
Additive Quantization for Extreme Vector Compression

Artem Babenko
Yandex, Moscow

Moscow Institute of Physics and Technology
arbabenko@yandex-team.ru

Victor Lempitsky
Skolkovo Institute of Science and Technology

(Skoltech)
lempitsky@skoltech.ru

Abstract

We introduce a new compression scheme for high-
dimensional vectors that approximates the vectors using
sums of M codewords coming from M different codebooks.
We show that the proposed scheme permits efficient distance
and scalar product computations between compressed and
uncompressed vectors. We further suggest vector encod-
ing and codebook learning algorithms that can minimize
the coding error within the proposed scheme. In the exper-
iments, we demonstrate that the proposed compression can
be used instead of or together with product quantization.
Compared to product quantization and its optimized ver-
sions, the proposed compression approach leads to lower
coding approximation errors, higher accuracy of approxi-
mate nearest neighbor search in the datasets of visual de-
scriptors, and lower image classification error, whenever
the classifiers are learned on or applied to compressed vec-
tors.

1. Introduction
At least since the work [21], there is a growing interest in

the computer vision community to the problem of extreme
lossy compression of high-dimensional vectors. In this sce-
nario, a large dataset of high-dimensional vectors (corre-
sponding to image or interest point descriptors) is com-
pressed by a large factor, so that only few bytes are spent to
represent each vector. Computer vision applications addi-
tionally require that the compressed representation permits
efficient evaluation of distances and/or scalar products be-
tween a query vector (which can be uncompressed) and the
dataset of compressed vectors.

Previously proposed methods fall into two groups. The
first very diverse group consists of binary encoding meth-
ods (e.g. [23, 9]) that transform each vector into a short se-
quence of bits, so that the Hamming distance between a pair
of compressed vectors approximates the Euclidean distance
between the original vectors. The second group is based
on the idea of Product Quantization (PQ) [10]. PQ meth-

ods decompose each vector into components correspond-
ing to orthogonal subspaces, and then vector quantize these
lower-dimensional components using a separate small code-
book for each subset. For some kinds of data (in particu-
lar, histogram-based descriptors such as SIFT) the orthogo-
nal subspaces corresponding to natural dimension splitting
lead to near optimal performance, and thus each of the PQ
subsets corresponds to subsets of dimensions in the original
space (Figure 1). For other types, a significant gain in PQ
performance can be obtained by transforming the vectors
via rotation found by an optimization process [15, 8].

Via a smart use of lookup tables, PQ compression per-
mits very efficient computation of distances and scalar prod-
ucts between an uncompressed query vector and a large set
of PQ-compressed vectors (asymmetric distance computa-
tion or ADC in terms of [10]). On top of the high effi-
ciency of the ADC, the computed distances approximate
the distances between uncompressed vectors rather closely,
in particular, much more accurately than the Hamming dis-
tance approximation within binary encoding methods with
the same compression rate – see e.g. comparisons in [15, 2].
PQ thus provides a unique combination of low approxima-
tion error, fixed size and random access to data on one hand,
and highly efficient evaluation of distances and scalar prod-
ucts with uncompressed vectors on the other hand. At the
same time, the decomposition into subspaces employed by
PQ makes an underlying assumption that the distributions
of vectors within different subspaces are mutually indepen-
dent. The performance of PQ thus decreases whenever the
dependence between subspace data distribution is strong.

In this paper we propose a new coding method called
additive quantization (AQ) that generalizes PQ and further
improves over PQ accuracy, while retaining its computa-
tional efficiency to a large degree. Similarly to PQ, AQ rep-
resents each vector as a sum of several components each
coming from a separate codebook. Unlike PQ, AQ does
not decompose data space into orthogonal subspaces and
thus does not make any subspace independence assump-
tions. Thus the codewords within each AQ dataset are of the
same length as the input vectors, and are generally not or-

1

Figure 1. Product quantization (PQ) vs. Additive quantization
(AQ) in the case of M=4 codebooks of size K=4. Both cod-
ing methods encode the input vector with M numbers between 1
and K. In the case of PQ, this code corresponds to the concate-
nation of M codewords of length D/M . In the case of AQ, this
code corresponds to the sum of M codewords of length D. Given
suitable codebooks, AQ is able to achieve better approximation to
the input vector.

thogonal to each other. Consequently, unlike PQ, the code-
books in AQ are learned within a joint optimization process.
As we demonstrate in the experiments with strongly com-
pressed visual descriptors, removing independence assump-
tions allows AQ to attain better coding accuracy than PQ
(Figure 1), which translates into higher accuracy of nearest
neighbor search as well as of image classification, whenever
the classifiers are learned on or are applied to compressed
vectors.

Crucially, we show that similarly to PQ, AQ permits
lookup table-based asymmetric distance and scalar product
computations with uncompressed vectors. For small code-
books typically employed by PQ, the efficiency of scalar
product computation with AQ is almost the same as in PQ.
The distance computations (ADC) with AQ requires either
small amount of extra time or small amount of extra mem-
ory compared to PQ, which in many applications would
be justifiable by an improved accuracy. The encoding, the
codebook learning, the distance computation, and the im-
provement over PQ are all particularly favourable for short
codes (e.g. four or eight bytes), i.e. extreme compression
rates. For longer codes, the two techniques (AQ and PQ)
can be seamlessly combined.

Apart from PQ, AQ is connected to several other frame-
works popular in computer vision and general pattern anal-
ysis. In particular, AQ can be regarded as a very special case
of sparse coding with unit component weights. Below, we
also show interesting connections between AQ and Markov
Random Field optimization. Finally, AQ can be regarded
as a generalization of standard vector quantization, and the
codebook learning algorithm that we propose for AQ is a

generalization of the k-means algorithm.
In the remainder of the paper, we discuss the represen-

tation used by AQ, the lookup table-based computation of
scalar products and distances, the encoding algorithms for
AQ representation, and the codebook learning. We then
perform extensive experimental comparison between AQ,
PQ (including the optimized version [15]) in the context of
nearest-neighbor search and image classification.

2. Additive quantization

2.1. Additive quantization representation

We now introduce notation and discuss additive quanti-
zation (AQ) in detail. Below, we assume that we deal with
D-dimensional vectors. AQ is based around a set of M
codebooks, each containing K vectors (codewords). We de-
note the mth codebook as Cm, and the kth codeword in the
mth codebook as cm(k). This setting is similar to PQ. How-
ever, whereas in PQ the codewords have the length D/M ,
the length of codewords in AQ are D, i.e. they have the
same dimensions as the vectors that are being encoded.

The AQ model encodes a vector x ∈ RD as a sum of
M codewords (one codeword per codebook). In more de-
tail, a vector is encoded with an M -tuple of codeword IDs
[i1, i2, . . . , iM], where each ID is between 1 and K. The en-
coding process (described below) seeks the code that min-
imizes the distance between x and the sum of the corre-
sponding codewords:

x ≈
M∑

m=1

cm(im), im ∈ 1..K (1)

If, for example K = 256 (as in most of our experiments),
then the vector is encoded into M bytes, each byte encod-
ing a single codeword ID. The memory footprint of an AQ-
encoded vector will be the same as a PQ-encoded vector (for
the same M and K), while AQ can potentially represent the
vector more accurately. The codebooks within AQ occupy
M times more memory than within PQ, however this mem-
ory increase is typically negligible for datasets that are large
enough.

2.2. Fast distance and scalar product computations

The PQ compression permits very efficient computa-
tion between an uncompressed vector (e.g. a query q to
a nearest-neighbor search) and a large number L�K of
PQ-compressed vectors, so that each distance evaluation is
implemented with M lookups and M−1 additions, plus a
small amount of precomputation independent of L. Such
asymmetric distance computation (ADC) is arguably where
the main power of PQ lies. We will now show that with
some caveats all this is possible in the case of AQ.

We now assume that we need to compute squared eu-
clidean distances between the query q and the dataset of L
AQ-encoded vectors. We start with the formula:

‖q − x‖2 = ‖q‖2 − 2〈q, x〉+ ‖x‖2 (2)

We can precompute and reuse ‖q‖2 for each of L dataset
vectors, so the two questions that remain are how to evaluate
〈q, x〉 and ‖x‖2 quickly. We now assume that x in (2) is
AQ-compressed, i.e. x =

∑M
m=1 c

m(im).
Evaluating the scalar product. The evaluation of 〈q, x〉

can be implemented rather straightforwardly using lookup
tables. Indeed,

〈q, x〉 =
M∑

m=1

〈q, cm(im)〉 =
M∑

m=1

Tm(im) , (3)

where Tm(im) = 〈q, cm(im)〉 can be precomputed and
stored, given the query q. Given the query and L AQ-
encoded vectors, the total complexity involved will be
O(DMK) to compute the lookup tables (versus O(DK)
in an analogous step of the PQ) and O(ML) to compute the
actual scalar products. Assuming that L�DK as is typical
in many applications related to the nearest neighbor search,
the complexity of the scalar product computation within AQ
is very similar to the complexity of distance computation in
the case of PQ.

Evaluating the ‖x‖2. Evaluating ‖x‖2 can also be facil-
itated by the lookup tables. Indeed:

‖x‖2 = ‖
M∑

m=1

cm(im)‖2 =

M∑
m=1

M∑
m′=1

〈cm(im), cm
′
(im′)〉 ,

(4)
Each of the individual terms in the right-hand side can be
precomputed and stored in the lookup table (note that the
terms are query independent). The number of operations
required to compute ‖x‖2 is therefore approximately M2/2
lookups and M2/2 additions (assuming that the symmetry
of the scalar product is exploited).

Notably, the cost of computation of ‖x‖2 is independent
of the space dimensionality D. However, it grows quadrat-
ically with M and can slow down the computation of the
distances considerably. It is possible to get rid of this time
overhead at the cost of the small memory overhead using
the fact that the term ‖x‖2 does not depend on the query
q. For this, we can encode the squared length ‖x‖2 using a
single byte by non-uniformly quantizing such scalar values
over the encoded (or a hold-out) dataset. At the data com-
pression time, we then augment the AQ-code of each x with
the corresponding length byte. The computation of ‖x‖2 in
this case costs one lookup (and one byte per vector). In our
experiments we found that the effect of length quantization
on the accuracy of the nearest neighbor search is minimal,

which is natural to expect given that we quantize a scalar
value.

Finally, we note that for some applications, e.g. when
applying a linear classifier to a large set of compressed vec-
tors, the only required operation is scalar product compu-
tation (between the weight vector and the encoded vector),
and therefore the computation of ‖x‖2 is unnecessary.

2.3. Vector encoding

We now come to the task of vector encoding, i.e. finding
the AQ-representation for a vector x given the codebooks
C1 . . . CM . We seek the code that minimizes the coding
error E:

E(i1, i2, . . . im) = ‖x−
M∑

m=1

cm(im)‖2 (5)

Using (2), the error function can be rewritten as:

E(i1, i2, . . . im) =

M∑
m=1

[
−2〈x, cm(im)〉+ ‖cm(im)‖2

]
+

∑
1≤m<m′≤M

[
2〈cm(im), cm

′
(im′)〉

]
+ ‖x‖2 (6)

Given x, the term ‖x‖2 is constant, while the
terms Um(im)= − 2〈x, cm(im)〉 + ‖cm(im)‖2
can be precomputed and stored. The terms
Vm,m′(im, im′)=2〈cm(im), cm

′
(im′)〉 can be precomputed

independently of the query. After such precomputations
(and after omitting the constant), the error function (6) can
be rewritten as:

E(i1, i2, . . . im) =

M∑
m=1

Um(im)+ (7)∑
1≤m<m′≤M

Vm,m′(im, im′) ,

i.e. as a fully connected discrete pairwise MRF energy. Im-
portantly for any optimization algorithm, it can be evaluated
at the computational cost independent of the space dimen-
sionality D. The optimization problem can be solved ap-
proximately by any of the existing algorithms like Loopy
Belief Propagation (LBP) [17], Iterative Conditional Mod-
els (ICM)[6], etc. However, because of full connectivity and
the general form of the pairwise potentials, we observed that
LBP and ICM, and, in fact other algorithms from the MRF
optimization library [12] perform poorly.

Instead, we propose another approximate algorithm
which constructs the output tuple successively. We adapt
the idea of a general Beam Search algorithm [20] to our par-
ticular problem. The resulting algorithm is also reminiscent
of matching pursuit used in sparse coding [14]. In our case

Beam Search starts its work by finding N elements which
are the closest to the vector x from the C=C1 ∪ . . . ∪ CM .
These elements become seeds for tuples which are candi-
dates to result in the best approximation. Those N incom-
plete tuples are maintained through next M−1 iterations.
At the iteration m (m>1), Beam Search considers each in-
complete tuple, containing m−1 vectors from m−1 code-
books. It then considers the remaining M+1−m code-
books and finds the N codewords among all codewords
in those codebooks that are closest to the remainder of x
after subtracting codewords already included into the tu-
ple. Thus, after considering all N candidates, N2 tuples
of length m are created. We then pick the top N unique
tuples (in terms of the approximation error for x) and keep
them as candidates for the next iteration. After M such iter-
ations, i.e. when tuples contain exactly M elements, a tuple
with the best approximation error is returned.

The lookup tables are used through Beam Search to
make all operations (except for the precomputations of these
tables) independent of the space dimensionality D. We ob-
serve that for reasonable N (e.g. N=16 or N=32), Beam
Search performs much better then other MRF-optimization
algorithms we tried (given comparable amount of time).
Therefore, we use Beam Search in our experiments. In-
terestingly, we tried to formulate the MRF optimization (7)
as an integer quadratic program and submit it to a general-
purpose branch-and-cut optimizer [1]. For small codebooks
K=64 and M = 8 and given very large amount of time,
the solver could find a global minimum with much smaller
energy (coding error) then those found by Beam Search or
other non-exhasutive algorithms. While such “smart brute-
force” approach is infeasible for large datasets and mean-
ingful codebook sizes, this result suggests the AQ-coding
problems as interesting instances for the research into new
MRF-optimization algorithms.

2.4. Codebook learning

We finally consider the task of learning codebooks, i.e.
finding a set of M codebooks {C1, C2, . . . CM} that can
encode a vector set X = {x1, . . . , xn} with low coding
error. Thus, we seek to minimize:

min
C1,...,CM⊂RD

|Cm|=K
imj ∈1..K

n∑
j=1

‖xj −
M∑

m=1

cm(imj)‖2 (8)

Similarly to other codebook learning approaches, we per-
form minimization using block-coordinate descent, alter-
nating the minimization over the assignment variables
(codes) imj and the codewords cm(·). The proposed algo-
rithm generalizes the standard k-means algorithm (which
corresponds to the case M=1).

The minimization over the encoding variables given

codebooks requires coding the vectors xj given the code-
books, which is covered in the previous subsection. Up-
dating the codewords given assignments is equivalent to the
following least-squares problem:

min
{cm(k)}

n∑
j=1

‖xj −
M∑

m=1

K∑
k=1

ajkmcm(k)‖2 (9)

ajkm =

{
1, if imj =k

0, otherwise

While the least-squares optimization (9) may seem large
(given large n and D), one can observe that it decomposes
over each of the D dimensions. Thus, instead of solving a
single large-scale least squares problem with KMD vari-
ables, it is sufficient to solve D least-squares problems with
KM variables, which can be formulated as an overcon-
strained system of linear equations:

∀j = 1..n

M∑
m=1

K∑
k=1

ajkmcm(k)d = xj,d , (10)

where cm(k)d is the dth component of cm(k), xj,d is the dth
component of xj . (10) defines n equations over KM vari-
ables, which are solved in the least-quadratic sense. As an
additional optimization, one can note that the D overcon-
strained systems (10) for different dimensions differ only in
the right-hand side, so that the left-hand side sparse matrix
can be stored and reused for all dimensions. As a result,
the complexity of codebook learning is dominated by the
encoding step.

In most of the experiments below, we initialize learn-
ing process by setting the assignment variables to random
numbers between 1 and K. It is also possible to perform
initialization by codebooks obtained within PQ or OPQ (a
PQ codeword can be turned into a full-length AQ vector, by
padding it with zero chunks). Experimentally, we have ob-
served that the final results were insensitive to the variations
in the codebook initialization.

2.5. Additive product quantization

The complexity of the Beam Search algorithm grows cu-
bically with M . While for the extreme compression (e.g.
M=4) the encoding complexity can be well acceptable even
for large datasets, for larger M more efficient encoding al-
gorithms are required, and we leave this for the future work.
In the meantime, as long as the less extreme compression
into a large number of bytes is desired, this can be achieved
using a hybrid approach that combines PQ and AQ. In this
approach, the vector can be split into M1 orthogonal com-
ponents (as in PQ), whereas each component can then be
encoded by AQ into M2 bytes. One can therefore keep
M2 small and AQ encoding efficient, while using M1×M2

bytes for the coding of each vector. As we show in the ex-
periments, such hybrid compression is more accurate than
the PQ compression with M = M1×M2.

3. Experiments
In this section, we provide the results for a number of

comparative evaluations of the proposed approach (additive
quantization) as well as the product quantization [10], and
one of the versions of the optimized product quantization
(OPQ) called Cartesian K-Means [15] (using the authors
implementation). These PQ-based methods represent the
state-of-the-art in vector compression, and have been shown
to perform better than binary encoding methods in a number
of recent comparisons [15, 3].

We focus our attention on small codebook sizes (K =
256) and extreme compression levels (M=8 and M=16).
For the codes of length M=8 and longer, we also consider
the hybrid algorithm (Additive Product Quantization) that
uses OPQ optimization to rotate the data and then applies
AQ encoding (into 4 bytes) to different parts of the rotated
vector (e.g. the halves in the case of 8 byte codelength, or
quarters in the case of 16 byte codelength). Throughout
the experiments, all codebooks and rotation matrices are
learned on the hold-out sets. In all experiments, we set the
parameter N within the Beam Search to 16 during code-
book learning and to 64 during the data encoding.

We start by comparing the approximation error between
the methods. In Figure 2 we plot the mean approxima-
tion error as a function of the code length for the well-
known SIFT1M dataset [10] containing one million 128-
dimensional SIFT vectors (plus the holdout set). For all
code lengths (M=4, 8, 16) AQ/APQ approximation error
is considerably lower than for the current state-of-the-art
methods PQ and OPQ. Given these encouraging results, we
consider two applications where more accurate coding may
result in better performance, namely (i) approximate near-
est neighbor search and (ii) image classification with limited
memory.

We also perform the comparison of AQ and OPQ ap-
proximation quality for the varying codebook sizes K. Fig-
ure 3 shows that AQ provides substantially better compres-
sion for the entire range of K.

3.1. Nearest neighbor (NN) search

Approximate NN-search is a technology used widely in
pattern analysis and computer vision in particular. It is also
a natural testbed to compare different encoding methods.
Here, we perform a comparison on three datasets of visual
descriptors described below. The datasets are compressed
using the compared methods. We then consider several
queries (given by uncompressed vectors) for which the true
Euclidean nearest neighbor in the dataset (“ground truth”) is
precomputed. For each query evaluate the distance between

32 (1024) 64 (512) 128 (256)

1

2

3

4

5

x 10
4

Bit code length (compression rate)

A
ve

ra
ge

 a
pp

ro
xi

m
at

io
n

er
ro

r

PQ
OPQ
AQ/APQ

Figure 2. Approximation errors on SIFT-1M dataset for different
compression methods and three code lengths (4, 8, 16 bytes). Ad-
ditive quantization (AQ) was used for 4 bytes, Additive product
quantization (APQ) was used for 8 and 16 bytes. For all code
lengths, the error of AQ/APQ is lower than for Product Quantiza-
tion (PQ) and Optimized Product Quantization (OPQ).

32 64 128 256 512 1024

3

4

5

6

7

x 10
4

Codebooks size

A
ve

ra
ge

 a
pp

ro
xi

m
at

io
n

er
ro

r

PQ
OPQ
AQ

Figure 3. Approximation errors on 10,000 SIFT-descriptors for AQ
and OPQ with different codebooks sizes (4 codebooks are used in
each case). The advantage of AQ is uniform.

the query and each of the compressed vectors in a dataset.
After reranking, we report the recall@T measure [10], de-
fined as a probability (computed over a number of queries)
that the set of T closest compressed vectors contains the
true nearest neighbor. The results are shown in the form of
recall@T-vs-T curves.

The considered datasets are briefly discussed below.
SIFT-1M: This dataset introduced in [10] contains one

million of 128-dimensional SIFT descriptors [13], plus
100,000 descriptors in a hold out set. It also comes with

1 3 5 7 9
0

0.2

0.4

0.6

0.8

1

log
2
(T)

R
ec

al
l@

T

PQ−8
OPQ−8
AQ−7
AQ−8
APQ−8

Figure 5. Comparison of different encodings with the code length
M = 8 bytes. AQ-8 has the highest recall, APQ-8 and AQ-7 are
slightly less accurate but are much faster then AQ-8 in terms of
distance evaluation, see Table 1. The AQ-7 method is also faster
than PQ and OPQ, while achieving higher retrieval accuracy.

10,000 queries with known true Euclidean nearest neigh-
bors (among the main dataset).

GIST-1M: This dataset introduced in [10] contains one
million of 960-dimensional GIST descriptors [16] in the
main set, and 500,000 vectors in the hold-out set. The
ground truth (true Euclidean nearest neighbors) is known
for a hold-out set of 1,000 queries.

VLAD-500K: This dataset contains VLAD descrip-
tors [11] of natural images. The descriptors are PCA-
compressed (with whitening) to 128 dimensions. The base
and the learn sets both contain 500,000 vectors, the query
set contains 1,000 vectors for which we precomputed the
ground truth neghbors in the base set1.

The SIFT and GIST datasets thus contain descriptors
based on the spatially-binned histograms of gradients, while
the PCA-compressed VLAD descriptors have a more com-
plex structure. On the other hand, SIFT and VLAD datasets
have the same dimensionality D = 128, while GIST de-
scriptors are more high-dimensional.

The Figure 4 shows relative performance of all the meth-
ods (AQ, PQ, OPQ) for the case of extreme vector compres-
sion to four bytes. AQ demonstrates an advantage over the
other methods for all datasets and all T , with the advantage
being the largest for the SIFT descriptors.

We further investigate the performance on the SIFT
dataset, now considering the case of M = 8 bytes. Here,
along the standard AQ we consider two more variants: APQ
(the hybrid algorithm) and AQ-7, where we use M = 7
bytes to encode each vector and we spend one more byte

1We thank Dr. Relja Aranjelović for providing the dataset.

1 3 5 7 9 11 13
0

0.2

0.4

0.6

0.8

1

log
2
(T)

R
ec

al
l@

T

PQ−4
OPQ−4
AQ−4
PQ−8
OPQ−8
APQ−8
PQ−16
OPQ−16
APQ−16

Figure 6. Advantage of AQ/APQ over PQ and OPQ for different
code lenghts. The advantage of AQ methods is particularly large
in the case of shorter code lengths.

to encode the length of the compressed vector (as discussed
in the end of Section 2.1). The latter has the same memory
footprint as PQ/OPQ and a lower cost of the distance eval-
uation (Table 1). As can be seen (Figure 5) the variants of
the AQ (including the AQ-7 variant) again outperform the
PQ and OPQ methods.

Finally, Figure 6 shows alongside the curves corre-
sponding to PQ, OPQ and AQ/APQ correspong to different
code length (AQ is used for M = 4 bytes and APQ for
M = 8 and M = 16 bytes). As expected, all methods
improve their accuracies for longer codes, with the methods
based on additive quantization performing better than OPQ
and PQ. The difference in the performance between the
methods decreases when M increases.

3.2. Classification

Another application of compact encoding is a compres-
sion of image descriptors for image classification. There are
two scenarios where it can be used. Firstly, image compres-
sion can be applied to training images in order to facilitate
learning on very large image collections when the whole
training data needs to be loaded into the CPU [19, 22].

The second, and perhaps more important scenario, is the
compression of the test set. Here a classifier can be trained
on a smaller set of images and then applied to a very large
dataset of compressed image descriptors in order to find the
images with the highest classification score [5, 4, 2]. Inter-
estingly, in this scenario it is only necessary to evaluate the
scalar products between the query (the classifier) and the
compressed vectors. Since the evaluation of the ‖x‖2-term
is not necessary, the search is equally efficient in the case of
AQ and PQ (save for the lookup table precomputation) even
without the use of an extra byte encoding the vector length.

We have conducted the experiments corresponding to
both scenarios on the PASCAL VOC 2007 [7]. We used

1 3 5 7 9 11 13
0

0.2

0.4

0.6

0.8

1

log
2
(T)

R
ec

al
l@

T

PQ
OPQ
AQ

1 3 5 7 9 11 13
0

0.2

0.4

0.6

0.8

1

log
2
(T)

R
ec

al
l@

T

PQ
OPQ
AQ

1 3 5 7 9 11 13
0

0.2

0.4

0.6

0.8

1

log
2
(T)

R
ec

al
l@

T

PQ
OPQ
AQ

SIFT-1M dataset GIST-1M dataset VLAD-500K dataset
Figure 4. Euclidean NN recall@T (number of items retrieved) based on different compression methods for SIFT-1M, GIST-1M, and
VLAD-500K datasets with the code length M=4 bytes. For all datasets the recall@T with the AQ encoding is higher than for with the PQ
and the OPQ encodings for all values of T .

Fisher Vector descriptors[18] with 256 components over
SIFT descriptors PCA-ed to 80 components. We do not use
the spatial pyramids. Our goal was to evaluate the degrada-
tion from the use of OPQ and APQ for different compres-
sion rates. In both compression methods, original Fisher
Vectors are split into R subvectors and each subvector is
compressed either by OPQ or by AQ into M = 4 bytes
(which gives the compression rate R). Different compres-
sion rates can be obtained via varying R. We use the stan-
dard mean average precision measure for PASCAL classifi-
cation experiments.

Experiment 1: compression of training data. In this
experiment, we used the PASCAL test set to learn the code-
books/rotation matrices. We then learned the classifiers on
the train+val part of the data using either uncompressed vec-
tors or APQ and OPQ compressed vectors (which were de-
compressed during learning as in [19]). Once we learned
the classifiers, we applied them to the uncompressed test set
and measure the standard performance (average precision).
As can be seen from Figure 7, the degradation is smaller in
the case when the training data is APQ compressed.

Experiment 2: compression of test data. In this exper-
iment, we followed the second scenario and learned clas-
sifiers using the uncompressed descriptors on the PASCAL
train+val set. We evaluated the effect of the compression of
the test data (the compression scheme was the same as in
the Experiment 1, AQ/OPQ codebooks were learned on the
PASCAL train data). Once again, from Figure 8 we could
see that the degradation resulting from the compression is
smaller in the case of the APQ compression.

4. Discussion
We have introduced the new lossy compression scheme

for high-dimensional vectors that permits efficient compu-
tation of scalar products and distances based on lookup ta-
bles. The scheme provides higher approximation accuracy
than the previous state-of-the-art (optimized product quan-

40 80 160 320 640 1280
0.3

0.4

0.5

0.6

Compression rate

m
A

P

Uncompressed
OPQ−compressed
APQ−compressed

Figure 7. Average precision of classification for learning on com-
pressed data and testing on uncompressed data. Codebooks for
OPQ and APQ were learned on test set and were used to encode
the training and validation sets. The classifiers were learned on the
training and validation sets and were tested on the test set. Better
coding approximation of the APQ results in higher classification
accuracy.

Method OPQ AQ APQ AQ7
Increase w.r.t PQ, 4 bytes 1.05 2.55 — —
Increase w.r.t PQ, 8 bytes 1.05 5.46 2.59 0.92

Table 1. The NN-search runtime increase relative to PQ for differ-
ent encoding methods (code length M=4 and M=8 bytes). The
PQ runtime is assumed to equal one. In the case of M=8 bytes,
the AQ-7 method is the fastest (and also outperforms PQ and OPQ
in terms of accuracy). AQ and APQ are more accurate but slower
then AQ-7. Please see text for more details

tization), which translates into higher accuracy of approx-
imate nearest neighbor search and higher classification ac-
curacies in image classification applications, whenever ex-
treme compression is applied to the training or to the test
data.

In terms of speed, AQ is almost as fast as OPQ when

40 80 160 320 640 1280
0.3

0.4

0.5

0.6

Compression rate

m
A

P

Uncompressed
OPQ−compressed
APQ−compressed

Figure 8. Average precision of classification for learning on un-
compressed data and testing on compressed data. The classifiers
were learned on the training and validation sets and were tested
on the test set. Better coding approximation of the AQ results in
higher classification accuracy.

evaluating the scalar products. Evaluating distances is
slower due to the need to evaluate the ‖x‖2 term (Table 1).
This can be alleviated if this length is encoded using a sep-
arate byte, in which case the evaluation of the distance be-
comes as fast as in the case of PQ. This extra byte can be
allocated out of the total budget for memory footprint, e.g.
in Figure 5 we used seven out of eight bytes to store the
AQ-compressed vector and the remaining byte to store the
length. In this case, the system based on AQ outperformed
the system based on OPQ both in terms of accuracy and in
terms of speed of distance evaluation, while using the same
amount of memory per vector.

Currently, the main limitation of the proposed scheme is
the complexity of the vector encoding step, and this the di-
rection in which further performance gains could be possi-
ble. Such improvement should be particularly considerable
for the case of longer codes, for which we currently use
the hybrid algorithm combining PQ and AQ. The current
hybrid scheme results in the fully connected graph in (7)
being effectively replaced with disjoint cliques of size four.
We are currently investigating other approximations to the
fully-connected graphs (e.g. based on Chow-Liu trees).

References
[1] Gurobi optimizer. http://www.gurobi.com/, 2013. 4
[2] R. Arandjelović and A. Zisserman. Multiple queries for large

scale specific object retrieval. In British Machine Vision Con-
ference, 2012. 1, 6

[3] R. Arandjelović and A. Zisserman. Extremely low bit-rate
nearest neighbor search using a Set Compression Tree. Tech-
nical report, Department of Engineering Science, University
of Oxford, 2013. 5

[4] A. Bergamo and L. Torresani. Meta-class features for large-
scale object categorization on a budget. In CVPR, pages

3085–3092, 2012. 6
[5] A. Bergamo, L. Torresani, and A. W. Fitzgibbon. Picodes:

Learning a compact code for novel-category recognition. In
NIPS, pages 2088–2096, 2011. 6

[6] J. Besag. On the Statistical Analysis of Dirty Pictures. J.
Roy. Stat. Soc. B, 1986. 3

[7] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.
6

[8] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quan-
tization for approximate nearest neighbor search. In CVPR,
2013. 1

[9] Y. Gong and S. Lazebnik. Iterative quantization: A pro-
crustean approach to learning binary codes. In CVPR, 2011.
1

[10] H. Jégou, M. Douze, and C. Schmid. Product quantization
for nearest neighbor search. TPAMI, 33(1), 2011. 1, 5, 6

[11] H. Jegou, M. Douze, C. Schmid, and P. Pérez. Aggregating
local descriptors into a compact image representation. In
CVPR, 2010. 6

[12] J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnörr,
S. Nowozin, D. Batra, S. Kim, B. X. Kausler, J. Lellmann,
N. Komodakis, and C. Rother. A comparative study of mod-
ern inference techniques for discrete energy minimization
problems. In CVPR, pages 1328–1335, 2013. 3

[13] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2), 2004. 5

[14] S. Mallat and Z. Zhang. Matching pursuit in a time-
frequency dictionary. IEEETransactions on Signal Process-
ing, 41(12):33973415, 1993. 3

[15] M. Norouzi and D. J. Fleet. Cartesian k-means. In CVPR,
2013. 1, 2, 5

[16] A. Oliva and A. Torralba. Modeling the shape of the scene: A
holistic representation of the spatial envelope. IJCV, 42(3),
2001. 6

[17] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann, 1988. 3

[18] F. Perronnin, J. Sánchez, and T. Mensink. Improving the
fisher kernel for large-scale image classification. In ECCV,
2010. 7

[19] J. Sánchez and F. Perronnin. High-dimensional signature
compression for large-scale image classification. In CVPR,
pages 1665–1672, 2011. 6, 7

[20] S. C. Shapiro. Encyclopedia of Artificial Intelligence. 1987.
3

[21] A. Torralba, R. Fergus, and Y. Weiss. Small codes and large
image databases for recognition. In CVPR, 2008. 1

[22] A. Vedaldi and A. Zisserman. Sparse kernel approximations
for efficient classification and detection. In CVPR, pages
2320–2327, 2012. 6

[23] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In
NIPS, pages 1753–1760, 2008. 1

