be automatically corrected. Introducing
parameter α allows us to control how to determine the evi-
dence is strong enough.

5. Conclusion
We propose a novel ratio energy function to tolerate user

input errors in scribble-based interactive segmentation. It
aims to minimize a graph-cut energy which incorporates
both region and boundary information and maximizes the
portion of scribbles that are respected in the segmentation
result. The ratio energy can be optimized exactly using
an efficient algorithm. Experiments based on synthetic and
manual scribbles are conducted to validate the algorithm’s
robustness to large amount of user input errors and the abil-
ity to achieve high segmentation accuracy when presented
with user input errors. Promising results are shown in our
the experiments.

Acknowledgment This work was supported in part by
NSF grants CCF-0844765 and CCF-1318996.



in
pu

ti
m

ag
e

in
pu

ts
cr

ib
bl

es
Su

br
’s

m
et

ho
d

[1
2]

gr
ap

h-
cu

t
pr

op
os

ed
m

et
ho

d

Figure 6. Illustrative results on user scribbles with large amount of errors.
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