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Abstract

We propose an online solution to non-rigid structure
from motion that performs camera pose and 3D shape esti-
mation of highly deformable surfaces on a frame-by-frame
basis. Our method models non-rigid deformations as a
linear combination of some mode shapes obtained using
modal analysis from continuum mechanics. The shape is
first discretized into linear elastic triangles, modelled by
means of finite elements, which are used to pose the force
balance equations for an undamped free vibrations model.
The shape basis computation comes down to solving an
eigenvalue problem, without the requirement of a learning
step. The camera pose and time varying weights that de-
fine the shape at each frame are then estimated on the fly,
in an online fashion, using bundle adjustment over a sliding
window of image frames. The result is a low computational
cost method that can run sequentially in real-time.

We show experimental results on synthetic sequences
with ground truth 3D data and real videos for different
scenarios ranging from sparse to dense scenes. Our sys-
tem exhibits a good trade-off between accuracy and com-
putational budget, it can handle missing data and performs
favourably compared to competing methods.

1. Introduction

The combined inference of 3D scene structure and cam-
era motion from monocular image sequences, or Structure
from Motion (SfM), is one of the most active areas in com-
puter vision. The last decade has seen significant progress
towards real-time recovery of camera pose and 3D shape for
a sparse set of salient points [14] and even per-pixel real-
time dense reconstructions [18]. While SfM is now consid-
ered to be a mature field, these methods cannot be applied
to scenes undergoing non-rigid deformations.

Non-Rigid Structure from Motion (NRSfM) addresses
this limitation and methods from this field are now capa-
ble of creating accurate 3D reconstructions of moving and

deformable objects with striking results [10]. The under-
lying principle behind most approaches is to model defor-
mations using a low-rank shape [6, 29, 4, 20, 19, 7, 10] or
trajectory [3, 13] basis. However, NRSfM methods remain
behind their rigid counterparts when it comes to real-time
performance. The reason behind this is that they are typi-
cally limited to batch operation where all the frames in the
sequence are processed at once, after their acquisition, pre-
venting them from on-line and real-time performance. Only
recently, have NRSfM methods been extended to sequential
processing [19, 2]. However they remain slow [19] or do
not scale to the use of a large number of points [19, 2].

In this paper we push monocular NRSfM forward towards
real-time operation by proposing an online algorithm to re-
cover the 3D non-rigid shape and pose of strongly deform-
ing surfaces under realistic real-world assumptions: our
system can deal with significant occlusions, non-isometric
deformations (stretching) and can be used with dense data.
We use a linear combination of mode shapes (estimated us-
ing continuum mechanics) to model the non-rigid shape.
Our approach works in two stages. Firstly, we compute
the shape at rest, and estimate the mode shapes solving a
simple eigen-value problem. Equipped with this low-rank
deformable shape basis, the system continues operation in
a sequential manner where the only parameters to estimate
per-frame are the camera pose and a small number of basis
coefficients, optimised using Bundle Adjustment (BA) over
a sliding window.

2. Related work

NRSfM is an ill-posed problem unless additional con-
straints, such as smoothness priors, are considered. Bre-
gler et al.’s seminal work [6] was proposed as an exten-
sion of Tomasi and Kanade’s factorization algorithm [28]
to the non-rigid case. Their key insight was to model time-
varying shape as a linear combination of an unknown shape
basis under orthography. Different optimisation schemes
have since been proposed to include temporal and spatial
smoothness priors [29]. BA has been used at the core of
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the optimisation of the pose, shape basis and coefficients as
it allows to incorporate both motion and deformation priors
[8, 4]. In [20] a solution is proposed that recovers motion
matrices that lie on the correct motion manifold where the
metric constraints are exactly satisfied. More recently, low-
rank shape and local smoothness priors have been combined
within a variational approach to produce per-pixel dense
vivid reconstructions [10]. Piecewise models were pro-
posed to encode more accurately strong local deformations.
Piecewise planar [31], locally rigid [27] or quadratic [9] ap-
proaches rely on common features shared between patches
to enforce global consistency. Russell et al. [22] proposed
a formulation to automate the best division of the surface
into local patches. The Finite Element Method (FEM) for-
mulation proposed in [2, 1] injects surface continuity to the
stretchable triangles used as local elements.

The alternative strand of methods known as template-
based [24, 23, 16] rely on correspondences between the 2D
points in the current image and a reference 3D shape which
is assumed to be known in advance. The unknown shape
is encoded as a linear combination of deformation modes
learnt in advance from a relatively large set of training
data [24]. To avoid inherent ambiguities, additional shape
constraints are required such as inextensibility. More re-
cently, the exclusive use of inextensibility constraints, with-
out knowledge of the shape template, has been shown to be
sufficient to perform non-rigid reconstruction [32].

Despite these advances, previous approaches to NRSfM
typically remain batch and process all the frames in the se-
quence at once, after video capture. While sequential real-
time SfM [14, 18] solutions exist for rigid scenes, online
estimation of non-rigid shape from a single camera remains
a challenging problem. Only recently, have sequential for-
mulations emerged — Paladini et al. [19] proposed the first
sequential NRSfM system based on BA over a sliding win-
dow. However, their approach did not achieve real-time
performance and was only demonstrated on a small num-
ber of feature points. The first real-time, online solution
to NRSfM [2, 1] combined an extended Kalman filter with
FEM to build small maps of non-rigid scenes.
Our Contribution: In this work, we present a sequen-
tial solution to the NRSfM problem. We combine a physics-
based model to define a number of meaningful deformation
mode shapes, with a sequential BA framework to obtain a
low computational cost system that can run in real-time. We
are able to reconstruct highly extensible surfaces without
the need for a pre-trained model.

3. Continuum Mechanics Deformation Model
A common way to model non-rigid shapes in computer

vision is to represent the 3D shape as a linear combina-
tion of shape basis [6, 29, 4, 24, 20, 19, 16, 7, 10]. In this
work, we propose a method to compute the shape basis from

a continuum mechanics physics-based model of the scene.
We first review some concepts from dynamics in continuum
mechanics that will lead to our formulation of the estimation
of the deformable shape basis.

3.1. Undamped Free Vibrations Analysis

The dynamic behaviour of a deformable solid has been
widely studied in mechanical engineering [5]. Numerical
methods are mandatory to approximately solve the partial
differential equations modelling this behaviour, with FEM
being the most common approach.

A continuous object Ω is discretised into a number of fi-
nite elements Ωe (Fig. 1). Each element is defined by the 3D
location its nodes. Hence the geometry of the undeformed
solid is encoded as S ∈ R3×p where the matrix columns are
the 3D coordinates defining the location of the p discretisa-
tion nodes:

S =

X1 X2 . . . Xp

Y1 Y2 . . . Yp
Z1 Z2 . . . Zp

 . (1)

The fundamental equations of structural dynamics are
elaborate versions of Newtonian mechanics formulated as
force balance statements. The governing force balance
equations for undamped free vibrations –without energy
dissipation or external forces– can be written as:

Mü(t) + Ku(t) = 0 (2)

where M and K are the global mass and stiffness 3p × 3p
matrices respectively, u is a 3p × 1 3D nodal displace-
ment vector and the motion at each node j-th is speci-
fied by means of uj = (∆Xj ,∆Yj ,∆Zj)

>. Derivatives
with respect to t are abbreviated by superposed dots, i.e.
ü(t) ≡ d2u(t)

dt2 . In this equation and in the absence of ex-
ternal loads, the internal elastic forces Ku balance the neg-
ative of the inertial forces Mü and it can be interpreted as
assigning a certain mass and certain stiffness between nodal
points. The equation is linear and homogeneous, and its so-
lution is a linear combination of exponentials modulated by
the mode shapes.

3.2. Stiffness and Mass Matrices

This section is devoted to the computation of the matri-
ces K and M. We discretise the surface of the observed
solid into m linear triangular elastic elements with E con-
nectivity. We compute the stiffness matrix K by means of
a model for thin-plate elements. The deformation is mod-
elled as a combination of plane-stress and Kirchhoff’s plate,
using the free-boundary conditions matrix for linear elasto-
statics as proposed in [2]:

K =

m

A
e=1

∫
Ωe

T >B>e D BeT dΩe (3)



where Be is the strain-displacement matrix defined in terms
of the shape function derivatives. D is the constitutive ma-
trix depending on the material elastic properties: Young’s
modulus E and Poisson’s ratio ν. We assume near incom-
pressible materials ν ≈ 0.5. T is the local-to-global dis-
placement transformation matrix whileA represents the as-
sembly process of elemental matrices.

In order to model the mass matrix M, we consider two
scenarios [5]. First we assume a distributed mass within
element:

Md =

m

A
e=1

∫
Ωe

N>e ρNe dΩe (4)

where Ne is the interpolation matrix containing the linear
shape functions and ρ is the material density (mass-density).
We have assumed for simplicity that the density is constant,
i.e., dρ

dt = 0, and we also rely on the fact that the mass-
density is the same for all elements.

The second scenario assumes lumped mass at the nodes,
leading to the mass matrix being computed as:

Ml =

m

A
e=1

ρhAe
3

diag
(
[1 1 1 1 1 1 1 1 1]>

)
(5)

preserving the total element mass
∑
a M̃

e
aa =

∫
Ωe
ρ dΩe

where M̃e
aa is the mass per component. For simplicity, the

surface thickness h is the same for all elements. Ae repre-
sents the element area.

3.3. Modal Analysis

According to the structural engineering FEM analysis
[5], the deformed object at a given sample time can be ap-
proximated as a linear combination of some mode shapes
which can be computed as a generalized eigenvalue prob-
lem from the undamped free vibration dynamics Eq. (2). It
is worth noting, for the linear case, that the mode basis does
not depend on the applied forces but just on the K and M
matrices computed from the shape at rest.

Modal analysis is standard in structural engineering, it
has been also applied in computer vision for motion analy-
sis to track and recover the heart motion [21, 17], and in
[25, 26] for non-rigid 2D tracking. Modal analysis was
used to decoupling the equilibrium equations by obtaining a
closed-form solution. In this work, we propose to use modal
analysis with a soup of elastic triangles with unknown mate-
rial properties (E, ρ) and without knowledge of the bound-
ary conditions. We could exploit them when available, typi-
cally Dirichlet constraints to fix points uj = 0. We directly
use the mode basis without using the decoupled system.

From the system Eq. (2), we can compute the undamped
free vibration response of the structure caused by a distur-
bance with respect to the shape at rest by solving the gener-
alized eigenvalue problem in ω2:(

K− ω2
kM

)
ψk = 0 (6)

where
{
ψk, ω

2
k

}
, k = 1 . . . 3p are the mode shapes (eigen-

vectors) and frequencies (eigenvalues) respectively. Each
eigenmode ψk is a 3p × 1 vector and is composed of the
displacements for all the p nodes defining the discretisa-
tion. We compute the normalized to length one modes
‖ψk‖2 = 1 in order to satisfy the orthonormality condi-
tions ψ>k M−1Kψi = ω2

k and ψ>k ψi = δki where δki is the
Kronecker’s delta.

3.4. Mode Shapes: Analysis and Selection

In the case of non-boundary conditions, i.e. rigid points,
modal analysis yields 3p orthonormal modes –provided K
and M are symmetric positive definite– (see some exam-
ples in Fig. 1). To analyse the mode shapes we sort them
according to the energy needed to excite to each mode –
frequency spectrum–, from lower to higher frequency. We
can approximately identify three practical mode families,
instead of two proposed in [25], corresponding to:
Rigid motion modes. Theoretically the first 6 frequencies
should be zero, because they correspond to 6 d.o.f. rigid
body motions. However in practice, due to the thin-plate
approximation [2], only the first 4 frequencies are zero up to
numerical error. These 4 rigid motion modes are excluded
from the mode basis when coding non-rigid deformations.
Bending modes. Bending, out-of-plane deformations, are
mainly represented by the modes in the interval [5, p+ 4]
(see Fig. 1). These modes can represent elastic bending de-
formations (with low stretching in-plane). Moreover, se-
lecting a few of the first bending modes provides an accu-
rate mode basis to model bending deformations.
Stretching modes. Stretching deformations can be mod-
elled as a linear combination of the modes in the inter-
val [p+ 5, 2p]. Similarly selecting only the first stretch-
ing modes provides a mode basis to accurately represent the
stretching in-plane deformations.

The rest of the mode shapes [2p+ 1, 3p] — the higher
frequencies — do not correspond to physical deformations
but to artifacts due to the discretisation process. Note that
we separate the intermediate modes proposed in [25] into
bending and stretching modes for the 3D case.

To sum up, any non-rigid displacement u, can be
spanned by a mode basis selecting only {k1, . . . , kr} , r <<
3pmode shapes. For notational simplicity, it is assumed that
the r selected modes are renumbered k = 1, . . . , r, so any
displacement vector can be approximated by a linear com-
bination of the mode shapes:

u ≈
r∑

k=1

γkψk (7)

where γk are weights to obtain a lower dimensional rep-
resentation. Expression (7) can be rewritten as u =(
I3 ⊗ Γ>

)
Ψ, where I3 is a 3 × 3 identity matrix and ⊗
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Figure 1. Left: Representation of some non-rigid mode shapes of a plate surface discretised into triangular elements with #176 nodes.
We show the effect of adding the mode shape (red mesh) to the shape at rest (black mesh) using arbitrary weight. Note that the effect
of subtracting can be obtained using the opposite weight. First and second column: bending mode shapes. Third and fourth column:
membrane mode shapes. Right: Eigenfrequencies ωk for the previous black mesh in logarithmic scale. Best viewed in color.

represents the Kronecker’s product. We use a transforma-
tion matrix Ψ ∈ R3r×p, which has the 3D displacement
coordinates of p points using r mode shapes as:

Ψ =


ψ̄1

...

ψ̄r

 =



∆X11 ∆X12 . . . ∆X1p

∆Y11 ∆Y12 . . . ∆Y1p

∆Z11 ∆Z12 . . . ∆Z1p

...
...

...
∆Xr1 ∆Xr2 . . . ∆Xrp

∆Yr1 ∆Yr2 . . . ∆Yrp
∆Zr1 ∆Zr2 . . . ∆Zrp


, (8)

and another vector Γ for the frequency of vibration as:

Γ =
[
γ1 . . . γk . . . γr

]>
. (9)

4. Sequential NRSfM
We propose to use the shape basis resulting from modal

analysis to represent the non-rigidly deforming scene. This
section is devoted to describe the details of our sequential
approach to NRSfM.

4.1. Proposed Deformation Model

We approximate the non-rigid shape at each instant as a
linear combination of mode shapes. Hence the estimation
of the 3D structure at each frame f comes down to esti-
mating the corresponding weight vector Γf . The deformed
structure at frame f can be written as Sf = S + uf =

S +
(
I3 ⊗ Γ>f

)
Ψ.

Note that the mode shapes do not depend on the material
properties (E, ρ). For the same shape at rest, the normal-
ized modes are the same irrespective of (E, ρ). Different
(E, ρ) would produce the same deformation but with differ-
ent amplitude, which can be absorbed into the deformation
weights.

We assume an orthographic camera model, where the
projection of p points onto image frame f is expressed as:

Wf =

[
uf1 uf2 . . . ufp
vf1 vf2 . . . vfp

]
= ΠQf (Sf + Tf ), (10)

where Π is the 2× 3 orthographic camera matrix, Qf is the
3 × 3 rotation matrix and Tf stacks p copies of a 3 × 1
translation vector and Rf = ΠQf are the first two rows of
a full rotation matrix. Without loss of generality, we can
register all the measurements to their image centroid [28].
Considering Sf = S +

(
I3 ⊗ Γ>f

)
Ψ, we can write the

projection equation (10) for all frames using a unique matrix
where all the unknown weights γfk are stacked:

W =

R1

. . .
Rf



S

...
S

+

I3 ⊗ Γ>1
...

I3 ⊗ Γ>f


ψ̄1

...
ψ̄r


 .

(11)

4.2. Non-linear Optimisation

Recall that the deformation modes Ψ are computed in
a previous step following the modal analysis described in
Section 3 and only requiring an estimate of the shape at rest
S. Therefore, the sequential NRSfM problem is reduced to
the estimation of per-frame camera motion Ri and defor-
mation weights Γi. This involves the estimation of a very
small number of parameters r to encode the shape at each
frame, which leads to a low computational cost system that
can potentially run in real-time.

We use a sliding temporal window approach as proposed
in [19], to perform BA [30] on the last W frames. The
model parameters are estimated by minimizing the image
reprojection error of all the observed points % (M is the
set of visible points %) over all frames in the current tem-
poral window W by means of the following cost function



A (Ri,Γi):

min
Ri,Γi

f∑
i=f−W+1

∑
%∈M

‖Wi%−Ri

(
S% +

(
I3 ⊗ Γ>i

)
Ψ%

)
‖2F

+λq

f∑
i=f−W+1

‖qi−qi−1‖2F + λγ

f∑
i=f−W+1

‖Γ>i −Γ>i−1‖2F (12)

where ‖ · ‖F is the Frobenius norm and Ri are rotation
matrices. These matrices Ri(qi) are parameterised using
quaternions to guarantee orthonormality RiR

>
i = I2. We

add temporal smoothness priors to penalize strong varia-
tions in both camera matrices Ri(qi) and weights Γi. λq
and λγ are regularisation weights determined empirically.
The selected optimisation method is Levenberg-Marquardt.

Unlike other methods [6, 7] our formulation does not
require all points to be tracked throughout the whole se-
quence. BA has the capability to deal with missing data
since the cost function is evaluated only on visible points in
each frame. To initialise the parameters for a new incom-
ing frame, the camera pose is initialised as Ri = Ri−1 and
the mode shape weights Γi are initialised assuming rigid
motion Γi = Γi−1.

4.3. Estimation of the Shape at Rest

Our approach assumes that the shape at rest can be esti-
mated similarly to [19, 9, 22, 2, 1], using a rigid factoriza-
tion [15] on a few initial frames. We assume that the ob-
served sequence contains some initial frames where the ob-
ject is mostly rigid and does not deform substantially. Note
that one of the challenges in sequential methods, including
the rigid case [14], is the initialisation. Our shape at rest is
a pair S = (N , E) whereN = (n1, . . . , np) is the set of 3D
nodes and E = (e1, . . . , em) is the set of m elements. We
use Delaunay triangulation to compute E after estimating S
using the projection in the last rigid frame.

4.4. Computational Cost

Regarding the computational cost, two stages of the al-
gorithm need to be considered:

Mode Shapes Computation (MSC). Mode shapes are
computed before processing the video sequence. Two steps
are needed. The first one is the inversion of M−1K to trans-
form the generalized eigenproblem into a standard one. In
the case of the lumped mass matrix in Eq. (5), the inverse
computation cost is negligible, however in the case of the
distributed mass Eq. (4) it requires the inversion of a 3p×3p
matrix which is expensive even when the band-matrix pat-
tern is exploited. As the accuracy of lumped vs. distributed
mass is roughly the same, we always use lumped mass. The
actual computation and assembly of both K and M has a
O (p) complexity. The assembling cost is only significant
for dense maps, where the process could be parallelized.

The second step is the computation of the mode shapes
as eigenvectors. For computational efficiency, we propose
to use orthogonal iteration with Ritz acceleration [12]. This
returns the eigenvectors (mode shapes), sequentially, in as-
cending frequency order, hence the complexity scales with
the number of computed modes. If the r mode shapes to
be included in the basis correspond only to low frequen-
cies (bending modes), the computation is efficient with a
complexity scaling with r + 4. However, if both bending
and stretching modes have to be computed, the complexity
scales with 4 + r + p, which can be expensive both in time
and memory especially for dense meshes.

Non-linear Optimisation. The number of modes r is
typically significantly smaller than the number of points in
the scene shape p therefore the sliding window non-linear
optimisation complexity is dominated by the computation
of the Jacobian matrices, resulting in O

(
pW2r2

)
.

In conclusion, our method is sequential and can poten-
tially achieve real-time performance at frame rate.

5. Experimental Results
In this section, we show experimental results on both

synthetic and real sequences providing comparison with re-
spect to state-of-the-art methods1. In all the experiments
the error metric is defined as e3D = 1

f

∑f
i=1

‖Si−SGT
i ‖F

‖SGT
i ‖F

where Si is the 3D reconstruction and SGTi is the ground
truth. Before computing this 3D error, the 3D reconstruc-
tion is aligned with the corresponding ground truth using
Procrustes analysis over all frames.

5.1. Experiments on synthetic sequences

We propose two synthetic sequences of a deforming elas-
tic plate with irregular and regular discretisation mesh re-
spectively. Both sequences were generated with Abaqus2

using material properties and nodal forces.
The method exhibits a nice accuracy vs. computational

cost trade-off. Fig. 2 displays the consistent reduction of the
error as more modes r are considered. As expected, the per
frame BA time increases quadratically with the number of
modes. Regarding the MSC computation time, it is defined
by the number of nodes p, because the time is dominated
by the computation and assembly of K and M. Regarding
the use of lumped mass vs. distributed mass, fig. 2 shows
a negligible difference in accuracy. Since the computation
time for the distributed mass can be quite high especially
for a large number of nodes, we propose to always use the
lumped mass model.

We compare our results against state-of-the-art NRSfM
methods, both batch and sequential algorithms. For batch

1Videos of the experimental results can be found on website http:
//webdiis.unizar.es/˜aagudo

2Tool to model continuum solid mechanics http://www.3ds.com/
products-services/simulia/portfolio/abaqus/overview/

http://webdiis.unizar.es/~aagudo
http://webdiis.unizar.es/~aagudo
http://www.3ds.com/products-services/simulia/portfolio/abaqus/overview/
http://www.3ds.com/products-services/simulia/portfolio/abaqus/overview/


Frame 200 EM-LDS [29] DCT [3] MP [20] SBA [19] BA-FEM(10) BA-FEM(80)

Figure 3. Synthetic sequences. Comparing BA-FEM using 10 and 80 bending mode shapes with respect to EM-LDS [29], DCT [3], MP
[20] and SBA [19] for frame #200. Reconstructed 3D shape and the ground truth are showed with red dots and black circles respectively.
Top: Results for synthetic sequence 1. Bottom: Results for synthetic sequence 2.
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Figure 2. Mean normalized error e3D and run-time with vary-
ing number of mode shapes for synthetic sequences. Both mass
models are showed. Two scale plots: left-y axis mean normal-
ized error e3D , right y-axis run-time in seconds Left: Results for
synthetic sequence 1. Right: Results for synthetic sequence 2.

methods, we consider: EM-LDS [29], Metric Projections
(MP) [20] and trajectory basis (DCT) [3]. We also compare
with the Sequential BA (SBA) optimisation [19]. Table 1
summarizes the comparison the results for each method.
The 3D reconstruction of a typical frame for each method
is displayed in fig. 3. For our method we provide the results
using two basis with r = 10 and r = 80 modes respectively.
We can conclude that our method outperforms the state-
of-the-art in terms of accuracy, with the additional advan-
tage of being sequential. The low per frame computational
cost in unoptimised Matlab code shows that the method can
achieve real-time performance at frame rate.

We also use a synthetic dense face sequence with p =
28,887 points proposed in [10]. The scene is challenging
for two reasons: the density of the data and the strong defor-
mations that combine bending and stretching. If no bound-
ary conditions are considered, the stretching modes appear
in the 28,887th position, making the computation unfeasi-
ble both because of computing time and memory storage.
However, if boundary conditions are considered then the
modes provided by the eigenvector method are reordered to
firstly yield modes that combine both stretching and bend-
ing. Thanks to the ability of our method to handle boundary
point priors, we can compute just the first r = 5 modes

e3D% Syn. 1 Syn. 2 Batch Sequential
EM-LDS 11.12(2) 10.92(2) X
DCT 9.25(2) 11.81(5) X
MP 12.42(2) 18.84(2) X
SBA 14.03(16) 20.90(8) X
BA-FEM 3.89(10) 3.04(10) X
BA-FEM 0.86(80) 0.82(80) X

Table 1. Quantitative comparison on synthetic sequences. We
show e3D for EM-LDS [29], DCT [3], MP [20], SBA [19] and for
our method BA-FEM using lumped mass with 10 and 80 mode
shapes respectively. In all cases we have selected the number of
shapes in the basis (in brackets) that gave the lowest e3D error.

and experimentally show they are sufficient to encode the
face deformations. In this case, boundary conditions cor-
respond to face points that are considered to be rigid points
by means of a connectivity analysis. We can achieve an e3D
error of 4.64% using our sequential approach, higher than
the 2.60% for batch solution reported in [10] (see Fig. 4).

5.2. Experiments on real sequences

In this section, we evaluate our method using lumped
mass on several existing datasets. Our performance is sum-
marised in Table 2.

We use the sequence and tracks provided by [4] to report
qualitative results on the actress sequence, which consists of
102 frames where an actress is talking and moving her head.
In fig. 5, we show our 3D reconstruction obtained with r =
10 stretching mode shapes. Our results are comparatively
similar to those reported in [19]. Similarly to [19], we use a
rigid model on the first 30 frames to compute the rest shape.

We use the first 100 frames of a paper bending sequence
proposed in [4] to display a qualitative evaluation of our
method with respect to a significant fraction of missing data.
We use the sparse tracking of 828 points obtained by dense
tracking data reported in [11]. We process the sequence us-



Figure 4. Face sequence. Reconstruction of the dense face for
selected frames: #30, #40, #79 and #95. Top: Ground truth
3D shapes. Bottom: Dense 3D reconstruction.

Figure 5. Actress sequence. Top: Selected frames #31, #48 and
#84 with 3D reprojected mesh. Bottom: Original viewpoint and
side views of the 3D reconstruction.

ing r = 10 bending mode shapes and 5 frames to compute
the rest shape. Between frames #48 and #76, a 22% band
of missing data simulating a strong self-occlusion is intro-
duced. The performance does not degrade significantly (see
fig. 6).

Finally, we evaluate our approach on the challenging de-
formations of a flag waving in the wind, proposed in [11],
to show the performance of our method in the case of a
dense map of p = 9,622 points. We have included a few ini-
tial frames corresponding to the camera observing the rigid
shape. Fig. 7 shows comparison with respect to ground-
truth. As the deformation contains little stretching, the first
bending mode shapes can encode accurately the deforming
scene. The trade-off accuracy vs. computational cost is dis-
played in fig. 7 (right). When the modes to be computed are
only the first r, far less than the 3p total number of modes,
then the MRC computing time is low.

6. Conclusions and Future Work
We have proposed to exploit the well-known FEM modal

analysis to compute the mode shapes for sequential NRSfM.
The resulting basis, combined with smoothness constraints
without using additional distance constraints such as inex-
tensibility, provides a competitive solution to the accuracy
vs. per-frame computation time balance. For demand-
ing deformations, such as the synthetic cases in Sec. 5.1,

Figure 6. Robustness with respect to self-occlusion. Top: Se-
lected frames (#25, #50, #75 and #100) with 3D reprojected
mesh. Up to a 22% structured occlusion is simulated. Bottom:
General view of the 3D reconstruction deformed scene. Blue
points correspond to the structured occlusion.

Size Run-time (sec) Error
Sequence p r MSC BA e3D%

Syn. 1 81 10-80 0.3 0.3-2.2 3.89-0.86
Syn. 2 81 10-80 0.3 0.3-2.2 3.04-0.82
Actress [4] 68 10 0.4 0.3 -
Bending [4] 828 10 60 0.85 -
Flag [11] 9,622 5-25 300 47-416 4.14-3.29
Face [10] 28,887 5 1540 60 4.64

Table 2. Experiments summary. The problem size is defined by
the number of map nodes p and the mode shapes number r. Re-
garding computing time, both the MSC and the BA per frame time
are displayed. For all cases, the sliding window size is W = 5.

adding modes results in significant error reduction, whereas
in quasi-isometric deformations like those displayed by the
flag, most of the deformation can be explained with just a
few modes. Regarding computational performance, some
time has to be invested off-line to compute the mode basis.
After this frame-to-frame real-time performance is possible.
All our claims have been experimentally validated both on
synthetic and real sequences showing a performance better
or comparable to the state-of-the-art, with the additional ad-
vantage of our method being sequential, accurate and scal-
able. Our future work is oriented towards experimental val-
idation on medical imaging, where accurate FEM biome-
chanical models are available. We expect that our method
will be able to exploit the rich priors available and provide
new avenues of research for the challenging use of NRSfM
in medical applications.
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Figure 7. Flag sequence. Reconstruction of the dense 9,622 point flag at five selected frames: #10, #20, #30, #40 and #50. Left: Top:
Rendered ground truth. Bottom: Rendered reconstruction. Right: Mean normalized error and run-time with varying modes number.
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