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Abstract

Deformable objects are everywhere. Faces, cars, bicy-
cles, chairs etc. Recently, there has been a wealth of re-
search on training deformable models for object detection,
part localization and recognition using annotated data. In
order to train deformable models with good generalization
ability, a large amount of carefully annotated data is re-
quired, which is a highly time consuming and costly task.
We propose the first - to the best of our knowledge - method
for automatic construction of deformable models using im-
ages captured in totally unconstrained conditions, recently
referred to as “in-the-wild”. The only requirements of the
method are a crude bounding box object detector and a-
priori knowledge of the object’s shape (e.g. a point distri-
bution model). The object detector can be as simple as the
Viola-Jones algorithm (e.g. even the cheapest digital cam-
era features a robust face detector). The 2D shape model
can be created by using only a few shape examples with de-
formations. In our experiments on facial deformable mod-
els, we show that the proposed automatically built model
not only performs well, but also outperforms discriminative
models trained on carefully annotated data. To the best of
our knowledge, this is the first time it is shown that an auto-
matically constructed model can perform as well as meth-
ods trained directly on annotated data.

1. Introduction
Many deformable objects exist everywhere around us.

Some examples are the human face and body, animals, ve-
hicles such as cars and motorcycles and objects of everyday
use like tables, chairs etc. Most of these objects consist of
different parts and appear in instances with great variance
in shape and appearance. Thus, the concept of a deformable
object refers to the deformation of both shape and appear-
ance of an object. For example cars have parts (i.e. doors,
windows, tires etc.) with significant changes in shape, size
and texture. Furthermore, faces consist of parts (i.e. nose,
eyes, mouth etc.) which not only vary with respect to shape

and appearance, but can demonstrate a number of expres-
sions due to muscles. Recently, we have witnessed a great
progress in object detection, alignment and recognition.

In order to train deformable models with good general-
ization ability, a large amount of carefully annotated data
is needed. Developing useful datasets and benchmarks that
can contribute in the progress of an application domain is
a highly time consuming and costly procedure. It requires
both careful selection of the images, so that they can model
the vast amount of an object’s variability, and careful an-
notation of the various parts of the object (or landmarks).
The amount of annotation that is required depends on both
the object and the application. In faces, for example, where
many landmark points are needed in tasks such as facial ex-
pression analysis, motion capture and expression transfer,
usually more than 60 points are annotated [3, 17, 25, 37].
To illustrate how much time consuming careful face anno-
tation is, according to our experience, a trained annotator
may need an average of 8 minutes per image for the manual
annotation of 68 landmarks1. This means that the annota-
tion of 1000 images requires a total of about 130 hours2.
Furthermore, fatigue can cause errors on the accuracy and
consistency of annotations and they may require correction.

In this paper, we deal with the problem of automatically
constructing a robust deformable model using (1) a simple
bounding box object detector and (2) a shape by means of
a Point Distribution Model (PDM). The detector can be as
simple as the Viola-Jones object detector [32]3 which re-
turns only a bounding box of a detected object. Such de-
tectors are widely employed in commercial products (e.g.
even the cheapest digital camera has a robust face detector).
Other detectors that can be used are efficient subwindow
search [15] and deformable part-based models [37]. The
annotations that are needed to train the object detector can
be acquired very quickly, since only a bounding box con-

1This depends on many factors such as the image’s illumination and
resolution, the presence of occlusions and the face’s pose and expression.

2It is very difficult to consecutively annotate for more than 4 hours.
3The newest versions of Matlab have incorporated a training procedure

of Viola-Jones and it is extremely easy to train an object detector.
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taining the object is required. Specifically, after selecting
the images that are going to be used, the annotation proce-
dure takes a couple of seconds per image. The statistical
shape model can be created by using only 40-50 shape ex-
amples, which can be produced by either drawing possible
shape variations of the 2D shape of the object or projecting
3D CAD model instances of the object on the 2D camera
plane (such an example is shown in [38] for cars). Even
the annotation of the shape examples is not a time consum-
ing task, due to their small number. Furthermore, there are
unsupervised techniques to learn the shape prior (model) di-
rectly from images [12, 14].

Due to the fact that manual annotation is a rather costly
and labour-intensive procedure, unsupervised and semi-
supervised learning of models for the tasks of alignment,
landmark localization, tracking and recognition has at-
tracted considerable attention [14, 13, 12, 19, 31, 28, 7,
2, 6, 23, 33, 9, 16, 11, 18, 36, 34]. In this paper, we
propose a method to automatically construct deformable
models for object alignment and the most related works
are [14, 31, 2, 6, 23]. The related family of techniques,
known as image-congealing [19, 18, 11, 16], uses implicit
models to align a set of images as a whole, which means
that both performing alignment to a new image and con-
structing a model is not straightforward. Our methodology
differs from these works because we employ an explicit tex-
ture model which is learned through the process.

The two most closely related works to the proposed
method are the automatic construction of Active Appear-
ance Models (AAMs) in [2] and the so-called RASL
methodology in [23] for person-specific face alignment.
There are two main differences between our framework
and [2]. (1) We use a predefined statistical shape model
instead of trying to find both the shape and appearance mod-
els. We believe that with the current available optimization
techniques, it is extremely difficult to simultaneously op-
timize for both the texture and shape parameters. (2) We
employ the robust component analysis of [30] for the ap-
pearance which deals with outliers. Thus, even though
our method is similar in concept to [2], these two differ-
ences make the problem feasible to solve. In particular, the
methodology in [2] fails to create a generic model even in
controlled recording conditions, due to extremely high di-
mensionality of the parameters to be found and to the sen-
sitivity of the subspace method to outliers. This was prob-
ably one of the reasons why the authors demonstrate very
limited and only person-specific experiments. Furthermore,
our methodology bypasses some of the limitations of [23],
which requires the presence of only one low-rank subspace,
hence it has been shown to work only for the case of con-
gealing images of a single person. Finally, we argue that
in order for an automatically constructed AAM methodol-
ogy to be robust to both within-class and out-of-class out-

liers4, which cannot be avoided in totally unsupervised set-
tings, statistical component analysis techniques should be
employed [2]. We summarize our contributions as follows:

• We propose the first, to the best of our knowledge,
methodology for automatic construction of both a
generative and a discriminative AAM given only a
dataset of images with the respective bounding boxes
and a statistical shape model (PDM). Until recently,
mainly due to the Project-Out Inverse Compositional
(POIC) [20] algorithm, it was widely believed that
AAMs do not possess good generalization capabil-
ities [10, 27, 37]. We show that this is far from
being true, demonstrating that even an AAM that
is constructed fully automatically, not only performs
well, but it outperforms some state-of-the-art discrim-
inative methodologies trained on manually annotated
data [1, 37]. Even though our method uses a simi-
lar texture model to [29], it is considerably different,
since in that work an AAM is built using only anno-
tated data, while our technique constructs the texture
model in a fully automatic manner.

• We propose a discriminatively trained AAM method-
ology using the robust component analysis in [30].
Inspired by the recent success in applying a cascade
of regressors [8, 35, 4, 26] to discriminatively learn
a model for face alignment, we follow a similar line
of research. The proposed discriminative AAM uses
the robust component analysis [30] due to the fact it is
trained on automatically annotated data, hence it needs
to be robust to all kinds of outliers.

• Overall, the proposed methodology constructs a very
powerful model, by iteratively training a generative
fully automatically built AAM and then a discrimina-
tive AAM learned from the fitted shapes of the gener-
ative AAM.

We present experimental results on the task of face align-
ment. We choose this application because there exist many
in-the-wild facial databases with a large number of images
and annotated landmarks, hence solid quantitative evalua-
tions can be performed.

2. AAM Automatic Construction In-The-Wild
Assuming the existence of a statistical shape model of

an object (PDM), our method automatically trains a gen-
erative AAM and in extension a discriminative AAM, by
only using a dataset of totally unconstrained in-the-wild im-
ages containing the object and the corresponding bounding

4Within-class outliers refer to outliers present in the image of an object
such as occlusion. Out-of-class outliers refer to images of irrelevant objects
or to background.



Figure 1: Automatic construction of deformable models.
Given two sets of disjoint in-the-wild images and the ob-
ject detector bounding boxes, our method automatically
trains an AAM by training a generative and a discrimina-
tive model in an alternating manner.

boxes. This is achieved by alternatingly constructing a gen-
erative and a discriminative deformable model. At each it-
eration, the training of each of the two models utilizes the
fitted shapes computed with the other already trained model.
This iterative procedure is demonstrated in Fig. 1.

Specifically, we separate our set of images and the cor-
responding bounding boxes in two disjoint equally-sized
datasets, referred to as the generative and the discrimina-
tive that are used for the training of the respective models.
The first generative model is trained on the initial shapes
extracted by initializing the PDM mean shape in the bound-
ing boxes. At each iteration, the currently trained generative
model is used to find the fitted shapes on the discriminative
database’s images. Then, a discriminative model is trained
on these shapes. At the next iteration, the currently trained
discriminative model is applied on the images of the gener-
ative database to extract the shapes estimations. A new ver-
sion of the generative model is then trained based on these
extracted shapes of the generative dataset. At the end of this
iterative procedure, we train a final generative and discrim-
inative AAM on the unified database of both datasets.

This alternating training of each model followed by the
supply of updated shapes to the other and vice versa man-
ages to continuously improve the fitted shapes, leading to
more accurate models. The role of the discriminative model
is crucial, as it moves the generative model from the local
optimum that it stuck. Next, in Sec. 2.1 and 2.2 we present
the generative and discriminative models respectively.

2.1. Automatic Construction of a Generative AAM

AAMs are deformable statistical models of shape and
appearance that recover a parametric description of an ob-
ject through optimization [5, 20]. A shape instance is de-
noted as a 2LS × 1 vector s = [x1, y1, . . . , xLS

, yLS
]
T

with the coordinates of the LS landmark points that cor-

respond to the object’s parts. The PDM shape model
consists of an orthonormal basis of 4 + NS eigenvectors
US ∈ R2LS×(4+NS) and the mean shape s̄. The first
four eigenvectors correspond to the similarity transform
that controls the global rotation, scaling and translation of
the shape. Synthesis is achieved through linear combina-
tion of the eigenvectors weighted by the shape parameters
p = [p1, . . . , p4+NS

]
T , thus

sp = s̄ + USp

The warp function W(x;p) represents the motion model.
For each point x within a source shape it aims to find its cor-
responding location in the mean shape s̄ that plays the role
of a reference template for aligning the appearance vectors.

In the generative AAM, we use a robust representation
of appearance. Specifically, the appearance model is trained
by employing the robust subspace analysis proposed in [30],
which uses the image gradient orientations. Given an image
t in vectorial form with size LA × 1, the so-called normal-
ized gradients feature extraction function g(t) involves the
computation of the image gradients gx, gy and the corre-
sponding gradient orientation φ = arctan (gy/gx) as

g(t) =
1√
LA

[cosφ, sinφ]
T (1)

where cosφ = [cosφ(1), . . . , cosφ(LA)] and sinφ =
[sinφ(1), . . . , sinφ(LA)]. We denote the feature-based
warped appearance vector as

a(p) ≡ g (t(W(x;p)))

that has size 2LA× 1, where LA is the number of pixels in-
side the reference (i.e. mean) shape. An appearance model
is then trained by performing Principal Component Analy-
sis (PCA) on a set of training appearance vectors that results
in a subspace of NA eigenvectors UA ∈ R2LA×NA and
the mean appearance ā. This model can be used to synthe-
size shape-free texture instances, as aλ = ā+UAλ, where
λ = [λ1, . . . , λNA

]
T is the appearance parameters vector.

The employment of the robust kernel of Eq.1 has a key
role in the successful performance of the proposed method,
because it cancels-out both within-class and out-of-class
outliers [30]. This is shown in the “toy” example of Fig. 2.
In this experiment we have a dataset of 50 aligned face im-
ages. We replace 20% of these with the same baboon im-
age and apply PCA on intensities and normalized gradients.
Figure 2 shows that the PCA eigenvectors on intensities (top
row) are corrupted with the baboon information. On the
contrary, the employment of normalized gradients manages
to separate the baboon information from the facial subspace
and isolate it (second row). In our case, during the auto-
matic training of the generative model, we expect to have
both within-class and out-of-class outliers. Since the train-
ing images are captured in totally unconstrained conditions



Figure 2: Robust kernel. Having a face dataset with 20%
of the images replaced by the baboon, the top and bottom
rows show 4 principal components of the PCA on intensities
and normalized gradients respectively. Note that contrary
to the normalized gradients subspace where the baboon is
isolated, most intensities eigentextures are corrupted with
the baboon.

(i.e. random images from the web), we expect many of
them to have occluded objects, thus within-class outliers.
Furthermore, in the cases where the fitted shape is either
very inaccurate or even scrambled, the warped appearance
consists an out-of-class outlier. However, the employment
of the robust component analysis manages to remove such
outliers from the appearance subspace.

2.1.1 Automatic Construction of Generative Appear-
ance Model

In this section we present how to construct a robust gen-
erative AAM using only a shape prior and a set of images
with initialization bounding boxes. We formulate an iter-
ative optimization problem that aims to automatically con-
struct an optimal generative appearance model that mini-
mizes the mean AAM fitting `22 norm error over all given
images. Specifically, given a set of N training images
{ti}, i = 1, . . . , N and a statistical shape model {s̄,US},
we automatically train an AAM appearance model by itera-
tively solving

argmin
ā,UA,pi,λi

1

N

N∑
i=1

∥∥ai(pi)− ā−UAλ
i
∥∥2

subject to UT
AUA = Ieye

(2)

in order to find the optimal appearance subspace UA and
mean vector ā that minimize the mean `22 norm of the ap-
plication of AAM fitting (pi, λi) over all images. ai(pi)
is the warped feature representation of the training image ti

and Ieye denotes the identity matrix. The explanation of this
optimization procedure is visualized in Fig. 3. In brief, the
algorithm iteratively trains a new PCA appearance model
{ā,UA} based on the current estimate of the N shapes and
then re-estimates the parameters {pi,λi}, i = 1, . . . , N

Figure 3: Automatic training of appearance model of Gen-
erative AAM. This diagram demonstrates the operation of
Generative AAM Training step of Fig. 1. Given a set of
images and the corresponding bounding boxes from the ob-
ject detector, the method iteratively re-trains the appearance
PCA model and re-performs AAM fitting on the images set
to update the shapes.

by minimizing the `22 norm between each warped image
and the appearance model instance. Consequently, the opti-
mization is solved in two steps:

(a) Fix {pi,λi} and minimize w.r.t. {ā,UA} In this
step we have a current estimate of {pi,λi} for each im-
age i = 1, . . . , N . From the shape parameters estimate we
extract the warped feature-based image vectors {ai(pi)} on
which we train a new PCA appearance model {ā,UA}. The
updated subspace is orthogonal, thus UT

AUA = Ieye. In
this paper, we keep 150 eigenvectors per iteration.

(b) Fix {ā,UA} and minimize w.r.t. {pi,λi} In
this step we have a currently trained statistical appearance
model {ā,UA} and aim to estimate the shape and appear-
ance parameters {pi,λi} for each image i = 1, . . . , N so
that the `22 norm between each warped image and its recon-
struction is minimized. Thus, we optimize

argmin
pi,λi

∥∥ai(pi)− ā−UAλ
i
∥∥2
, ∀i = 1, . . . , N (3)

This minimization can be solved with the efficient Gauss-
Newton algorithm of Inverse Compositional Image Align-
ment (IC) [20]. Within the IC framework, Eq. 3 is writ-
ten as argminpi,λi

∥∥ai(pi)− aλi(∆pi)
∥∥2

where aλi =

ā + UAλ is the model instance and ∆pi is the incre-
ment used to inverse-compositionally update the shape pa-
rameters as W(x;pi) ← W(x;pi) ◦ W(x; ∆pi)−1. The
two most commonly used IC optimization techniques are
Project-Out IC (POIC) [20], where the shape and appear-
ance parameters are decoupled and the Simultaneous IC
(SIC) [10] where the optimization is done simultaneously
for the shape and appearance parameters.

We instead perform IC, by optimizing separately for
shape and appearance parameters in an alternating mode,
similar to [21, 29]. At each iteration, we have a fixed esti-
mate of pi and compute the optimal appearance parameters



as the least-squares solution

λi = UT
A

[
ai(pi)− ā

]
(4)

Then, given the current estimate of λi and taking the Taylor
expansion around pi = 0, we solve for the shape increment

∆pi = −
(
JTJ

)−1
JT
[
ai(pi)− aλi

]
where J = ∇aλi

∂W
∂pi is the Jacobian matrix with the

steepest descent images as its columns. The algorithm
requires the computation of the inverse Hessian matrix
H =

(
JTJ

)−1
and the current estimate of appearance pa-

rameters at each iteration which results in a total cost of
O((NA +NS + 4)LA + (4 +NS)2LA).

Even though the initial PCA model is expected to have
many outliers, this optimization technique combined with
the robust kernel of Eq. 1 iteratively results in an appearance
model that eliminates the initial outliers. By keeping a small
number of eigenvectors at each iteration, we ensure that the
textures corresponding to inaccurate or scrambled shapes
will not be included in our subspace. The convergence rate
of this procedure is shown in Sec. 3.2.

A drawback of the optimization procedure is that it will
stuck in a local minimum. In the following, in order to
move the generative model from the local minimum, we
will train a discriminative model using the already trained
generative. We work under the assumption that the trained
generative model is reliable enough to provide us with a
sufficient number of good fittings in a new disjoint set. It
is obvious that we need a disjoint set to train the discrim-
inative model, since training it in the same dataset as the
generative would result in overfitting.

2.2. Robust Discriminative AAM

Motivated by the recent application of a cascade of re-
gressors [8, 35, 4, 26] to discriminatively learn a model for
face alignment, we propose a parametric discriminatively
trained AAM. Even though discriminatively trained AAMs
have appeared before, the difference between our method
and, for example [26], is that we use simple cascaded lin-
ear regression, as in [35], and the robust component analy-
sis [30]. Note that other feature descriptors can also be used,
such as HOG and SIFT. Intuitively, the goal of the discrim-
inative model is to move the generative model from the lo-
cal minimum that it converged in the previous iteration and
boost it towards a better minimum. We automatically select
the appearance vectors on which it is trained so that as few
outliers as possible are included. This selection is achieved
by keeping the textures with the best `22 norm fitting error.

2.2.1 Fitting Discriminative AAM

During the training procedure, the method aims to learn
a number of K regression steps so that the initial shape

parameters of all the training images converge to their
groundtruth values. Each of these cascade solutions con-
sists of a generic descent direction term Rk and a bias term
bk. Given an unseen image, the fitting process involves K
additive steps to find an updated vector of shape and simi-
larity parameters

pk = pk−1 + Rk−1λk−1 + bk−1, k = 1, . . . ,K (5)

where the appearance parameters are retrieved from the in-
verse projection of the image’s warped feature-based tex-
ture to a given appearance subspace as in Eq. 4. In the
first step, the update ∆p1 = R0λ0 + b0 is added to the
initial parameters vectors as p1 = p0 + ∆p1. The ini-
tial shape parameters vector p0 is computed from the im-
age’s bounding box, which practically initializes the ro-
tation, translation and scaling values and leaves the rest
equal to zero, thus p0 =

[
p1

0, . . . , p
4
0,0

1:NS
]T

. The fit-
ting algorithm has a real-time computational complexity of
O((4 +NS)(NA + 2LA)) per iteration.

2.2.2 Training Discriminative AAM

Assume we have a set of N training images {ti}, i =
1, . . . , N and their groundtruth shapes {sitr} which corre-
spond to a set of parameters {pi

tr}. For each image in
the database, we generateM different parameters initializa-
tions {pi,j

0 }, j = 1, . . . ,M . This is done by sampling M
different bounding boxes from a Normal distribution trained
to describe the variance of various face detectors and re-
trieving the corresponding initialization shape parameters.
To learn the sequence of generic descent directions and bias
terms, we employ the Monte Carlo approximation of the
`22-loss which results in solving the least-squares problem

argmin
Rk,bk

N∑
i=1

M∑
j=1

∥∥∥pi
tr − pi,j

k −Rkλ
i,j
k − bk

∥∥∥2

for k = 1, . . . ,K. At each iteration and for each image, we
update the parameters vector pi,j

k using the rule of Eq. 5 and
compute the current appearance parameters from Eq. 4.

3. Experimental Results
The proposed method of automatic AAM construction

can be applied to any deformable object. However, we
choose to present experimental results using a facial de-
formable model, because there are numerous in-the-wild,
large and fully annotated facial databases that allow us to
provide quantitative evaluation. After briefly presenting
these databases (Sec. 3.1), we show the convergence of
the automatic model construction (Sec. 3.2) and compare
its performance with models trained on manually annotated
images (Sec. 3.3).



Figure 4: Top: Plot of the cost function per iteration. The
marked point x denotes the beginning of the second itera-
tion of the generative model. Bottom: Plot of the respective
point-to-point normalized RMSE.

3.1. Databases

We automatically build our model using the images of
the in-the-wild databases Labeled Face Parts in the Wild
(LFPW) [3] and Helen [17]. They both consist of a train-
set and testset with images downloaded from the web (e.g.
Flickr) using simple text queries. The trainset/testset num-
ber of images is 810/224 and 2000/330 for LFPW and He-
len respectively. We reserve the testing sets, along with the
AFW database [37] that consists of 337 images, in order
to compare our automatically trained model. All the above
databases are manually annotated with a facial mask of 68
landmark points [24, 25] (annotations are available online).

3.2. Convergence of AAM Automatic Construction

Firstly, in order to create a facial shape PDM, we use
50 annotated images of the LFPW database, appropriately
selected to demonstrate various deformations and expres-
sions, and apply PCA. Note that one could also project
shape instances of a statistical 3D shape model (e.g. [22])
to the 2D plane. Then, we automatically build a facial
AAM with the proposed method (Fig. 1) using the images
of LFPW and Helen training sets (2800 images in total). In
order to perform the iteration between generative and dis-
criminative model, we split these images in two equal dis-
joint subsets, each consisting of half of the images of each
database, thus 405 and 1000 from LFPW and Helen respec-

Figure 5: Automatic construction of AAM with a single
application of the discriminative model. The plot shows the
accuracy evolution of the generative database’s shapes com-
pared with their manual annotations.

tively. We retrieve the bounding boxes by using Google
Picasa’s face detection.

We execute the overall proposed methodology for 2 iter-
ations in total, which involves an iterative generative model
automatic construction followed by a discriminative model
and then the final automatic generative model. Our exper-
iments show that the method converges quickly and only a
single application of the discriminative model is sufficient
to move the generative model to a satisfactory minimum.
Figure 4 (top) plots the cost function vs. the number of it-
erations of the first generative model training on the gener-
ative database, the initialization with the first discriminative
model (marked with an x) and the application of the final
generative model. As can be seen the application of the
discriminative step acts as a perturbation over the local op-
timum which in the end results to a better solution (similar
to random perturbations in Simulated Annealing).

Furthermore, let us define the point-to-point RMSE mea-
sure normalized with respect to the face size. Specif-
ically, denoting sf and sg the fitted and groundtruth
shapes respectively, the normalized RMSE between them

is RMSE =
∑LS

i=1

√
(xf

i−x
g
i )2+(yf

i −y
g
i )2

LSd where d =
(maxx s

g −minx s
g + maxy s

g −miny s
g) /2.

Figure 4 (bottom) plots the normalized RMSE over the
number of iterations for the generative database. As can be
seen, it monotonically decreases. Furthermore, in Fig. 5 we
demonstrate the evolution of the fitting curves of the gener-
ative database’s shapes during this training procedure com-
pared with the manually annotated shapes.

Figure 6 demonstrates the respective evolution of the
mean appearance and the three most important eigenvec-
tors. The last row demonstrates the subspace obtained
from the PCA on the manual annotations of the generative
database. The figure shows that the resulting facial appear-
ance subspace gradually improves and isolates the outliers
as expected, due to the employment of the robust compo-



Figure 6: Automatic construction of AAM with a single
application of the discriminative model. Visualization of the
mean appearance and the three most important eigenvectors
for the iterative automatically constructed AAM (top) and
the AAM trained on manual annotations (bottom).

nent analysis. This is highlighted by the fact that the facial
parts (eyes, nose, mouth etc.) can be distinguished more
clearly in the final eigentextures, as opposed to the initial
ones. The resulting appearance subspace is very similar to
the annotations-based one, even though we performed only
two iterations.

3.3. Comparison with Models Trained on Manual
Annotations

After completing the iterations demonstrated in Figs. 4
and 6, we train a final generative and discriminative model
on the 2800 images of the union of both datasets. We com-
pare the performance of our model with the state-of-the-
art method of Robust Discriminative Response Map Fit-
ting (DRMF) for Constrained Local Models [1] and the De-
formable Part-Based Models [37]. For both methods, we
use the implementation provided by their authors, along
with the pre-built models which are discriminatively trained
on the manual annotations of much larger datasets than
LFPW and Helen datasets. Moreover, we compare with the
generative and discriminative AAMs trained on the man-

ual annotations of LFPW and Helen trainsets. Figure 7
shows the normalized RMSE curves on AFW and the union
of LFPW and Helen testsets. Note that in both cases, we
use Google Picasa’s face detection to extract the bounding
boxes that initialize the translation and scaling of the mean
shape. The results show that our automatically trained mod-
els have a very good performance and greatly outperform
the discriminative ones trained on manual annotations. See
the supplementary material for qualitative fitting results.

Figure 7: Comparison of automatically constructed de-
formable models (generative and discriminative) with other
models trained on manual annotations. Top: AFW database.
Bottom: LFPW and Helen testing databases.

4. Conclusions

We propose a method for automatic construction of de-
formable models. The method iteratively trains a genera-
tive and a discriminative AAM ending up with a powerful
model. The only requirements of the method are a statisti-
cal shape model and a set of in-the-wild images with their
bounding boxes, which means that it can be applied to any
object. Our experiments on faces show that the method out-
performs discriminative state-of-the-art methods trained on
manual annotations. This is the first, to the best of our
knowledge, methodology to automatically building a de-
formable model that demonstrates such promising results.
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