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Abstract

We study in this paper the problem of learning classifiers
from ambiguously labeled images. For instance, in the col-
lection of new images, each image contains some samples
of interest (e.g., human faces), and its associated caption
has labels with the true ones included, while the sample-
label association is unknown. The task is to learn classi-
fiers from these ambiguously labeled images and general-
ize to new images. An essential consideration here is how
to make use of the information embedded in the relation-
s between samples and labels, both within each image and
across the image set. To this end, we propose a novel frame-
work to address this problem. Our framework is motivated
by the observation that samples from the same class repeti-
tively appear in the collection of ambiguously labeled train-
ing images, while they are just ambiguously labeled in each
image. If we can identify samples of the same class from
each image and associate them across the image set, the
matrix formed by the samples from the same class would be
ideally low-rank. By leveraging such a low-rank assump-
tion, we can simultaneously optimize a partial permutation
matrix (PPM) for each image, which is formulated in order
to exploit all information between samples and labels in a
principled way. The obtained PPMs can be readily used to
assign labels to samples in training images, and then a s-
tandard SVM classifier can be trained and used for unseen
data. Experiments on benchmark datasets show the effec-
tiveness of our proposed method.

1. Introduction

Learning classifiers for recognition purposes generally

requires intensive labor work of labeling/annotating a large

amount of training data. For example, in face recogni-

tion [28, 32, 13, 10], it is well known that collecting training

samples with manual annotation for precise face alignment

is the key to achieve high recognition accuracy. On the oth-

er hand, however, an unlimited number of images/videos

with accompanying captions are freely available from the

Internet, e.g., images containing human faces and their as-

sociated text captions from the news websites. It becomes

possible to avoid the intensive labor work if we can train

good classifiers using these freely available data in the wild.

Unfortunately, this is in general a difficult task. The main

difficulty comes from the ambiguous association between

samples in images and their labels in the corresponding im-

age captions, as illustrated in Fig. 1.

Learning classifiers from the ambiguously labeled data

falls in the category of ambiguous learning. The ambigu-

ous association between samples and labels make the learn-

ing task more challenging than that in standard supervised

learning. In the literature, a variety of attempts have been

made to this end. For example, Multiple Instance Learning

(MIL) has been proposed [1, 6, 25, 33] to learn classifiers

from ambiguously labeled data, in which an image is treat-

ed as a bag, and the bag is labeled as positive if it contains

at least one true positive instance, and negative otherwise.

MIL essentially learns a classifier for each class of sam-

ples by iteratively estimating the instance label by some

predefined losses. To explore the relations between sam-

ples and their ambiguous annotations, co-occurrence mod-

el [2, 3, 30, 20] has been proposed to infer their correspon-

dences using the Expectation Maximization. Iterative clus-

tering and learning approach was also proposed in [4] to as-

sign human faces to named entities. In [12, 24], an ambigu-

ous loss was proposed to learn a discriminant function for

classification. The latent model was also explored in [31]

for annotating images with unaligned object-level textual

annotation.

Broadly speaking, the above methods try to learn a map-

ping function from training images and their associated am-

biguous labels based on the following general assumptions

or constraints: 1) non-redundancy constraint - every sample

in training images belongs to a class by considering irrel-
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A forceful President Barack Obama put 

Republican challenger Mitt Romney on the 

defensive on foreign policy issues on Monday 

night, scoring a solid victory in their third and 

final debate just 15 days before Election Day. 

[ News From CNN ]

President Barack Obama, Italian Prime 

Minister Silvio Berlusconi, center, and 

Russian President Dmitry Medvedev, right, 

smile during a group photo at the G20 

Summit in London. [ News From Washington 

Post ]

Bryant and Andrew Bynum have been 

named Western Conference All-Star 

starters at guard and center respectively. 

This is Bryant's 14th time starting the 

league's annual showcase game. All-Star 

nod. [ News from NBA ]

Figure 1. Sample photos from news websites and the corresponding text caption. In general, most of the news websites do not provide

the face-name correspondence, hence it is a challenging task for the standard supervised learning method to automatically perform face

recognition on such freely available data.

vant samples as background class, 2) uniqueness constraint
- samples of the same class cannot simultaneously appear in

an image except the background class (e.g., multiple faces

of the same person cannot appear in an image), and 3) non-
pairing constraint - samples of different classes and their

true labels cannot consistently appear together across the

training images (e.g., the faces from two subjects will not

always co-occur in most of the images). With these assump-

tions in mind, the task of ambiguous learning is essentially

to model the ambiguous relations between samples and la-

bels both within each image and across the image set. A

good approach should be able to make use of all constraints

available in the sample-label relations in a principled way.

Except the work in [24], however, most of existing methods

can only partially achieve this.

To this end, we propose a novel framework to address the

ambiguous learning problem. We are particularly interested

in the problem of face recognition using ambiguously la-

beled images. Our framework is motivated by the observa-

tion that samples from the same class, assuming intra-class

variations are reduced within a certain level, can be charac-

terized by a low-dimensional subspace embedded in the am-

bient space. For example, Chen et al. [10] showed that face

images of the same person can be represented as a low-rank

matrix. Based on this low-rank assumption, our framework

simultaneously optimizes a partial permutation matrix (PP-

M) for each of the training images by rank minimization.

The PPMs are formulated so that after optimization, they

can associate samples of the same classes from different im-

ages to form low-rank matrices. To address the intra-class

variations, a sparse error term for each class is also intro-

duced to achieve better robustness. The obtained PPMs can

be used as indicators to assign the labels to samples in each

image. Indeed, our method relies on the facts that PPMs are

formulated and optimized so that the intrinsic constraints

from both the intra-image and inter-image sample-label re-

lations can be explored. For the intra-image relations, the

PPM is constrained to simultaneously and exclusively as-

sign one label to one sample in each image, where other

priors could also be incorporated. For the inter-image rela-

tions, the PPMs are simultaneously optimized by rank min-

imization so that the aforementioned non-pairing assump-

tion (3) in ambiguous learning can be used.

The contribution of this work is summarized as follows.

In contrast to existing methods for ambiguous learning, we

provide a novel perspective to address this problem by for-

mulating it as a sample-label correspondence task with PP-

M optimization, where the implicit information in both the

intra-image and inter-image sample-label relations can be

used in a principled way. A scalable algorithm is proposed

that enables our method to work on medium to large scale

dataset in terms of feature dimension, number of data points

and number of classes. Once the sample-label correspon-

dences are established, standard supervised learning meth-

ods can be applied to perform the prediction on unseen data.

Experiments on benchmark datasets show the effectiveness

of our method.

2. Related work
Learning visual classifiers from caption-accompanying

images has been an active topic in computer vision [1, 2,

20, 31, 24], of which learning face classifiers from such da-

ta is of particular interest [3, 18, 12, 24]. There are a few

methods that explicitly take face-name (sample-label) cor-

respondences into account. For example, Berg et al, [3] pro-

posed a constrained mixture model to optimize the likeli-

hood of particular face-name assignment. The work in [18]

first iteratively clusters faces using EM based on face sim-

ilarity and constraints from the caption. Based on these

clusters, a weighted bipartite graph modelling the null as-

signment (i.e., faces that are not assigned to any names and

names that are not assigned to any faces) and caption con-

straints is constructed for face-name assignment. On the

other hand, Support Vector Machine (SVM) based methods

directly learn discriminant classifiers using the ambiguously

labeled data. Cour et al. [12] proposed a max-margin for-
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mulation by introducing an ambiguous 0/1 loss to replace

the loss in the standard SVM formulation, in which they

defined the ambiguous 0/1 loss as 0 if the predicted name

is in the image caption, and 1 otherwise. Based on this am-

biguous loss, they defined a convex loss that penalized the

prediction of names as the ones not present in the caption.

This formulation did not consider the uniqueness constraint,

hence it generally cannot perform well for images with mul-

tiple faces. Luo et al. [24] extended the idea of ambiguous

loss for images with multiple faces, in which they enforced

the uniqueness constraint by assigning names to faces at a

set level (via labeling vectors) in each image.

Recently, low-rank property of a set of linearly corre-

lated images shows its usefulness in many computer vi-

sion problems, such as subspace segmentation [22], face

recognition [10], multi-label image classification [7], im-

age alignment [27] and image segmentation [11]. On the

other hand, PPM has been popularly used for feature point

correspondence with unsupervised learning [26, 34]. Our

method in this paper is essentially motivated by these pio-

neering works. However, with a new formulation of low-

rank matrices and PPM constraints, we show that our pro-

posed method fits well for the ambiguous learning task.

3. The proposed framework
We formally define the problem of learning from am-

biguously labeled images as follows. The input is a col-

lection of N images I1, · · · , IN . Each image has different

number of samples from distinctive classes, and there are

K̄ classes in total. More precisely, we assume there are Kn

samples from the nth image, and they are from different

classes. Each sample is characterized as a d-dimensional

feature vector. Hence, the nth image is represented as

Fn = [f1n, · · · , fKn
n ] ∈ R

d×Kn . Associated with the nth

image is a binary vector tn ∈ {0, 1}K̄ representing the la-

bels appearing in the caption of the nth image: tn(i) = 1
if the label of the ith class appears in the image caption,

and 0 otherwise. Given these ambiguously labeled N train-

ing images, the tasks are (1) for the nth image, to assign

each sample in the image a label from the caption of the

image by considering the aforementioned constraints, and

(2) based on the obtained sample-label assignments for all

the N images, to learn classifiers and apply them to unseen

data. In the following, we first introduce how the low-rank

assumption of the matrix formed by the samples from the

same class can be used to simultaneously optimize a set of

PPMs for assigning labels to the samples in the ambiguous-

ly labeled training images.

3.1. Low-rank assumption for samples from the
same class

Face images of the same individual are commonly as-

sumed to reside in a low-dimensional subspace [28, 10].

Put it in another way, if we place sufficient face samples

from the same class into a matrix, this matrix should be ap-

proximately low-rank. Denote F̄i = [̄f1i , · · · , f̄ni

i ] ∈ R
d×ni

as the matrix containing ni samples from the ith class,

i ∈ {1, . . . , K̄}. When these samples are human faces, then

F̄i should be approximately low-rank. However, the distri-

bution and ground-truth labels of these ni samples in the N
training images are unknown. In our ambiguous learning

tasks, we show next how this low-rank assumption can be

used to seek the sample-label correspondences.

3.2. Sample-label correspondences via PPM

Given N training images, our first objective is to find the

sample-label correspondences for all samples from K̄ class-

es. In this work, we use partial permutation matrix (PPM)

[26, 31, 34] to model such correspondences. In particular,

the PPM Pn ∈ P̄n for the image In is defined as:

P̄n=

{
Pn∈{0, 1}Kn×K̄

∣∣∣ 1T
Kn

Pn(1K̄ − tn) = 0,

Pn1K̄ = 1Kn , 1TKn
Pn ≤ 1TK̄ ,

}
(1)

where {0, 1}Kn×K̄ denotes a Kn × K̄ binary matrix and

1c (resp. 0c) denotes a column vector of length c with

all entries as 1 (resp. 0). The first row in (1) enforces

that only labels appearing in the caption can be assigned

to samples in the image In. The second row in (1) is de-

signed to satisfy the non-redundancy and uniqueness con-

straints. The PPMs {Pn ∈ P̄n}Nn=1 for all the N images

are similarly defined. Note that PPM has been used in [31]

for ambiguous learning. However, their work did not en-

force the uniqueness constraint when using PMMs. Giv-

en {Fn}Nn=1, there exist the PPMs such that samples of the

same class can be identified and columnly corresponded in

{FnPn ∈ R
d×K̄}Nn=1, or equivalently, the K̄ sub matrices

L1, ...,LK̄ of size R
d×N concatenated in

F({Pn}Nn=1) � [vec(F1P1)| · · · |vec(FNPN )] ∈ R
dK̄×N

= [LT
1 , ...,LT

K̄ ]T

are rank deficient, where vec(·) is an operator that vector-

izes a matrix by concatenating its column vectors. Based on

our low-rank assumption for samples from the same class,

the sample-label correspondence problem can be formulat-

ed as the following problem:

min
{Li}K̄i=1

{Pn∈P̄n}Nn=1

K̄∑
i=1

rank(Li) s.t. F({Pn}Nn=1) = [LT
1 , ...,LT

K̄ ]T .

Considering intra-class variations and inevitable data

noise or corruption, the above low-rank assumption is like-

ly to be violated. To improve the robustness, we introduce

a sparse matrix to model those data variations as sparse er-

rors. In addition, we relax the non-convex function rank(·)
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by its convex surrogate, the nuclear norm [17], resulting in

the optimization problem as follows:

min
{Li,Ei}K̄i=1

{Pn∈P̄n}Nn=1

K̄∑
i=1

‖Li‖∗ + λ‖Ei‖1,

s.t. F({Pn}Nn=1)=[(L1 + E1)
T, ..., (LK̄ + EK̄)T ]T,

where ‖·‖1 is the l1 norm and λ > 0 is a trade-off parameter

that balances the low-rank and sparse terms.

3.3. Modeling for the background samples

In practical ambiguously labeled images from Internet,

there are many irrelevant or background samples that co-

occur with the samples we are interested in. In line with the

convention in ambiguous learning [24, 18], we call these

background samples as samples of null class. Without loss

of generality, we let the K̄th class be the null class. Note

that enforcing low-rank and sparse constraints on samples

of the null class is inappropriate. In addition, there might be

no true labels appearing in image captions for samples from

the null class, we again take the convention to set tn(K̄) =
0. Moreover, to avoid the trivial solution that all samples

are assigned to the null class, we assume that at least one

sample per image is not associated with the null class. To

this end, we modify the PPM definition in (1) as follows:

Pn=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Pn∈{0, 1}Kn×K̄

∣∣∣∣∣∣∣∣∣∣∣∣

1T
Kn

Pntn = 1TKn
Pn

[
1K̄−1

0

]
,

1 ≤ 1TKn
Pntn,

1T
Kn

Pn

[
IK̄−1

0TK̄−1

]
≤ 1T

K̄−1,

Pn1K̄ = 1Kn ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2)

where Ic is a c × c identity matrix. Similar to the PPM

definition in (1), the first row in (2) prohibits our method

from choosing a label not appeared in the image caption ex-

cept the null class. The second row enforces that at least

one label from the caption must be chosen to avoid the triv-

ial solution that assigning all the samples to the null class.

The third and forth rows in (2) enforce the uniqueness and

non-redundancy constraints respectively. Based on the new

PPM definition (2), we arrive at the following optimization

problem:

min
{Li,Ei}K̄−1

i=1 ,

{Pn∈Pn}Nn=1

K̄−1∑
i=1

‖Li‖∗ + λ‖Ei‖1,

s.t. F({Pn}Nn=1)=[(L1+E1)
T , ..., (LK̄+EK̄)T ]T .

To simplify the subsequent notation, we perform the change

of variables, and rewrite the formulation as follows:

min
{Li,Ei}K̄−1

i=1 ,

{θn}Nn=1

K̄−1∑
i=1

‖Li‖∗ + λ‖Ei‖1, (3)

s.t. Snθn ≤ Qn, Xnθn = Rn,

θn∈{0, 1}K̄Kn , ∀n ∈ {1, · · · , N},
[Z1θ1, · · · ,ZNθN ] = K,

where

θn=vec(Pn), Zn=IK̄⊗Fn, Rn=[0, 1TKn
]T, Qn=[1T

K̄−1,−1]T,

Sn=

[
[IK̄−1, 0K̄−1]

−tTn

]
⊗1T

Kn
, Xn=

[
([1TK̄−1, 0]− tTn )⊗ 1TKn

1TK̄ ⊗ IKn

]
,

K=[(L1 + E1)
T , ..., (LK̄ + EK̄)T ]T ,

and ⊗ denotes the Kronecker product.

3.4. Optimization using ADMM

The number of variables in the optimization problem (3)

is usually large, thus a scalable algorithm is essential for its

practical use. In this work, we consider using the fast first-

order method Alternating Direction Method of Multipliers

(ADMM) [5] to solve (3). To facilitate the algorithmic de-

velopment, we define the following notations:

W = [Z1θ1, · · · ,ZNθN ]−K, (4)

IC(θn) =

{
0 if Snθn ≤ Qn, Xnθn = Rn, θn∈{0, 1}K̄Kn

∞ otherwise
,

where IC(θn) is the indicator function of the inequality as-

sociated with θn. The augmented Lagrangian function of

the optimization problem (3) can be written as:

Lμ({Li,Ei}K̄−1
i=1 , {θn}Nn=1,Y) (5)

=
K̄−1∑
i=1

(‖Li‖∗ + λ‖Ei‖1)+ <Y,W> +
N∑

n=1

IC(θn)+
μ

2
‖W‖2F ,

where Y∈RdK̄×N is the Lagrange multiplier matrix, μ is a

positive scalar, <., .> denotes the matrix inner product and

‖ · ‖F denotes the Frobenius norm. An iteration for solving

(5) is given as:

{{Li,Ei}K̄−1i=1, {θn}Nn=1}t+1 = argmin
{Li,Ei}K̄−1i=1 ,{θn}Nn=1

Lμ, (6)

Yt+1 = Yt + μWt+1, (7)

where t is the current iteration number, μ follows the up-

dating rule μt+1 = ρμt for some ρ > 1 as in [27], Lμ is

defined in (5) and Wt+1 is computed as in (4). We apply

the coordinate descent method to minimize Lμ with respect

to {Li,Ei}, ∀i ∈ [i, · · · , K̄ − 1] and θn, ∀n ∈ {1, · · · , N}
alternatingly, and both of them are relatively easy to solve.
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3.4.1 Update Li and Ei, ∀i ∈ {1, · · · , K̄ − 1}
The minimization problem (6) with respect to {Li,Ei}K̄−1i=1

can be decomposed into K̄ − 1 independent subproblems.

The ith subproblem updating Li and Ei can be equivalently

written as follows:

{Lt+1
i ,Et+1

i }=argmin
Li,Ei

‖Li‖∗+λ‖Ei‖1

+ <Yt
i,Dt

i−Li−Ei> +
μ

2
‖Dt

i−Li−Ei‖2F ,

where Dt
i ∈ R

d×N (resp. Yt
i ∈ R

d×N ) is a matrix con-

taining the ith sub-matrix of [Z1θ
t
1, · · · ,ZNθt

N ] (resp. Yt).

This optimization problem could be solved by Singular Val-

ue Thresholding (SVT) [8]:

[U, S,V] = svd(Dt
i − Et

i + μ−1Yt
i),

Lt+1
i = USμ−1 [S]VT ,

Et+1
i = Sλμ−1 [Dt

i − Lt+1
i + μ−1Yt

i], (8)

where Sτ [X] is the shrinkage operator for the matrix X that

applies Sτ [x] = sign(x)·max{|x|−τ, 0} to all the elements

of X.

Applying SVT on large matrices (e.g., 1.5K × 10K di-

mension) is computationally expensive. To overcome this

bottleneck, we apply the algorithm in [9]. Instead of per-

forming SVT, this algorithm solves the dual problem of the

original low-rank optimization, which only involves polar

decomposition and projection. Specifically, the low-rank

matrix Li can be computed in the following steps:

1. Compute the polar decomposition as follows:

Dt
i − Et

i + μ−1Yt
i = UV, (9)

where U is a unitary matrix and V is a symmetric non-

negative definite matrix.

2. Solve the following optimization problem:

Pμ(V) = argmin
‖Li‖2≤μ−1

‖Li − V‖F . (10)

3. Update Li as follows:

Lt+1
i = Dt

i − Et
i + μ−1Yt

i − UPμ(V). (11)

3.4.2 Update θn, ∀n ∈ {1, · · · , N}
The minimization problem (6) with respect to

{θ1, · · · ,θN} can be decoupled into N independent

subproblems. The nth subproblem updating θn can be e-

quivalently formulated as the following integer constrained

quadratic programming (QP) problem:

θt+1
n = argmin

θn

1

2
θT
n ZT

nZnθn+eTn (
1

μ
Yt −K)T Znθn,(12)

s.t. Snθn ≤ Qn, Xnθn = Rn, θn ∈ {0, 1}K̄Kn ,

where en is a unit column vector with all the entries set to

0 except the nth entry set to 1. If each feature is l2 nor-

malized, (12) can be approximated by the following linear

programming (LP) similar to [21]:

θt+1
n = argmin

θn

eTn (
1

μ
Yt −K)T Znθn, (13)

s.t. Snθn ≤ Qn, Xnθn = Rn, 0K̄Kn
≤θn≤1K̄Kn

,

whose solution can be efficiently solved by the standard LP

solver. The whole algorithm is summarized in Algorithm 1.

Algorithm 1: The optimization algorithm

Data: [F1, · · · ,FN ], λ, ρ,Y0 , {E0
i ,L0

i }K̄i=1, {θ0
n}Nn=1

Result: θn, ∀n ∈ {1, · · · , N}
t = 0;

while not converge do
for i = 1 to K̄ − 1 do

Update Lt+1
i as in (9) - (11);

Update Et+1
i as in (8);

end
for n = 1 to N do

Update θt+1
n as in (13);

end
Update Yt+1 as in (7);

t = t+ 1;

end

3.5. Classification for unseen data

To classify samples in unseen images, we train

a SVM with the Gaussian kernel (i.e., K(i, j) =
exp(−γD2(fi, fj))), where D(fi, fj) is the distance between

fi and fj , and the kernel parameter γ = 1
A with A being the

mean value of the square distances between all the train-

ing samples as in [14]. Specifically, we apply the proposed

method on the training set to obtain the partial permutation

matrices, which can be readily used to obtain the labels for

the training samples. We then use the obtained labels to

train a one-vs-all SVM classifier. Of course, we can train

a more sophisticated supervised learning model to consider

all the label constraints within one image during this step,

similarly as did in the work [12, 24]. However, we use the

off-the-shelf SVM model to demonstrate the effectiveness

of the proposed method. We therefore refer to the proposed

method as LR-SVM.

4. Experiment
In this section, we compare our newly proposed method

LR-SVM with the SVM based methods for the face recog-

nition problem on two ambiguously labeled datasets, one is
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Figure 2. Sample images with the captions from the Soccer player dataset.

Table 1. Face Recognition Rate(%) comparison on the Soccer player dataset.

Algorithm SIL-SVM [6] mi-SVM [1] sMIL [6] consGMM [18] PLL [12] MMS [24] LR-SVM

Accuracy 37.87 37.40 27.38 53.39 3.93 54.43 58.51

the Soccer player dataset and the other is the Labeled Ya-

hoo! News dataset. We compare the baseline method SIL-

SVM [6]. To train a classifier for each class, all the faces

within an image are treated as positive samples if the cor-

responding label appears in the caption, otherwise they are

negative samples. We also compare the result with Mul-

tiple Instance Learning methods such as mi-SVM [1], s-

MIL [6] and the works in [12] and [24] with ambiguous

loss. In addition, we report the result from [18] (referred

to as ConsGMM), in which it uses the caption for the pre-

diction when constructing the bipartite graph. We use the

recognition accuracy for performance evaluation, which is

defined as the percentage of correctly classified faces (in-

cluding the background ones) over all faces in the dataset.

Note that the caption is not used during the final predic-

tion except for ConsGMM. We fix the parameters λ = 0.3,

ρ = 1.05 for the proposed LR-SVM on the two dataset-

s, and tune C = {0.1, 1, 10} for the SVM based methods.

We first describe the two datasets used for our experiments,

followed by a discussion on the results.

4.1. Soccer player dataset

We perform the experiment on the Soccer player dataset,

which is collected from from www.zimbio.com website by

querying with names of soccer players from famous Euro-

pean football clubs. This dataset contains 8934 images and

17878 faces detected by using [29] with 1579 names. We

retain 170 names that occur at least 20 times and remove

the images whose captions do not contain any of the 170

names, resulting in 8640 images and 17472 faces. We treat

the names that exist in the remaining images but not in the

170 names as null class. Some of the representative images

are shown in Fig. 2. As can be seen in the figure, these

faces have significant appearance and pose variation. The

number of ground-truth faces of each class is shown in Fig.
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Figure 3. The number of ground-truth faces of each class in the

Soccer player dataset. The average number of faces for each class

is 52.3 with the standard deviation as 33.4. Note that classes are

sorted in descending order of the number of ground-truth faces.

3. For each detected face, 13 interest points are detected by

using [16] and each point is described by taking the vector

of pixels in the elliptical region, which is further normalized

for local photometric invariance as in [15]. Each descriptor

is with 149-dimension. We concatenate all the descriptors

within one face to form a 1937-dimension feature vector,

and we further perform PCA to retain 90% energy, result-

ing in 279-dimension feature vector. The recognition ac-

curacies on all faces in the dataset for all the methods are

reported in Table 1.

4.2. Labeled Yahoo! News dataset

The Labeled Yahoo! News dataset contains news pic-

tures and captions from Yahoo News. It was collected by

Berg [3] and was further processed by Guillaumin et al. [19]

by extracting the 128-dimension SIFT [23] from 3 scales at

13 landmark points detected by [16]. This dataset contain-

s 20071 images and 31147 detected faces. Following the

experimental protocol in [24], we retain the 214 names oc-
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Table 2. Face recognition accuracy (%) on the testing set of the Labeled Yahoo! News dataset.

Algorithm SIL-SVM [6] mi-SVM [1] sMIL [6] consGMM [18] PLL [12] MMS [24] LR-SVM

Split 1 31.01 28.18 44.51 66.00 22.53 82.54 81.53

Split 2 31.32 28.09 45.34 66.34 22.62 83.33 80.30

Split 3 31.59 28.49 43.94 65.45 22.75 84.59 80.47

Split 4 30.92 28.62 45.11 64.74 21.97 84.63 80.76

Split 5 31.71 28.71 43.72 64.74 22.89 83.16 80.96

Avg Accuracy 31.31 28.41 44.52 65.45 22.55 83.65 80.80
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Figure 4. The number of ground-truth faces of each class in the

Labeled Yahoo! News Dataset. The average number of faces for

each class is 41.5 with the standard deviation as 90.5. Note that

classes are sorted in descending order of the number of ground-

truth faces.

curred at least 20 times in the captions and treat the other

names as the null class. Fig. 4 shows the number of ground-

truth faces of each class. The experiments are performed

over 5 different random training/testing splits, by random-

ly sampling 80% of the images as the training set the re-

maining samples for testing. During the split, we also try to

maintain this ratio for each class. We observe that PLL can

not handle such high dimension data, following [12], we

apply PCA and project the data onto 50 dimensions. The

result is summarized in Table 2.

4.3. Discussion on the experiments

Based on the results in Table 1 and Table 2, we have the

following observations:

1. The proposed LR-SVM outperforms the MIL-based

methods on both datasets. An explanation is that these

MIL methods treat each class independently, where the

non-redundancy constraint is not explicitly taken into

consideration during the training process. In contrast,

the proposed method explicitly takes this constraint in-

to account when seeking for the optimal partial permu-

tation matrices (PPMs). Together with the rank con-

straint, it can recover more accurate labels for the sub-

sequent supervised learning problems, resulting in bet-

ter performance.

2. LR-SVM also outperforms ConsGMM on both

datasets. Take note that for ConsGMM, the caption

is used during the prediction stage to enforce the u-

niqueness constraint, while ours does not use any cap-

tion once the PPMs are obtained. This clearly shows

the rank constraint is a more effective way to asso-

ciate faces of the same classes when compared with

the Constrained Gaussian Mixture Model.

3. LR-SVM performs better than PLL. Although it is

proved in [12] that the ambiguous loss is a tight upper

bound for the ground-truth 0/1 loss when there is only

one face in an image, such loss is generally not tight

for the cases where more than one face appear in the

image without considering the uniqueness constraint.

On the other hand, by providing less noisy labels for

the standard SVM training, which uses much simpler

form of hinge loss, we have shown the effectiveness of

the proposed framework.

4. There is no consistent winner between LR-SVM and

MMS. LR-SVM is better than MMS on the Soccer

player dataset, while MMS outperforms LR-SVM on

the Labeled Yahoo! News dataset. One possible ex-

planation is that the low rank assumption is effective

in discovering the low-dimensional subspace when the

number of samples from each class is large enough.

When the number of samples per class is small, it is

generally difficult to use the rank to measure the sam-

ple similarity. As shown in Fig. 3, the average num-

ber of samples from each class on the Soccer players

dataset is 52.3 with the standard deviation as 33.4, and

almost all the classes of this dataset have more than

10 samples. In this case, rank constraint can be used

effectively to discover the low-dimensional subspace,

thus the learnt PPMs can lead to more accurate label-

s for the subsequent supervised learning, resulting in

better performance over MMS. On the other hand, as

shown in Fig. 4, on the Labeled Yahoo! News dataset,

the average number of samples from each class is 41.5

with the standard deviation as 90.5, in which the num-

ber of samples from each class ranges from a few hun-

dred to two. In this case, the low rank assumption is

less effective in discovering the low-dimensional sub-

space with less training samples per class, hence our
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method obtains more noisy labels for the subsequent

supervised learning problems, resulting in worse result

when compared with the MMS. On the other hand, if

we are interested in automatically learning the classi-

fiers for celebrities from the Internet images in which

case the images for each person are sufficient and our

low rank assumption can be well satisfied, the pro-

posed method will lead to better results.

5. Conclusion
In this paper, we have proposed a novel framework to

address the problem of learning from ambiguously labeled

data. In contrast to the existing methods which directly for-

mulate it as a classification problem, we provide a novel

perspective by formulating it as a sample-label correspon-

dence task with partial permutation matrix (PPM) optimiza-

tion, where the intra-image and inter-image sample-label re-

lations are used in a principled way. To efficiently solve

the the proposed formulation, a scalable algorithm based

on ADMM is proposed to cope with medium and even

large scale data. Once the sample-label correspondences

are obtained, we can adopt the standard supervised learn-

ing method like SVM for unseen data. Experiments on two

datasets show that the proposed method outperforms most

of the existing algorithms, which shows the efficacy of our

method.
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