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Abstract

Over the past years, Multiple Instance Learning (MIL)
has proven to be an effective framework for learning with
weakly labeled data. Applications of MIL to object detec-
tion, however, were limited to handling the uncertainties of
manual annotations. In this paper, we propose a new MIL
method for object detection that is capable of handling the
noisier automatically obtained annotations. Our approach
consists in first obtaining confidence estimates over the la-
bel space and, second, incorporating these estimates within
a new Boosting procedure. We demonstrate the efficiency
of our procedure on two detection tasks, namely, horse de-
tection and pedestrian detection, where the training data is
primarily annotated by a coarse area of interest detector.
We show dramatic improvements over existing MIL meth-
ods. In both cases, we demonstrate that an efficient appear-
ance model can be learned using our approach.

1. Introduction

Multiple Instance Learning (MIL) has emerged as a pow-
erful paradigm for learning with labeling uncertainties. In
contrast with Supervised Learning which requires unam-
biguously labeled training data, the MIL framework allows
for a weaker form of supervision whereby training examples
are no longer distinctly labeled singletons. Instead, training
examples come in labeled bags. Typically, a negative bag
is known to contain exclusively negative instances while a
positive bag is known to contain at least one positive in-
stance. In MIL, true labels for instances in positive bags are
therefore latent and are estimated during model learning.

A number of MIL methods, implementing various forms
of weak supervision, have been proposed in literature.
However, when applied to object detection, these methods
are only effective in the presence of mild labeling ambigui-
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ties. This is the case because learning an object detector is
a task that is particularly sensitive to label noise and there-
fore the labeling errors that may result during MIL learning.
Applications to object detection have thus far been limited
to coping with slight translational and scale uncertainties
around a manually annotated bounding box [17, 4, 8]. In
these cases, many instances in a positive bag are relatively
close to a true positive and MIL has been shown to reduce
alignment error and improve detection performance.

We propose a new approach for MIL that is capable of
handling strong labeling ambiguities. We rely on MIL-
Boost, a simple and effective method, and propose to re-
duce the potential for label estimation errors by way of a
two step procedure. First, a committee of randomized MIL-
Boost learners is used to obtain confidence estimates on the
labels of instances belonging to positive bags. Next, we in-
corporate the estimates within a new Boosting procedure,
built by generalizing the MILBoost loss to incorporate a
prior over the latent space and applying Friedman’s gradient
Boosting [11]. The resulting method is shown to be particu-
larly effective in the case where most positive bags contain
little to no positive instances, see Figure 7.

Our approach is validated on two tasks, namely horse
detection and pedestrian detection. In both cases, we obtain
the large majority of our weakly labeled data by performing
a category-related text query such as “horses” or “pedes-
trian” on a commercial web image search engine. We pro-
cess all returned images with a region of interest detector
and form a positive bag per image with the returned bound-
ing boxes. For any given image or bag, the returned set of
bounding boxes consists either exclusively of background
patches, or a small number of positives. We show improve-
ments of more than 100% in average precision over MIL-
Boost and demonstrate that an efficient appearance model
can be learned in this manner.

2. Related Work

A variety of MIL algorithms have been developed since
the idea was first introduced by Keeler et al. [14]. Central



to all methods is the formulation of a mechanism through
which latent labels are estimated during training. We briefly
review some of the key methods.

In the Normalized Set Kernel approach [12], a positive
bag is represented as a normalized sum of the representa-
tions of all instances within it. The problem is thus reduced
to a Supervised Learning problem and a Support Vector Ma-
chine (SVM) is learned over the new representation. In a
similar, albeit Boosting based approach [18], the probabil-
ity of a bag being positive is assumed to be the mean of the
probabilities that its instances are positive. While effective
at some tasks, the approaches in [12, 18] implicitly assume
that the majority of instances in the bags are positive.

In [3], Andrews et al. propose two heuristic MIL algo-
rithms. Both approaches alternate the training of an SVM
with the relabeling of instances in positive bags. In mi-
SVM, the prediction of the learned classifier is directly used
to relabel the data, while in MI-SVM, the instance with
maximum score in each bag is selected as the sole positive at
each iteration. Both methods are initialized assuming that
the majority of instances in positive bags are positive and
therefore suffer from the same drawbacks as [12, 18].

The assumption that positive bags are mostly composed
of positives can be violated in practice. In [5], Bunescu et al.
attempted to address this issue by approximating the MIL
constraint that a positive bag contain at least one positive
more strictly. This is done via the introduction of appropri-
ate constraints to the standard soft-margin SVM loss. The
approach performs well when compared to [12, 18].

A number of other methods also forgo the assumption
that positive bags are mostly composed of positives through
an even stricter modeling of the MIL constraint. A rele-
vant example is the Diversity Density approach of Maron
et al. [15]. There, the probability of a bag being positive
is formulated as a Noisy-OR [13] over the probabilities of
its instances. In [17], Viola integrated the Noisy OR Crite-
rion into the AnyBoost [16] framework to derive MILBoost.
The proposed method was shown to reduce alignment error
while training Viola-Jones people detectors. Following this
line of work, Babenko et al. [4] apply the Gradient Boosting
framework and proposed two new variants on MILBoost.

The performance of different MIL methods is ultimately
tied to the sensitivity of the task to label noise and to the
composition of the positive bags. For the noise-sensitive
object detection task, even strict approaches such as MIL-
Boost, which exactly assume at least one positive per bag,
have only been shown to be successful in the case where
positive bags are mostly composed of positives [17, 4]. In-
deed, successful applications of MIL to object detection
have been limited to dealing with slight translational and
scale ambiguities around a manually annotated bounding
box.

In this paper, we propose a new MIL method that is ca-

pable of handling strong labeling ambiguities for noise sen-
sitive tasks. We consider the case where the weak labeling
is such that positive bags are not even guaranteed to have a
positive instance. We therefore enforce a stricter constraint
whereby positive bags contain either no positive or at least
one positive. Our method builds on MILBoost, chosen for
its simplicity, its exact modeling of the standard MIL con-
straint and because it has been shown to compare favorably
to other MIL methods on a variety of tasks [17, 4]. By incor-
porating confidence estimates over the labels of instances in
positive bags, we render possible truly weakly supervised
applications of MIL to Object Detection.

3. Methodology

We begin by defining the MIL problem in the context
of detection. Next, we briefly review the main elements
of gradient Boosting and MILBoost that are relevant to the
understanding of our approach.

We focus the discussion on detection by classification.
Given a scale-normalized image patch P and its associated
feature vector xp ∈ RD, we want to build a classifier

ϕ : RD → R

such that ϕ(xp) ≥ 0 when a target is present in the image
patch. Detection on large scenes, at a particular threshold
T , then consists of computing a list of alarms {s ∈ S :
ϕ(xs) ≥ T} where S is typically the set of patches ex-
tracted at every possible position for every possible scale of
the scene.

Supervised approaches build a fully annotated training
set of N samples

(xi, yi) ∈ RD × {−1, 1}

and train a classifier ϕ with a low empirical error rate on the
data. By contrast, MIL approaches consider a weaker form
of supervision with the training set consisting of(

Xi, yi
)
∈
(
RD
)K × {−1, 1}

where Xi = {xi1, · · · , xiK} is a set of K feature vectors
called a bag. Instance labels, yij , are unavailable and

yi = max
j

(yij). (1)

Observe here that for a negative bag, all instances are neces-
sarily negative. On the other hand, instance labels for pos-
itive bags must be estimated. The classifier ϕ is trained to
achieve a low empirical error rate on the bags such that

max
j

(
2 · 1{ϕ(xij)≥0} − 1

)
= yi.



3.1. Gradient Boosting

We momentarily return to the supervised case to review
Friedman’s Gradient Boosting [11]. Let hm : RD →
{−1, 1}, m = 1, . . . ,M be a family of “weak learners”
and let L(ϕ;y) define a differentiable loss over the data.
We wish to construct a strong classifier as a linear combina-
tion of the form

ϕ(x) =

K∑
k=1

αkhk(x).

Gradient Boosting consists of approximating the mapping

ϕ∗ = argmin
ϕ∈H

L(ϕ;y)

via a gradient descent procedure. At every step, the weak
learner hk which correlates the most with the gradient
∂L(ϕ;y)
∂ϕ is selected as the direction of descent and the

weighing coefficient αk is set to control the step polarity
and size. Specifically, define a weight on each sample

ωi ≡
∂L (ϕ(xi);y)

∂ϕ(xi)

then the selected weak learner at the kth iteration is hk =
argmaxh

∑N
i=1 ωih(xi) and αk is found using a line search

to minimize L(ϕ;y). By defining various loss functions,
one can define a variety of Boosting procedures. In particu-
lar, by setting the loss to the logit,

L(ϕ;y) =

N∑
i=1

log(1 + e−yiϕ(xi)) (2)

we obtain the LogitBoost algorithm which is minimized at

ϕ∗(x) = log
P (y = 1|x)

P (y = −1|x)
, (3)

and can be shown to maximize the likelihood of the data.

3.2. MILBoost

MILBoost can be viewed as a generalization of logis-
tic Boosting where the standard MIL constraint is enforced
exactly. Following Equation (3), the probability that an ex-
ample is positive is given by

pij ≡ P (yij = 1|xij) =
1

1 + e−yijϕ(xij)
(4)

Next, the probability that a bag is positive is given by the
Noisy OR criterion

pi ≡ P (yi = 1|Xi) = 1−
∏
j

(1− pij) (5)

enforcing the constraint that there exist at least one positive.
By setting the loss to minimize the negative log-likelihood
over the bags,

L(ϕ;y) = − log

N∏
i=1

pȳii (1− pi)1−ȳi (6)

where ȳi = yi+1
2 and applying gradient Boosting we obtain

the MILBoost procedure. Instance weights are given by

ωij =
ȳi − pi
pi

pij (7)

At each Boosting iteration, high scoring instances within
each bag are assigned higher weights and are in essence se-
lected as positives. As seen in §5.7, when positives bags are
formed by an area of interest detector and are hence subject
to severe noise, performance can be poor: In these cases, the
learning procedure readily converges to a multi-modal dis-
tribution wherein the selected examples consist of a mixture
of true positives and background patches.

4. Confidence-Rated MILBoost
They key idea of our approach is to mitigate label estima-

tion errors by way of a two-step procedure. In the first step,
the consistency of instance responses across a committee
of randomized MILBoost learners is used to obtain confi-
dence estimates on the latent labels. In the second step, the
obtained confidence estimates are incorporated into a gen-
eralized MILBoost procedure.

4.1. A Committee of Randomized Learners

In order to obtain confidence estimates over the latent la-
bels, we train a number of predictors and form a committee

Q = {ϕ1(x), · · · , ϕQ(x)}

where each ϕq : RD → R is a randomized MILBoost
Learner. Given these predictors, for each training instance,
we define a confidence score

c(x) ≡ log
P (y = 1|Q)

P (y = −1|Q)
=

Q∑
q=1

ϕq(x)

where the equality on the right is obtained from Equa-
tion (3) under the assumption that the predictors are statis-
tically independent. For each instance, we can now define
an instance confidence estimate as the probability that the
instance shares its bag’s label

ηij ≡ P (yij = yi|Q) =
1

1 + e−yic(x)
.

Finally, for each bag, we define a bag confidence estimate
as the probability that the bag label is correct

ηi ≡ P (yi|Q) = max
j
ηij .



where the equality on the right is obtained from Equa-
tion (1) assuming the bag instances are statistically inde-
pendent. Finally, given that negative bags only contain neg-
ative instances, we set the confidence estimates of negative
instances to ηij = 1 and negative bags to ηi = 1.

4.2. Confidence-Rated MILBoost

We now integrate the obtained confidences into a gener-
alized MIL Loss. As in MILBoost, the probability that an
example is positive is given by

pij =
1

1 + e−yijϕ(xij)
. (8)

The probability that a bag is positive is given by the ex-
tended Noisy OR

pi = 1−
∏
j

(1− pij)
ηij

η2
i (9)

where the exponent is equivalent to repeating the xij in-
stance ηij times in the training set while ensuring that the
repetitions are comparable across the bags. Next, we define
an extended negative log-likelihood over the bags as,

L(ϕ;y) = − log

N∏
i=1

pηiȳii (1− pi)ηi(1−ȳi). (10)

Applying gradient Boosting, we obtain the following in-
stance weights

ωij =
ȳi − pi
ηipi

ηijpij

Recall that for negative bags ηi = 1 and ηij = 1: the weight
on a negative instance is therefore the same as would re-
sult from MILBoost, which is also the same as would result
from LogitBoost. In particular, a negative example weight
follows the logit: it increases linearly for negative margins
and decreases exponentially for positive margins. A posi-
tive instance’s weight can be interpreted as the product of
bag weight 1−pi

ηipi
and an instance weight ηijpij . Within a

bag, highly scoring instances with high confidence are as-
signed higher weight. The bag weight follows the recipro-
cal: as pi approaches 1 the bag weight is reduced and all in-
stances within the bag are collectively weighted down. Ob-
serve from Equation (9) that for bags with lower confidence
ηi, pi will lie closer to 1: a bag with lower confidence will
therefore have a lower bag weight. Finally, we note that if
ηij = 1∀i, j implying that ηi = 1∀i, the procedure reduces
to standard MILBoost.

4.3. Implementation Details

4.3.1 Numerical Stability

The quantity 1 − pi =
∏
j(1 − pij)

ηij

η2
i in equation (9) ap-

proaches 0 as the bag size is increased or as the bag confi-
dence ηi is decreased. Note that this is meaningful: large

positive bags and low confidence positive bags are uninfor-
mative. In order to avoid underflow, the quantity 1−pimust
be stored separately from pi. Note that this is also necessary
for the case of MILBoost.

4.3.2 Low-Confidence Positive Bags

Ideally, a positive bag whose confidence ηi is below 0.5
should be considered as a negative bag with increasing con-
fidence as ηi approaches 0. This behavior is desirable from
a learning perspective in order to make full use of the avail-
able data. We did not, however, experiment with such a set-
ting. Instead we introduced a simple heuristic whereby all
bags with confidence ηi < 0.5 are discarded from training.

4.3.3 Weak Learner Optimization

As mentioned in §3.1, at each iteration, Gradient Boost-
ing selects the weak learner hk which correlates the most
with the gradient. It is easy to show [4] that in the binary
yi ∈ {−1, 1} and discrete hk ∈ {−1, 1} case, one can
equivalently minimize the weighted classification error:

hk = argmax
h

N∑
i=1

ωih(xi)

= argmin
h

N∑
i=1

|ωi| · 1{h(xi)=−yi} (11)

This allows us to readily use existing learning routines de-
signed to minimize a weighted classification error.

5. Experimental Results
5.1. Image Features and Weak Learners

We use the Gradient Histogram features of [2]. These
features are obtained by computing q gradient orientation
maps Oθ(u, v) = G(u, v) · 1[Θ(u, v) = θ] where G(u, v)
and Θ(u, v) are the gradient magnitude and orientation at
location (u, v). In other words each gradient orientation
map Oθ(u, v) is formed with the magnitudes of gradients
whose quantized orientation is θ. Let R denote an arbitrary
subwindow in the image. Our features are entirely parame-
terized by the subwindow R and orientation θ as follows:

fR,θ =

∑
ROθ(u, v)∑
R,θ Oθ(u, v)

(12)

By varyingR and θ, we obtain a very large feature represen-
tation x where the dth coordinate xd = fRd,θd . This feature
representation essentially computes Histogram of Oriented
Gradients [6] in dense and arbitrary subwindowsR (by con-
trast to a regular grid). It can be computed in constant time
using q integral images, one for every gradient orientation
map. In all our experiments we used q = 8.



5.2. Learning

From our feature representation x, we define weak learn-
ers as stumps (depth-1 decision trees) of the form:

h(x) = 2 · 1{xd>ρ} − 1 (13)

In all experiments, a single Boosting stage is trained with
the bootstrapping procedure described in [10]. The selec-
tion of stumps at every Boosting iteration is done by exam-
ining 1000 weak learners whose thresholds ρ are optimized
by exhaustive search. Feature parameters R and θ are cho-
sen uniformly at random by enforcing a minimum size of 4
pixels for R. Learning was carried up to 500 stumps.

A committee of |Q| = 10 MILBoost classifiers is
learned for all experiments with the same procedure out-
line above with the exception that learning was only carried
up to 100 stumps. Randomization is obtained primarily by
sampling different negative samples for each learners. Ob-
serve also that restricting the search space for the optimal
stump to 1000, using the bootstrapping procedure described
in [10], as well as stoping the learning at 100 all contribute
additional randomization.

5.3. Testing Data

We validate our approach on two view-based publicly
available detection datasets, namely INRIA Horses [9] and
INRIA Person [6].

INRIA Horses This dataset consists of 170 positive im-
ages containing 184 horses annotated with bounding boxes..
The horses are generally unoccluded, imaged from approx-
imately the side viewpoint and face the same direction. The
main challenges are clutter and intra-class variations.

INRIA Person This dataset consists of 288 positive im-
ages containing 589 pedestrians annotated with bounding
boxes. The people are imaged approximately at eye-level,
are upright with no particular bias in terms of frontal or side
pose. There is significant clutter and intra-class variations.

5.4. Performance

In all experiments, we evaluate our trained detectors by
multi-scale scanning of the full test images and compute
error rates using the Pascal VOC [7] bounding box over-
lap criteria. We report performance with Precision-Recall
curves and compute average precision (AP) as per the Pas-
cal VOC criteria [7]. Detectors of size 68×68 and 64×128
are learned for the INRIA Horses and Person test set re-
spectively. Images are scanned using scale strides of size
2

1
10 and space strides of 4 pixels. All results were averaged

with 5 independent runs and error bars plotted indicating
minimum and maximum performance.

5.5. Training Data

Our weakly supervised training data is obtained by
querying a web search engine with the keywords “horses”
and “people walking” respectively. In both cases 200 im-
ages are collected. Example images sampled uniformly at
random are shown in Figures 1 and 2. Note that only a frac-
tion of the images (less than half) contain the target from
the viewpoint corresponding to our test data, namely side
view for horses and eye-level upright for pedestrians.

5.5.1 Bag Composition

Our overall weakly supervised data consists of 210 bags:
200 bags subject to severe ambiguity and acquired automat-
ically and 10 bags subject to the typical scale and transla-
tional ambiguity as described below.

The 200 difficult bags are generated automatically from
each internet image by running the interest area detector
of [1], retaining the bounding boxes that fall within 25% of
the desired detector’s aspect ratio, randomly sampling 100
of those windows and finally mirror imaging the subimages.
In this manner, we obtain a total of 200 bags, each with 200
samples, which we resize to the detector’s aspect, for a to-
tal of 40, 000 subimages. Some example images are shown
in Figure 7. Note that while some bags as in Figure 7(b)
contain a few positives, other bags as in Figure 7(c) contain
none. Overall, the level of noise across all 40, 000 patches
obtained in this manner is significant. In order to prevent the
MIL classifiers from learning repeating background struc-
tures, we augment the above 200 bags with 10 bags of the
variety used in [17, 8, 4] obtained by perturbing a manually
labeled bounding box on 10 of the images.

5.6. Baselines

In all our experiments we compare the performance of
our algorithm against four baselines. The first three consist
of detectors trained with the MIL methods MILBoost [17],
ISRBoost [17] and GMBoost [4]1. All three baselines are
trained using the same data, namely 200 bags subject to se-
vere ambiguity and the 10 approximately initialized bags
subject to slight scale and translation ambiguity. The fourth
consist of a LogitBoost classifier trained in a fully super-
vised manner with 110 manually annotated examples. This
baseline is an indication of the best possible performance
that a MIL method can achieve on the data assuming that
a half of the 200 internet images contain a usable example
and accounting for the additional 10 annotated samples. It
establishes the quality of the samples selected by the MIL
procedures.

1Both ISRBoost and GMBoost define smooth non-probabilistic ap-
proximation of the max as a loss and can be derived within a Gradient
Boosting framework. We use an order 5 GMBoost loss.



5.7. Results

Qualitative results for the INRIA Person dataset are
shown in Figure 3 and Figure 4 while results for the INRIA
Horse dataset are shown in Figure 5 and Figure 6. Overall,
results on both data sets are good, confirming the soundness
of our approach.

In particular, for the INRIA Person dataset, CR-
MILBoost achieves a relative gain of 68.2% in AP com-
pared to MILBoost. The comparaison to the other MIL
baselines is also substantially favorable with a 33% rela-
tive improvement over ISRBoost and a 29.2% improvement
over GMBoost. The gains for the INRIA Horse dataset are
even more substantial. CR-MILBoost achieves a relative
gain over MILBoost of 111.3%, which translates a false
alarm reduction rate of factor 10 when looking at the corre-
sponding ROC (not shown here). Relative gains over ISR-
Boost and GMBoost are of 55% and 100.3% respectively.
Note that the gains reported above are averaged over all re-
call values. Looking at recall 0.6, we note a relative im-
provement over MILBoost of 147.3% for the Person data
and 504% for the Horse data.

Performance compared to the fully supervised Logit-
Boost baseline is often worse with approximate absolute
losses of 10% AP for both datasets. The losses are greatest
at high recall indicating that the training samples selected by
CR-MILBoost still suffer from too much scale and transla-
tional ambiguity when compared with manually annotated
ones. This is also evidenced by carefully examining Fig-
ure 8 and Figure 9: a careful examination does reveal slight
scale and translational ambiguities. Such ambiguities are
indeed known to be detrimental at high recall.

Interestingly, as can be seen Figure 4 for the INRIA Per-
son data, CR-MILBoost matches the performance of the
fully supervised baseline for up to 200 stumps at which
point the performances of the two methods begin diverg-
ing. This indicates that the selected samples or at the very
least the selected weak learners early in the learning pro-
cess are better aligned with the test data than those selected
subsequently.

6. Concluding Remarks

We proposed a new MIL method for object detection that
is capable of handling noisy automatically obtained annota-
tions. Experiments demonstrate that our method strongly
outperforms existing MIL methods and in some cases, can
perform nearly as well as a supervised baseline.

This works admits two natural extensions. The first one
is to exploit the known structure of the predictor to avoid the
multiple randomized training runs. CR-MILBoost handles
the MILBoost classifier as a black box with an unknown
structure, and re-interpret the prediction itself, or its distri-
bution across runs, to get an estimate of confidence. How-
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Figure 3: Performance of our method compared with base-
lines for the INRIA Person data. The figure displays preci-
sion as a function of recall.
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Figure 4: Performance of our method compared with base-
lines for the INRIA Person data. The figure displays aver-
age precision vs number of weak learners.

ever, statistical by-products of the learning may also shed
light on the confidence: The ambiguity of the optimization
in general, and more precisely the uncertainty on a weak
learner behavior, given its score in the Boosting process,
may give an estimate of the uncertainty of the learning pro-
cess, without the need for multiple runs.

The second is to use CR-MILBoost’s confidence esti-
mates to re-query the weakly supervised data and hence re-
compose the positive bags. The current experiments sug-
gest that the selected samples by CR-MILBoost are inferior
in quality to manually labeled one. We believe that such a
strategy holds the key to improving the quality of the se-
lected samples and thus performance.



Figure 1: Examples images from our horse training dataset selected uniformly at random. Typically, fewer than half of the
200 images contain a horse example from the same (side) view as in the INRIA Horse test data

Figure 2: Examples images from our people training dataset selected uniformly at random. Typically, fewer than half of the
200 images contain a person example from the same (upright) view as in the INRIA Person test data
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Figure 5: Performance of our method compared with base-
lines for the INRIA Horse data. The figure displays preci-
sion as a function of recall.
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