
Fast Approximate Inference in Higher Order MRF-MAP Labeling Problems

Chetan Arora∗

The Hebrew University of Jerusalem
Jerusalem, Israel

Subhashis Banerjee Prem Kalra S.N. Maheshwari
Indian Institute of Technology Delhi

New Delhi, India

Abstract

Use of higher order clique potentials for modeling in-
ference problems has exploded in last few years. The al-
gorithmic schemes proposed so far do not scale well with
increasing clique size, thus limiting their use to cliques of
size at most 4 in practice. Generic Cuts (GC) of Arora et
al. [9] shows that when potentials are submodular, infer-
ence problems can be solved optimally in polynomial time
for fixed size cliques. In this paper we report an algorithm
called Approximate Cuts (AC) which uses a generalization
of the gadget of GC and provides an approximate solution
to inference in 2-label MRF-MAP problems with cliques of
size k ≥ 2. The algorithm gives optimal solution for sub-
modular potentials. When potentials are non-submodular,
we show that important properties such as weak persis-
tency hold for solution inferred by AC. AC is a polynomial
time primal dual approximation algorithm for fixed clique
size. We show experimentally that AC not only provides
significantly better solutions in practice, it is an order of
magnitude faster than message passing schemes like Dual
Decomposition [19] and GTRWS [17] or Reduction based
techniques like [10, 13, 14].

1. Introduction

Approaches for solving 2-label higher order MRF-MAP
problems can be broadly categorized into two categories.
The ones in the first category reduce any higher order terms
in the energy function to an equivalent quadratic pseudo
Boolean form [10, 13, 14, 22]. Graph cuts guarantee opti-
mal solution if the reduced form is submodular. An approx-
imate solution, using the roof dual based QPBO algorithm
[18], is inferred if the reduced form is nonsubmodular. The
algorithms in second category use variants of belief propa-
gation and message passing with or without use of primal
dual framework [19, 21, 23, 24].

The QPBO algorithm for optimizing nonsubmodular
quadratic pseudo Boolean forms is attractive because it of-

∗Chetan Arora is now with IIIT Delhi.

fers weak persistence guarantees for the approximate so-
lution it outputs [12]. Quadratization is a well researched
area. Ishikawa’s reduction framework [13] encapsulates
much of the earlier work and introduces general techniques
for handling any higher order system. However, Ishikawa’s
reduction may add exponential number of terms during the
transformation which makes its use problematic for larger
clique sizes. Rother et al. [22] show that for pattern based
potentials sparsity can be exploited and quadratic form size
controlled. Quadratization, however, reduces structure and
can introduces non-submodularity [9]. This may affect the
number of weakly persistent nodes in the solution inferred
by QPBO. A significant new insight is the idea of bisub-
modular relaxation as a generalization of roof duality [16].
Kahl and Strandmark [14] have taken the idea further and
have developed an LP based algorithm to work with 3-
clique and and a subset of 4-clique potentials. Windheuser
et al. [25] have extended generalized roof duality to multi-
label potentials, giving a method to create submodular re-
laxation for multi-label 2-clique potential functions.

Dual decomposition and message passing based meth-
ods decompose the original problem into smaller problems
which can be solved efficiently [20, 23]. Solutions to the
independently solved decomposed problems are then com-
bined to provide a consistent solution to the original prob-
lem. This cycle is repeated until convergence. The tech-
niques guarantee convergence to optimal if the subprob-
lems can be solved optimally. In practice, the convergence
usually comes late and the algorithms are stopped after a
few iterations or once the acceptable solution is reached.
Komadakis and Paragios [19] have suggested an innova-
tive methodology to extend these techniques to higher or-
der cliques. Since the subproblems in their decomposition
themselves can not solved optimally, convergence can not
be guaranteed even though the technique gives good infer-
ence in practice.

Optimal inference in higher order problems is difficult
not only due to issues involved in handling higher order
cliques but also due to the non-submodularity of potentials
involved. The Generic Cuts (GC) algorithm [9] provides
efficient and practical algorithm for optimal solutions to

1

higher order submodular potential functions and effectively
isolates the issues of non-submodularity from that of higher
order potentials. GC formulates the problem as flow in a
gadget based flow graph and solves a maximum flow prob-
lem directly. We show in this paper that the Generic Cuts
approach can be extended to model any higher order MRF-
MAP problem, submodular or nonsubmodular. It turns out
that the gadget introduced here realizes the submodular re-
laxation of Kahl and Strandmark for higher order potential
of arbitrary clique sizes (clique size greater than 4 for the
first time). Our experimental results validate the efficiency
and quality of results produced by our algorithm. The algo-
rithm has low order polynomial time complexity similar to
GC. More importantly solutions given by our algorithm are
provably weakly persistent.

Organization of the paper is as follows. Section 2 con-
tains the primal dual underpinnings. Sections 3 and 4 give
the framework and algorithmic details respectively for the
max flow based solution. Section 5 describes the theoreti-
cal properties. Section 6 concentrates on weak persistence
properties of the inferred solution. Section 7 contains de-
tails of comparative performance.

2. Primal Dual Framework
A MRF-MAP problem with set of pixels P , and a set

of cliques C can be formulated as finding a labeling which
minimizes a function of the following form

lP
∗ = arg min

lP∈Ln

∑
p∈P

Dp(lp) + λ
∑
c∈C

Wc(lc)

 , (1)

where any pixel p can take a label lp from the set L =
{a, b}. Dp(lp), called the unary potential, is the cost of
assigning label lp to p. Wc : Lk → R, called the clique
potential function, assigns a cost for any labeling configu-
ration lc on clique c. We denote the number of pixels by
n, and the size of a clique by k. lc,p,l denotes a labeling
configuration on clique c in which the label of pixel p is l.
Note that there can be many such labelings (corresponding
to the same clique or the other cliques containing p) and the
set of all such labelings is denoted as {lc}p,l.
X l

p is a variable whose value is 1 whenever pixel p is as-
signed label l and is 0 otherwise. Similarly Y lc

c takes value
1 whenever clique c is assigned labeling configuration lc
and is 0 otherwise. With this notation, the MRF-MAP equa-
tion (1) can be written as the following integer program:

min
Xl

p,Y
lc
c

∑
p∈P

∑
l∈L

Dp(l)X l
p +

∑
c∈C

∑
lc∈Lk

Wc(lc)Y lc
c (2)

subject to ∑
l∈L

X l
p = 1, p ∈ P, (3)

∑
z∈{lc}p,l

Y z
c = X l

p, p ∈ P, l ∈ L, (4)

X l
p ∈ {0, 1} , Y lc

c ∈ {0, 1}. (5)

Equation (3) ensures that each pixel is assigned exactly one
label while equation (4) enforces consistency between pixel
and clique labelings. Replacing (5) by (6) we get the relaxed
LP formulation of the optimization problem.

X l
p ≥ 0 , Y lc

c ≥ 0. (6)

The Lagrangian dual of the relaxed LP can be written as:

max
U

∑
p∈P

Up (7)

subject to

Up ≤ hlp, p ∈ P, l ∈ L, (8)

where
hlp = Dp(l) +

∑
c:p∈c

Vc,p,l, (9)

and ∑
p∈c

Vc,p,lpc ≤Wc(lc), c ∈ C, lc ∈ Lk. (10)

lpc denotes the label of pixel p in labeling lc. Note that lpc ∈
L. Complimentary slackness conditions can be written as:

X l
p > 0 ⇒ Up = hlp, (11)

and

Y lc
c > 0 ⇒

∑
p∈c

Vc,p,lpc = Wc(lc). (12)

Primal dual framework guarantees that any feasible pri-
mal and dual solutions which satisfy all complimentary
slackness conditions (11,12) are optimal.

The primal dual framework developed here is very sim-
ilar to the one used in GC [9]. We build our discussion
taking as given concepts like gadget, conjugate edges, flow
constraints, residual capacity, tight constraints, union and
intersection of constraints, augmenting path as developed
in GC and refer the reader to [9] for their details. We focus
only on those issues here which are required for developing
the new algorithmic framework.

3. Approximate Cuts (AC) Framework
The gadget to model flows for nonsubmodular clique po-

tential is a generalization of the one introduced in [9]. It
consists of two copies of the gadget of GC connected as

Figure 1: (a, b) - gadget

shown in Figure 1. Formally, for a clique of size k, The
gadget consists of 2k+ 4 nodes. 2k nodes pa, qa, ..., ra and
pb, qb, ..., rb correspond to labels a and b respectively of the
k pixels and are called a-pixel and b-pixel nodes. There are
four auxiliary nodes na,ma, nb and mb. From na and nb,
there are directed edges to each a-pixel and b-pixel node re-
spectively. Similarly there are directed edges from a-pixel
and b-pixel nodes to ma and mb respectively. These edges
are called conjugate edges. The two conjugate edges cor-
responding to a pixel node is referred to as conjugate edge
pair. From ma and mb there are directed edges to na and
nb respectively. Also, there are edges in both directions be-
tween ma and mb. These edges are called auxiliary edges.
The two copies of the gadget of GC are called a-gadget and
b-gadget and together the structure is called (a, b)-gadget.
For notational convenience we will use m,n, p (without the
subscript) whenever the subscript a or b is obvious from the
context.

Flow originating from node pa to node qa in the a-gadget
is routed along the path pa → ma → na → qa. Similarly
flow from node pa to node qb in a clique will be routed on
path pa → ma → mb → nb → qb. We refer to such a path
between two pixel nodes as a path fragment. The node pa
and the conjugate edge corresponding to it is referred to as
the sending node/edge. Node qa is referred to as the receiv-
ing node. We denote flow in a conjugate edge, say na → pa,
in the gadget corresponding to clique c by fcnapa

. The rela-
tionship between a dual variable and flow in conjugate edge
pairs is given by

Vc,p,a = fcnapa
−fcpama

and Vc,p,b = fcnbpb
−fcpbmb

. (13)

We call the r.h.s. of equation (13) as effective flow in a
conjugate edge pair. Using (13) dual feasibility constraints
(equation 10) can be written as∑
p∈c:lpc=a

(fcnapa
−fcpama

)+
∑

p∈c:lpc=b

(fcnbpb
−fcpbmb

) ≤Wc(lc).

(14)
Equation (14) essentially says that the sum of effective flow
in all the conjugate edge pairs corresponding to an lc can
not exceed the value of Wc(lc). We refer to a constraint
of the form (14) as a Dual Feasibility Constraint (DFC).
Note that there is a DFC corresponding to every labeling

lc. The difference between the r.h.s. and l.h.s. of equation
(14) is called the slack of the DFC. All the conjugate edge
pairs in the l.h.s. of the equation and the pixel nodes corre-
sponding to those pairs are said to be contained/covered by
the DFC. Conversely all such edge pairs and pixel nodes are
said to be participating in the DFC. Note that for a clique of
size k there are exactly k conjugate edge pairs participating
in any DFC. While in GC the participating conjugate edge
pairs correspond to label a, in AC conjugate edge pairs cor-
responding to both labels a and b may participate with the
provision that for a pixel only one of the two conjugate edge
pairs participates.

We have, in effect, embedded a k-ary potential system in
the 2.k-ary framework of an (a, b)-gadget. One may look
upon the 2k DFCs corresponding to the k-ary system as the
subset of valid DFCs from the 22k possible DFCs for an
(a, b)-gadget. That the 22k − 2k invalid DFCs play no role
is ensured by assuming that the slack corresponding to them
is∞. As in GC, the slack of a DFC is the allowed capacity
of each conjugate edge pair covered by it. Similarly resid-
ual capacity of a conjugate edge pair is the minimum of
the slacks of all the DFCs in which it participates. Note
that unlike GC where only slacks of DFCs corresponding to
non uniform labelings contribute to the calculation of resid-
ual capacity of a conjugate edge pair, in AC all DFCs con-
tribute to the calculation of residual capacity. In GC initial
reparametrization ensures that both uniform labeling costs
are zero and the gadget used in GC does not need to account
for those costs. In AC this may not be so. We call a DFC
tight if it’s slack is zero. All conjugate edge pairs in a tight
DFC are termed tight under that DFC. Note that the slack
in a DFC should always be greater than or equal to zero. A
DFC is called violated if its slack becomes negative.

4. Flow Graph Construction and Algorithm
The flow graph based on (a, b)-gadgets has two nodes

corresponding to labels a and b for each pixel. For each
clique the nodes corresponding to labels a and b get con-
nected in a (a, b)-gadget using four auxiliary nodes in-
troduced specifically for the clique. There are two addi-
tional nodes s and t (referred to as terminal nodes) which
are connected to the gadget nodes as follows: Let the
unary/singleton potential for assigning label a and b at pixel
p be Dp(a) and Dp(b) respectively. If Dp(a) > Dp(b) then
node pa in the flow graph has a directed edge from s and
there is a directed edge from pb to t. On the other hand, if
Dp(b) > Dp(a) then the directed edge from s is to pb and
the directed edge to t is from pa. We refer to these edges as
terminal edges. Capacity for the pair of such terminal edges
introduced for a pixel p is defined to ensure such that sum
of flows in the two edges cannot exceed |Dp(b) − Dp(a)|.
Node s also has directed edges to all auxiliary nodesma and
mb of all the gadgets in the flow graph whose capacities are

constrained as follows:
Conservation of flow at node mb of a clique c implies

fsmb
+ fcmamb

+
∑
p∈c

fcpbmb
= fcmbma

+ fcmbnb
,

⇒ fsmb
+ fcmamb

+
∑
p∈c

fcpbmb
= fcmbma

+
∑
p∈c

fcnbpb
,

⇒ fsmb
+ fcmamb

− fcmbma
=

∑
p∈c

(fcnbpb
− fcpbmb

).

Note that r.h.s. of the above equation is bounded from above
by the cost of uniformly labeling all nodes of clique c by
b’s. Since edges of type ma → mb and mb → ma are
between the same pair of nodes, one can restrict, without
loss of generality, that flow at any time is in only one of
the two edges. Under this assumption we can say that the
capacity constraint on edges s→ mb and ma → mb is that
the sum of flow in them can not exceed the cost of uniformly
labeling all nodes of clique c by b’s, i.e., the clique potential
for assigning label b to all nodes of a clique. Similarly the
sum of flow in edges mb → ma and s→ ma should be less
than or equal to the clique potential for assigning label a to
all nodes of the clique. The capacities of edges ma → na
and mb → nb are set to infinity.

Algorithm 1 AC Maxflow Algorithm

1: for All cliques c ∈ C do
2: Reparametrize the clique potential until the DFCs for

uniform labeling become tight or all V variables be-
come tight under some DFC;

3: end for
4: Build the residual graph R;
5: while There exists an s-t augmenting path in R find the

lexicographically shortest augmenting path; do
6: Augment flow in that path;
7: Build the residual graph R;
8: end while

The generic algorithm for finding maximum flow in a
flow graph based on (a, b)-gadgets is the traditional aug-
menting path method used in GC and is as given in Algo-
rithm 1.

In the first step, we reparametrize clique potentials using
the technique suggested in GC, with the objective of mak-
ing uniform labeling costs zero if possible. In GC, when
the clique potential function is submodular, uniform label-
ing costs are guaranteed to become zero. When clique po-
tentials are non-submodular even if uniform costs do not
become zero, the state arrived at results in a conjugate edge
pair to be tight in at least one of the DFCs containing it.
This makes a-pixel and b-pixel nodes in a gadget unreach-
able1 from s via a path containing s to an auxiliary node

1A node p is called reachable from q in a flow graph if q can push flow

edge. Note that flow can be augmented using any heuristic
used in max flow algorithms. The augmenting path frame-
work of steps 4 to 7 could even be replaced by the Push
Relabel technique of [11].

(a) Before Redistribution (b) After Redistribution

Figure 2: Flow redistribution in a gadget

As in GC, the primary difficulty in pushing flow in a
residual graph is due to the fact that as long as the sum of
flows in the collection of conjugate edge pairs contained in a
DFC remains the same, flows in the conjugate edge pairs in-
volved can take any value without effecting the tightness of
the DFC [9]. This allows for redistribution of flow in some
edges of the flow graph to enable flow pushing in some other
edges which were not involved in this redistribution. This
can happen when two tight DFCs share a conjugate edge.
For example, consider Figure 2 which shows two states of
flow in a gadget of a flow graph.

Flow in each conjugate edge incident at a pixel node is
shown in red and the cost of covering a DFC is shown in
blue. In Figure 2(a) all conjugate edges incident at pixel
nodes have zero residual capacity because the two DFCs,
D1 covering conjugate edges incident at x1, x2, x3, andD2
covering edges incident at x3, x4, x5 are tight. Suppose it is
possible to redistribute flow in the flow graph by increasing
flow in the conjugate edge incident at x1 to 6 and decreas-
ing flow in conjugate edge incident at x3 to 1. Total flow
out of s remains the same but DFC D2 now has slack of
2 (see Figure 2(b)). Conjugate edges incident at x4 and x5
in this flow configuration may now have residual capacity
of 2 (assuming other DFCs covering them have slack of 2
or higher) and there may now be a s to t path in the resid-
ual graph passing through these edges. When potentials are
submodular this cannot take place because the DFC which
represents the union of the two tight DFCs (D1 and D2) is
per force tight. In effect no advantage by redistribution can
be enabled for any conjugate edge involved as at least one
of the DFCs which contributes to the computation of their
residual capacities continues to remain tight.

Our heuristic is to attempt no redistribution when it is
discovered that two tight DFCs are sharing edges. We de-
clare the DFCs corresponding to union and intersection of
two tight DFCs as tight at that stage. This can be seen as
working with submodular approximations of the original

to p without violating any DFC

Algorithm 2 Residual Graph Construction

1: for All cliques c do
2: for All DFCs of c do
3: Calculate the slack in presence of current flow;
4: Declare a DFC as tight if it’s slack is zero or if it is a union or intersection of two tight DFCs;
5: Set the residual capacity of a conjugate edge as the minimum of slacks of all DFCs in which it participates;
6: end for
7: for All path fragments of type pa to qa, pb to qb, pa to qb, pb to qa do
8: if Edge corresponding to q have have non zero residual capacity then
9: Add the path fragment to the residual graph;

10: Set the residual capacity of the path fragment as the residual capacity of receiving edge;
11: else
12: if The intersection of the tight DFCs covering receiving edge also cover sending edge then
13: Add the path fragment to the residual graph;
14: Set the residual capacity of the added fragment as minimum slack of all DFCs which cover receiving edge and

not sending edge;
15: end if
16: end if
17: end for
18: end for

potentials. The skeletal residual graph building algorithm,
which reflects this heuristic, is given in Algorithm 2.

5. Theoretical Properties
Following the same proof methodology as for GC it can

be shown that:

Lemma 5.1. Flow in the two-gadget based flow graph can-
not exceed the capacity of any (S, T) cut.

Lemma 5.2. If Wc(·) is submodular, then for every two
tight DFCs corresponding to labeling l

′

c and l
′′

c , the DFCs
corresponding to labeling l

′

c ∪ l
′′

c and l
′

c ∩ l
′′

c are also tight.

Theorem 5.3. In the flow graphs corresponding to the dual
optimization problem max flow is equal to min cut under the
assumption that clique potential functions are submodular.

We omit the proof of these lemmas as they follow di-
rectly from those given in [9]. Lemma 5.4 describe an
important property satisfied by (a, b)-gadget based flow
graphs. The proof of the lemma is included in the supple-
mentary material.

Lemma 5.4. In an (a, b)-gadget based residual flow graph
created after flow augmentation process has terminated
both pa and pb corresponding to a pixel p can not be reach-
able from s. In other words either one of pa and pb is reach-
able or both are unreachable from s.

Lemma 5.4 shows that once the stage when flow cannot
be augmented any further has been reached a strategy for
labeling nodes can be developed that is consistent with the

one developed for GC. This is because definition of set S as
the set of all nodes reachable from s in the residual graph
arrived at after the flow augmentation stage is over does not
lead to any inconsistency. Lemma 5.4 ensures that only one
of the nodes corresponding to a pixel will be reachable from
s. We follow standard procedure to create set S and T, but
force all nodes pb to be in S, for which corresponding node
pa is not in S (this is to avoid the case when both pa and pb
are not in S). We label a pixel p to be a if pb is in S and as
b if pa is in S. The labeling strategy provides a label to all
nodes.

6. Weak Persistence
For the purpose of discussion in this section we will as-

sume that original energy function has been reparametrized
such that singleton/unary costs have been absorbed in the
higher order terms. Note that this reparametrization does
not change the submodularity of the potential function.
Wc(·) refers to such reparametrized function in this section.
The overall energy function, referred to as W (·), is simply
the summation of such Wc(·) over all cliques.

As discussed in Section 3, an (a, b)-gadget for a clique c
can be looked upon as embedding a k-ary potential system
in the 2.k-ary framework of an (a, b)-gadget. One may look
upon the 2k DFCs corresponding to the k-ary system as the
subset of valid DFCs from the 22k possible DFCs for an
(a, b)-gadget. That the 22k − 2k invalid DFCs play no role
is ensured by assuming that the slack corresponding to them
is∞. Equivalently an (a, b)-gadget can also be looked upon
as operating over a function gc(·) of arity 2.k in which the
first k Boolean attributes correspond to labeling of pixels of

the clique by a and the remaining k correspond to labeling
of the pixels by b. Since the states associated with labels
a and b are essentially complements of each other, the rela-
tionship between the k-ary functionWc(·) corresponding to
the valid DFCs of clique c and gc(·) is given by

Wc(x) = gc(x, x̄), (15)

where x is any labeling on the pixels in c. In line with
the discussion above gc(x, y) = ∞ whenever x 6= ȳ. The
overall function, g(·) spanning all cliques is simply the sum-
mation of gc(·) over all cliques c. If W (·) is the result of
summation of all Wc(·), then similar relationship holds be-
tween W (·) and g(·) as defined in (15). Note that W (·)
and g(·) are n-ary and 2.n-ary functions respectively (n is
the number of pixels). We will now show that AC can be
looked upon as starting with a nonsubmodular relaxation
g(·) satisfying equation (15) and computing a submodular
relaxation g∗(·) satisfying equation (15) and its minimizer.
This is very much along the lines of Kahl and Strandmark
[14] to compute the generalized roof dual approximation of
a nonsubmodular function. The function g∗(·) is the sum
of submodular functions g∗c(·) for all c which get defined
during the execution of AC as follows.

The approximation heuristic in AC involves making the
DFCs corresponding to union and intersection of two tight
DFCs as tight in an (a, b)-gadget (corresponding to some
clique c). Let the states corresponding to the two tight DFCs
be (x, x̄) and (y, ȳ). Declaring the DFCs corresponding
to union and intersection tight is equivalent to defining the
function g∗c (·) for states (x∪y, x̄∪ ȳ), and (x∩y, x̄∩ ȳ). We
set g∗c (x ∪ y, x̄ ∪ ȳ) to (flow in the conjugate edges corre-
sponding to union of the two DFCs) and g∗c (x∩ y, x̄∩ ȳ) to
(flow in the conjugate edges corresponding to intersection
of the two DFCs). Note that setting the value of g∗c (·) in this
way does not cause any violation of residual capacity con-
straints of the conjugate edges of the gadget. What is im-
portant is that invalid DFCs (see Section 3 for definition of
invalid) which have to be tight have been identified and their
values set (to some value less than the original ∞). When
AC terminates then for those 22.k−2k states for which g∗c (·)
has not been explicitly set during the execution of AC, we
set the value of g∗c (·) to the maximum flow possible in the
conjugate edges corresponding to the states without violat-
ing any dual feasibility constraint. It can be verified that
g∗c (·) (as well as the overall function g∗(·)) defined in this
way is submodular. The flow computed by AC is equal to
max flow in the flow graph for g∗(·) so defined. That is,
we have minimized g∗(·). It should be noted that functions
g∗c (·) need not be explicitly calculated. AC essentially com-
putes the minimum of a submodular function g∗(·) which
is a sum of functions of type g∗c (·), each of which satisfies
equation (15).

Using a formulation similar to Windheuser et al. [25],

we show that the solution outputted by AC is weakly per-
sistent. Establishing weak persistence requires showing that
there are parts in the AC’s solution which will occur in a
minimiser of function g(·). What is interesting is that we do
not require g∗(·) to be symmetric.

Lemma 6.1. For the 2.k-ary submodular function g∗c (·) de-
fined during the execution of AC and for all k-ary states x, y
of a and b-gadgets of a clique c the following is true:

g∗c (x, y) ≥ g∗c (x ∩ ȳ, x̄ ∩ y).

Proof of Lemma 6.1 is in the supplementary material.
Since overall function g∗(·) is simply the summation of
g∗c (·), the lemma applies to g∗(·) as well.

Lemma 6.2. Let x∗, y∗ be a minimizer of function g∗(·)
outputted by AC (state corresponding to the (S,T) cut out-
putted by AC). For any state x, y

g∗(x, y) ≥ g∗ ((x ∪ x∗) ∩ ȳ ∩ ȳ∗, (y ∪ y∗) ∩ x̄ ∩ x̄∗) .

The Lemma 6.2 is identical to Lemma 6 in [25]. Its proof
relies on Lemma 6.1 which we have proved here for AC. We
refer the reader to [25] for the proof of Lemma 6.2.

Simplifying along the lines of [25], and using Lemma 6.2
we can show that W (x) ≥ g∗(x∩ ȳ∗, x̄∩ x̄∗), where x∗, y∗

is the minimizer of g∗(·) outputted by AC. Similarly it can
also be shown thatW (x) ≥ g∗((x∪x∗)∩ ȳ∗, (x̄∪y∗)∩x̄∗).
Setting the overwrite similar to [25],

z = ȳ∗ ∩ (x∗ ∪ x), and z = x̄∗ ∩ (y∗ ∪ x̄),

we can be show that, W (x) ≥ g∗(z, z). Note that for any
x the overwrite operator will output for a pixel p the same
label as given by AC, as long as pa and pb are on different
sides of the (S,T) cut as determined by AC. That is, the
label of a pixel p inferred by AC is weakly persistent.

7. Experiments
Our experiments have focussed on time taken and errors

in labeling observed using the algorithm reported here (re-
ferred to as AC) in comparison to message passing methods
like Max Product Inference (MPI) [15], Dual Decomposi-
tion (DD) [19] and GTRWS [17] as well as reduction tech-
niques proposed by Ishikawa (IQ) [13], Fix et al. (FZ) [10]
and the Generalized Roof Duality based algorithm (KS) of
[14]. The implementations of GTRWS, IQ, FZ and KS have
been taken from [8], [2, 7], [3] and [6] respectively. The
rest are from Darwin framework [1]. All experiments are
conducted with default parameters in their respective im-
plementations and no parameter tuning of any sort has been
attempted for any algorithm.

Our first experiment has focussed on performance when
clique potentials are submodular. We take denoising prob-
lem as used by GC [9]. The clique potential used penalizes

Input AC(0.01s)
673535
673535

IQ(0.4s)
775052

FZ(0.2s)
775052

DD(6.9s)
797675

GTRWS(0.22s)
673535
673535

MPI(0.2s)
824715

KS(210.8s)
709283
668276

Figure 3: Denoising: σ of Gaussian noise added is 70. Time taken in seconds is in brackets, followed by primal and dual energies.

GT AC
(20.5%,2.1)

DD
(40.9%,4457)

GTRWS
(20.7%,17.1)

FZ
(62.1%,12.7)

IQ
(61.7%,16.5)

MPI
(72%,0.38)

Figure 4: Stereo disparity results on Tsukuba dataset. Percentage error from ground truth followed by time taken in seconds is in parenthe-
sis.

as per square root of number of edges in the labeling. This
clique potential is submodular. Figure 3 shows the results.
For IQ and FZ dual values are not reported as their code is
not written to make dual values available. Unlabeled nodes
are uniformly assigned label 0 in all methods. For AC and
GTRWS primal and dual energies are equal. These results
are optimal. While the unlabeled nodes have been shown
as grey for energy calculation they have been uniformly la-
belled 0 in all methods. There is some work reported where
the focus is to label such nodes ”intelligently” rather than
just label them uniformly 0 or 1. Grey in Fig. 3 only em-
phasizes the extent of pixels where intelligent probing is
required. Note that while both KS and AC work with sub-
modular relaxations which embed the original problem in
cliques of larger order, the algorithmic technique proposed
in KS is to reduce the computed submodular relaxations to
second order systems and then use QPBO. The submodular
approximation used in KS, therefore, may output non opti-
mal labelings.

Working with nonsubmodular potentials, we first con-
sider the problem of finding disparity from a pair of stereo
images. Data energy terms along with Tsukuba images are
as used by MRF code at the Middlebury test bench [5].
Cliques are of size 2 × 2 and image size is 130 × 130.
We have run traditional α-expansion with clique potential
which penalizes as per the square root of the number of
edges in the multi-label labeling. In multi-label scenario
this potential function need not be submodular. Also, while
some of these methods under consideration can directly
handle multi label inference problems we have run them
in the α-expansion mode primarily to keep the experimen-
tal set up same in all cases. Error percentage is calculated
by taking the difference of the labeling outputted from the
ground truth image. Figure 4 shows comparative perfor-

mance. Labels are not switched in α-expansion when AF
and IQ give unlabeled nodes as output. All methods other
than AC and GTRWS fail to move much from the initial
solution (generated using unary potential).

We have chosen deblurring/deconvolution of binary im-
ages as the next experiment. We have taken binary images
from [4], blurred them using 3 × 3 averaging kernel and
added Gaussian noise with zero mean and different values
of σ (values given below each input figure). The images are
restored with the potential being distance of average value
in the 3× 3 windows in the proposed labeling from the ob-
servation corresponding to the center of the window. Unary
cost is the absolute difference of current pixel intensity from
the ideal {0, 255} values. Figure 5 reports outputs obtained
from various methods. Error in IQ’s output is the largest
as most of the nodes have been left unlabeled (grey nodes).
Error in AC’s output is the least. Image size is 3000 pix-
els. This is the largest size at which all the algorithms ran
to completion.

Since KS can not handle cliques of size larger than 4 we
re-ran the de-convolution experiment with deblurring using
2 × 2 blur kernel. Figure 6 shows the results. While the
speedup of AC over FZ is around 5X for clique size 4, it
shoots up to 40X − 50X for clique size 9. Similar results
have been reported by GC as well [9].

Note that while quality of the output produced by
GTRWS is competitive with AC in all experiments it is an
order or more slower than AC.

8. Conclusion

AC is the first direct combinatorial method for not
only solving higher order MRF-MAP problems with non-
submodular clique potentials but also outputting weakly

Ground Truth Input(10) AC
(38.2%,0.115)

DD
(42.18%,28.8)

GTRWS
(38.8%,5.17)

FZ
(99.79%,30.45)

IQ
(99.79%,137.7)

MPI
(49.29%,0.092)

Figure 5: Non Blind Deconvolution (9 clique). Percentage error from ground truth followed by time taken in seconds is in parenthesis.

Input(20) AC
(12.4%,0.009)

DD
(14.5%,6.3)

GTRWS
(12.5%,0.079)

KS
(13.9%,82.89)

FZ
(18.4%,0.080)

IQ
(45.8%,0.192)

MPI
(20.9%,0.104)

Figure 6: Non Blind Deconvolution (4 Clique). Percentage error from ground truth followed by time taken in seconds is in parenthesis.

persistent solutions. AC’s gadget structure captures gen-
eralized roof duality in a natural way. Since no additional
auxiliary nodes are introduced, it is expected that the struc-
ture of the labeling problem can be exploited by other ap-
plication specific heuristics to improve the labeling solution
in AC. Modeling using gadgets allows visualizing source of
approximation (union or intersection constraint of two tight
constraints assumed to be tight) and can be an additional
way to develop new heuristics for better empirical labeling
solutions in future.

Acknowledgement: Chetan Arora is supported by post-
doctoral fellowship of the Council for Higher Education in
Israel.

References
[1] Darwin Framework, Version 1.1.2. http://drwn.anu.

edu.au/.
[2] Higher-Order Clique Reduction software Version 1.02.

www.f.waseda.jp/hfs/software.html.
[3] Higher order energy reduction. www.cs.cornell.edu/

˜afix/.
[4] MPEG7 CE Shape-1 Part B. http://www.

imageprocessingplace.com.
[5] MRF energy minimization software - Version 2.1. http:

//vision.middlebury.edu/MRF/code/.
[6] Pseudo-Boolean Optimization. www.maths.

lth.se/matematiklth/personal/petter/
pseudoboolean.php.

[7] QPBO Version 1.3. http://pub.ist.ac.at/˜vnk/
software.html.

[8] SRMP- Version 1.01. http://pub.ist.ac.at/

˜vnk/software.html#SRMP.
[9] C. Arora, S. Banerjee, P. Kalra, and S. Maheshwari. Generic

Cuts: An efficient optimal algorithm for submodular MRF-
MAP problems with higher order cliques. In ECCV, 2012.

[10] A. Fix, A. Gruber, E. Boros, and R. Zabih. A graph cut
algorithm for higher-order markov random fields. In ICCV,
2011.

[11] A. V. Goldberg and R. E. Tarjan. A new approach to the
maximum flow problem. In STOC, 1986.

[12] P. Hammer, P. Hansen, and B. Simeone. Roof duality, com-
plementation and persistency in quadratic 0-1 optimization.
Math. Programming, 1984.

[13] H. Ishikawa. Transformation of General Binary MRF Mini-
mization to the First-Order Case. TPAMI, 2011.

[14] F. Kahl and P. Strandmark. Generalized roof duality for
pseudo-boolean optimization. In ICCV, 2011.

[15] D. Koller and N. Friedman. Probabilistic Graphical Mod-
els: Principles and Techniques. Adaptive Computation and
Machine Learning. MIT Press, 2009.

[16] V. Kolmogorov. Generalized roof duality and bisubmodular
functions. Discrete Applied Mathematics, 2012.

[17] V. Kolmogorov. Reweighted message passing revisited.
CoRR, abs/1309.5655, 2013.

[18] V. Kolmogorov and C. Rother. Minimizing nonsubmodular
functions with graph cuts-a review. TPAMI, 2007.

[19] N. Komodakis and N. Paragios. Beyond pairwise energies:
Efficient optimization for higher-order MRFs. In CVPR,
2009.

[20] N. Komodakis, N. Paragios, and G. Tziritas. MRF Energy
Minimization and Beyond via Dual Decomposition. TPAMI,
2011.

[21] X. Lan, S. Roth, D. P. Huttenlocher, and M. J. Black. Ef-
ficient belief propagation with learned higher-order markov
random fields. In ECCV, 2006.

[22] C. Rother, P. Kohli, W. Feng, and J. Jia. Minimizing sparse
higher order energy functions of discrete variables. In CVPR,
2009.

[23] D. Sontag, T. Meltzer, A. Globerson, Y. Weiss, and
T. Jaakkola. Tightening LP relaxations for MAP using
message-passing. In UAI, 2008.

[24] D. Tarlow, I. E. Givoni, and R. S. Zemel. HOP-MAP: Effi-
cient Message Passing with High Order Potentials. JMLR,
2010.

[25] T. Windheuser, H. Ishikawa, and D. Cremers. General-
ized roof duality for multi-label optimization: optimal lower
bounds and persistency. In ECCV, 2012.

http://drwn.anu.edu.au/
http://drwn.anu.edu.au/
www.f.waseda.jp/hfs/software.html
www.cs.cornell.edu/~afix/
www.cs.cornell.edu/~afix/
http://www.imageprocessingplace.com
http://www.imageprocessingplace.com
http://vision.middlebury.edu/MRF/code/
http://vision.middlebury.edu/MRF/code/
www.maths.lth.se/matematiklth/personal/petter/pseudoboolean.php
www.maths.lth.se/matematiklth/personal/petter/pseudoboolean.php
www.maths.lth.se/matematiklth/personal/petter/pseudoboolean.php
http://pub.ist.ac.at/~vnk/software.html
http://pub.ist.ac.at/~vnk/software.html
http://pub.ist.ac.at/~vnk/software.html#SRMP
http://pub.ist.ac.at/~vnk/software.html#SRMP

