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Abstract

This paper introduces a two-stage approach to semantic im-
age segmentation. In the first stage a probabilistic model
generates a set of diverse plausible segmentations. In the
second stage, a discriminatively trained re-ranking model
selects the best segmentation from this set. The re-ranking
stage can use much more complex features than what could
be tractably used in the probabilistic model, allowing a bet-
ter exploration of the solution space than possible by simply
producing the most probable solution from the probabilis-
tic model. While our proposed approach already achieves
state-of-the-art results (48.1%) on the challenging VOC
2012 dataset, our machine and human analyses suggest that
even larger gains are possible with such an approach.

1. Introduction

Perception problems are hard. Consider the task of seman-
tic segmentation1 – i.e. recognizing and segmenting objects
– in the picture shown in Fig. 1. A semantic segmentation
algorithm must deal with tremendous amount of uncertainty
– from inter and intra object occlusion and varying appear-
ance, lighting & pose. Unfortunately, idealized models that
reason about (the distribution over) all possible segmenta-
tions jointly with all confounding factors in a fully proba-
bilistic setting are typically computationally intractable.

This results in a major formal divide – we can either build:

• Restrictive Probabilistic Models that reason about
the full posterior and make a joint prediction over all
variables of interest at the expense of performance-
limiting independence assumptions, OR

• Expressive Feed-Forward Models that abandon the
probabilistic joint-prediction framework altogether in
favor of richer modelling but then mismanage uncer-
tainty by only making feed-forward predictions.

In the context of semantic segmentation, the former class
includes Conditional Random Field (CRF) models like [3,

1We use ‘semantic segmentation’ or simply ‘segmentation’ to mean a
labelling of an image, i.e. an assignment of a category label to each pixel.

Figure 1: An overview of our DivMBEST+RERANK approach.

In Stage 1 diverse segmentations are computed from a tractable

probabilistic model. These are fed to a large-margin re-ranker in

Stage 2. The top re-ranked segmentation is returned as the final

solution. Even though the most probable segmentation from Stage

1 is incorrect, the set of segmentations does contain an accurate

solution, which the re-ranker is able to score to the top.

17, 18] that make optimal (or provably approximate) joint
predictions over all pixels, but require restrictive assump-
tions that might not be true in reality, like assuming that
all interactions between variables are purely associative (or
attractive) [18]. The latter class includes expressive feed-
forward pipelines like [1, 5, 14] that first find regions in the
image, score these region and then combine these scores
into a segmentation. This feed-forward process captures
rich dependencies between pixels and regions, but errors are
accumulated and propagated from one stage to the next.

In this paper, we propose a hybrid approach that lever-
ages the best of both worlds. We propose a two-stage
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model where the first stage is a tractable probabilistic model
that reasons about an exponentially large output-space and
makes a joint prediction – but crucially outputs a diverse set
of plausible segmentations, not just a single one. The sec-
ond stage in our approach is a discriminative re-ranker that
is free to exploit arbitrarily complex features, and attempts
to pick out the best segmentation from this set. We refer
to this two-stage process as DivMBEST+RERANK. Fig. 1
illustrates the idea.

Thinking about semantic segmentation as a two-stage
DivMBEST+RERANK process has several key advantages:

• Global Optimization over a Simple Model. The first
stage of this approach is able to perform global op-
timization over all variables of interest, in a tractable
albeit imperfect model to find a small set (� 10) of
plausible hypotheses. We find that typically at least
one of these solutions is highly accurate.

• Rich (Higher-Order) Features in Re-ranker. Since
the re-ranker works with only a small set of segmen-
tations, we do not need to worry about tractability
when designing re-ranker features. The re-ranker is
free to compute arbitrarily complex features that are
not amenable to tractable inference and could not be
added to the probabilistic model in the first stage. This
is because the re-ranker does not need to optimize over
all possible segmentations, it merely needs to evaluate
these features on a small set of solutions.

• Discrimination only within the Set. The re-ranker
can utilize feature that need not be globally discrimi-
native, rather only locally discriminative within the set.
Specifically, for the re-ranker the goal is no longer to
use features than can identify generic good segmenta-
tions, rather to use features that can help it discriminate
good solutions from bad ones within a small set.

Contributions. The key contribution of this paper is a
novel approach to difficult perception problems with a
DivMBEST+RERANK paradigm. While this paradigm is
broadly applicable, we pick semantic segmentation as a case
study in this paper.

Our main technical contribution is a discriminative re-
ranking formulation for semantic segmentation. Our algo-
rithm takes as input a set of labellings {y(1), . . . ,y(M)} for
an image and predicts the most accurate labelling from this
list. We formulate this learning task as a Structured SVM
(SSVM) [26], where the task loss penalizes the re-ranker
for deviating from the most accurate solution in this set.
In order to generate this set of segmentations, we build on
our previous work [2], which produces diverse M-Best so-
lutions from any probabilistic model. For the first stage of
our approach, we analyze two different semantic segmen-
tation probabilistic models – Automatic Labelling Environ-
ment (ALE) [18, 20] and Second Order Pooling (O2P ) [4]
– and find that DivMBEST+RERANK results in significant

improvements for both of them. Specifically, we achieve
state-of-art performance in the challenging Pascal Visual
Object Classes (VOC) 2012 segmentation dataset [12].

Fundamentally, we believe our work brings into focus a dif-
ferent way of thinking about difficult perception problems.
Instead of attempting to directly answer the completely gen-
eral question: ‘What makes a good segmentation of an im-
age?’, perhaps more progress can be made by answering a
simpler question – ‘Given two plausible segmentations for
an image, can we tell a good segmentation from a bad seg-
mentation?’ Our discriminative re-ranking algorithm is a
first step towards answering the latter question. We also
perform human and machine diagnoses to analyze the in-
herent difficulty of this task. From the human analyses, we
find that people are surprisingly good at picking a good seg-
mentation from a bad segmentation by looking at the seg-
mentations alone. From our machine analyses, we find that
significant gains in performance are possible by develop-
ing algorithms for this “pick-one-out-of-10” task. While
our proposed ranker already achieves state of the art, even
larger gains in performance are possible.

2. Related Work

At a high-level, the core set of ideas in our approach have
been around for a long time [7]. It is common working
wisdom to “delay making a hard decision till the last step
of the pipeline”. Our two-stage approach can be considered
an instantiation of the same principle.

Relation to cascades. The idea of pruning possible solu-
tions in successive stages has been central to many vision
systems, including the seminal cascaded architecture of Vi-
ola and Jones [28] and more recent work [24, 29]. These
techniques can be thought of as deep cascades, consisting
of many (weak) stages, each incrementally pruning away
some part of the search space. Our approach on the other
hand is a shallow cascade, with a powerful first stage that
performs an exponentially large pruning: from all possible
segmentations to a small list of size M (� 10). Our results
suggest that this is an effective approach since the first stage
is computationally efficient and successful at producing a
very small list with at least one high-quality solution.

Relation to proposal-generation works. Category-
independent segmentation has long been thought of as a
preprocessing stage for higher vision tasks. In this spirit, a
number of works [6, 11, 16, 23] produce intermediate pro-
posals, i.e. a pool of category-independent segments on
which recognition tasks can be performed. Segment pro-
posals can be combined & labelled in exponentially many
ways. In contrast, stage 1 in our work produces holistic pro-
posals, i.e. a small set of (� 10) complete labellings.

Multiple solutions and diversity. Stage 1 of our ap-
proach is related to a problem studied in the graphical mod-
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els literature called M-Best MAP [13, 22, 30], which in-
volves finding the top M most probable solutions in a prob-
abilistic model. Unfortunately, since there is no emphasis
on diversity, such solutions are typically minor perturba-
tions of each other. This paper builds on our recent work,
called DivMBEST [2], which produces diverse M-Best so-
lutions. Diversity in solutions is crucial in re-ranking be-
cause we don’t want to pick from a set of solutions that are
simply minor perturbations of each other but rather ones
that present whole alternative explanations. Our previous
work [2] mostly focused on interactive applications where
these diverse M-Best solutions could simply be shown to a
user/expert. The key contribution of this paper is the auto-
matic re-ranking of these multiple solutions.

Discriminative re-ranking in other domains. Discrimina-
tive re-ranking of multiple solutions is a dominant paradigm
in domains like speech [9,10] and natural language process-
ing [8, 25]. In fact, the title of this paper is a reference to
such speech & NLP papers. To the best of our knowledge,
this is the first application of this paradigm for vision tasks.

3. Approach

We now describe our proposed two-stage
DivMBEST+RERANK approach. Recall that the first
stage is a Conditional Random Field (CRF) that produces a
diverse set of segmentations and the second stage re-ranks
this set and then picks the top scoring segmentation.

Notation. For any positive integer n, let [n] be shorthand
for the set {1, 2, . . . , n}. The input to our system is a
training dataset of (image, ground-truth segmentation) pairs
{(xi,y

gt
i ) | i ∈ [n]}, where xi is the ith-image and ygt

i is
the corresponding ground-truth segmentation. A segmen-
tation y is a set of discrete random variables, representing
the category assigned to each labelling unit (pixel or su-
perpixel or region), i.e. y = {y1 . . . yk}. Each variable
yu can take value in a finite label set, e.g. yu ∈ Yu =
{aeroplane, bicycle, bird, bottle, car, . . .}.
The quality of the predicted segmentation is measured by a
loss function �(ygt

i , ŷ) that denotes the cost of predicting ŷ

when the ground-truth is ygt
i . In Pascal VOC [12], this loss

would be the standard 1− intersection
union

measure, averaged over
masks of all categories.

Stage 1: Producing Diverse Segmentations

Let us first describe how we generate multiple segmenta-
tions from the CRF in stage 1. For ease of notation, this sub-
section is described for a single training image pair (x,y).

CRF Model. Let G = (V, E) be a graph defined over the

segmentation variables y, i.e. V = [k], E ⊆ (
[k]
2

)
. Each

variable yu corresponds to vertex u, and two vertices (u, v)
are connected by an edge if the pixels/superpixels u and v

are adjacent in the image.

Let θu(yu) be the unary term expressing the local confi-
dence for label yu, and θuv(yu, yv) be the pairwise term ex-
pressing compatibility of labels yu and yv at adjacent ver-
tices. The score for any segmentation y is given by the
sum S(y) =

∑
u∈V θu(yu) +

∑
(u,v)∈E θuv(yu, yv), and

its probability is given by the Gibbs distribution: P (y) =
1
Z eS(y), where Z is the partition function.

These unary and pairwise terms are typically derived from a
weighted combination of features extracted at vertices and
edges, i.e., θu(yu) = wᵀ

uφ(x, yu) (and θuv is defined analo-
gously). The weights wu, wuv are typically learnt from data
or sometimes set by hand.

MAP Segmentation. The goal of MAP inference is to find
the highest scoring labeling, i.e. argmaxy S(y).

Diverse M-Best Segmentations. To generate a set
of segmentations, we utilize our previous work called
DivMBEST [2], which produces diverse M-Best solutions
from any probabilistic model that allows for efficient MAP
computation. For the sake of completeness, we give a brief
overview of DivMBEST below; details can be found in [2].

DivMBEST finds diverse M-best solutions incrementally.
Let y1 be the best solution (or MAP), y2 be the second
solution found and so on. At each step, the next best solu-
tion is defined as the highest scoring state with a minimum
degree of “dissimilarity” w.r.t. previously chosen solutions,
where dissimilarity is measured under a function Δ(·, ·):

y(M) = argmax
y∈Y

∑
u∈V

θu(yu) +
∑

(u,v)∈E
θuv(yu, yv) (1a)

s.t. Δ(y,y(m)) ≥ km ∀m ∈ [M − 1]. (1b)

In general, this problem is NP-hard and Batra et al. [2] pro-
posed to use the Lagrangian relaxation formed by dualizing

the dissimilarity constraints Δ(y,y(m)) ≥ km:

f(λ) = max
y∈Y

SΔ(y)
.
=

∑
u∈V

θu(yu) +
∑

(u,v)∈E
θuv(yu, yv)

+

M−1∑
m=1

λm

(
Δ(y,y(m))− km

)
(2)

Here λ = {λm | m ∈ [M −1]} is the set of Lagrange mul-
tipliers, which determine the weight of the penalty imposed
for violating the diversity constraints.

Following [2], we use Hamming diversity, i.e.

Δ(y,y(m)) =
∑

u∈V [[yu �= y
(m)
u ]], where [[·]] is 1 if

the input condition is true, and 0 otherwise. This function
counts the number of nodes that are labeled differently
between two solutions. For Hamming dissimilarity, the
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Δ-augmented scoring function (2) can be written as:

SΔ(y) =
∑
u∈V

(
θu(yu) +

M−1∑
m=1

λm[[yu �= y(m)
u ]]

)
︸ ︷︷ ︸

Perturbed Unary Score

(3)

+
∑

(u,v)∈E
θuv(yuv).

Thus, the maximization in (2) can be performed simply by
feeding a perturbed unary term to the algorithm used for
MAP inference (e.g. α-expansion or TRW-S). This makes it
really efficient to produce DivMBEST solutions in stage 1.

Stage 2: Re-ranking Diverse Segmentations

We now describe our proposed approach for re-ranking the
diverse set of segmentations produced by stage 1.

Let Yi = {y(1)
i . . .y

(M)
i } denote the set of M segmen-

tations for image i. The input to stage 2 at train-time is
a set of (image, ground-truth, segmentation-set) triplets:{
xi,y

gt
i ,Yi | i ∈ [n]

}
. Note that the ground-truth ygt

i typ-
ically will not be a part of the segmentation-set Yi. Let
y∗
i denote the most accurate segmentation in the set, i.e.

y∗
i = argminy∈Yi

�(ygt
i ,y). The accuracy of solution y∗

i

forms an upper-bound on the re-ranker performance since
we are committed to picking one solution from Yi. We re-
fer to this as the oracle accuracy.

Re-ranker Model. The goal of the re-ranker is to pre-
dict the best segmentation in the set. We formulate this
problem as a Structured SVM (SSVM) [26]. The re-
ranker assigns a score to each segmentation in the set, i.e.
Sr(y) = αᵀψ(x,y), where α and ψ(x,y) are the re-
ranker parameters and features respectively. Inference in
the re-ranker consists of finding the highest scoring solu-
tion, ŷi = argmaxy∈Yi

Sr(y).

The re-ranking features ψ need not be the same as the CRF
features φ, and can be quite complex, because inference in
the re-ranker merely involves extracting the features on a
small set of solutions, taking a dot-product with the weights
and sorting according to the resulting score. Also notice
that the features are a function of both the image xi and
the segmentation yi. Thus, we can compute features like
size of various categories, connectivity of the label masks,
relative location of label masks and other such quantities
that are functions of global statistics of the segmentation
and thus intractable to include in the first stage. We describe
the features used in detail in Section 5.

Re-ranker Loss. In order to measure re-ranker perfor-
mance, we use a re-ranker loss L(ygt

i , ŷi), which is dif-
ferent from the task loss �. Specifically, we use the relative
loss:

L(ygt
i , ŷi) = �(ygt

i , ŷi)− �(ygt
i ,y∗

i ),

i.e. the task loss of segmentation ŷi relative to the best seg-
mentation in this set y∗

i .

This forces the re-ranker to focus its effort on training in-
stances where it is under-performing relative to the set and
not globally. For instance, consider two images i, j with
two segmentations each, whose accuracies are Acc(Yi) =
{95%, 75%} and Acc(Yj) = {40%, 35%} respectively. If

we use the task loss as the re-ranking loss, i.e., L(ygt
i ,y) =

�(ygt
i ,y), the re-ranker will focus its attention on set j and

ignore set i because both solutions in Yj have high loss
w.r.t. ground-truth {100-40%, 100-35%} = {60%, 65%},
while both solutions in Yi have significantly lower loss
{5%, 25%}. This is not desirable because j is already per-
forming close to the best it can, given that we are committed
to the set. Set i, on the other hand, has significant room for
improvement. Using the relative loss correctly shifts the
focus to i because an incorrect choice in that set is much
costlier (difference of 20%) than an incorrect choice in set
j (difference of 5%). Empirically, we found this choice to
play an important role in the performance of the re-ranker.

Re-ranker Training. We learn the re-ranker parameters by
solving the following Structured SVM Quadratic Program:

min
α,ξi

||α||22 + C
∑
i∈[n]

ξi (4a)

s.t. αᵀ
(
ψ(xi,y

∗
i )−ψ(xi,y)

)
≥ 1− ξi

L(ygt
i ,y)

(4b)

ξi ≥ 0 ∀y ∈ Yi \ y∗i , (4c)

Intuitively, we can see that the constraint (4b) tries to maxi-
mize the (soft) margin between the score of the oracle solu-
tion and all other solutions in the set. Importantly, the slack
(or violation in the margin) is scaled by the loss of the solu-
tion. Thus if in addition to y∗

i there are other good solutions
in the set, the margin for such solutions will not be tightly
enforced. On the other hand, the margin between y∗

i and
bad solutions will be very strictly enforced. We solve (4)
via the 1-slack cutting-plane algorithm of Joachims [15].

At test-time, the evaluation of our DivMBEST+RERANK

pipeline is simple – we compute stage 1 CRF features φ on
an image and parameters θu, θuv , run the DivMBEST algo-
rithm [2] to produce a set of diverse segmentations Y, com-
pute re-ranker features ψ on this set and output the highest
scoring solution.

We now provide a detailed analysis of both stages of our
DivMBEST+RERANK approach – Section 4 analyzes stage
1 and Section 5 analyzes stage 2.

4. Analyzing Diverse Segmentations

In this section, we provide details of the CRFs used to pro-
duce multiple segmentations and characterize the diversity
achieved in these segmentations. Specifically, we investi-
gate the sources of diversity, and attempt to quantify the
extent to which diversity enables potential gain in accuracy
over the MAP solution.

192419241926



4.1. CRFs: ALE and O2P

We used two different models for semantic segmentation –
the Associative Hierarchical CRF [18] (implemented as the
Automatic Labeling Environment, ALE) and the Second-
Order Pooling (O2P ) model of Carreira et al. [4]. Both
models have publicly available implementations.

Both of these models incorporate high-order information in
the image, albeit in different ways. ALE defines cliques
over pixels and superpixels, and incorporates many differ-
ent potentials such as unary potentials based on textonboost
features, Pn Potts terms between pixels and superpixels and
a global co-occurrence potential [19]. Much of the com-
plex dependency between regions of the image is captured
by the graph structure of the CRF and high-order cliques.
In contrast, O2P incorporates high-order dependencies be-
tween regions2 (not pixels) in the image using second-order
pooling of local descriptors such as SIFT and local binary
patterns (LBP) to form global region descriptors.

For both models, DivMBEST is able to reuse the respec-
tive MAP inference algorithms to produce a diverse set of
segmentations. Note that inference in O2P was originally
proposed as a greedy procedure. In our work, we formulate
their approach as a CRF constructed on overlapping CPMC
segments in the image.

4.2. Diversity and Oracles

For the analysis reported in this subsection, we used the
VOC 2012 train and val sets. ALE and O2P models
were trained on VOC2012 train, and the models were
used to produce 10 segmentations for each image in val.
Following [2], we tuned the Lagrangian multipliers via
cross-val (λALE = 1.25 and λO2P = 0.08).

Oracle Accuracies. Since ground-truth is known for VOC
val images, we can find the oracle accuracy, i.e. the accu-
racy of the best solution in the set. This accuracy, shown
in Fig. 3 (lines with circles), is striking: with only 10 so-
lution on O2P , it reaches 60.12%, which is 15%-points
higher the accuracy of MAP! O2P MAP is approximately
the same as the winning entry in the 2012 Pascal VOC chal-
lenge. Winning accuracies typically improve 3-4%-points
each year, so this is a significant potential. Oracle accuracy
with ALE solutions show a similar increase.

To put these oracle numbers in context, we ask what is the
the best possible segmentation that could be constructed
with the 150 CPMC segments. We implemented a greedy
algorithm that tries to find the subset of CPMC segments
that best cover ground-truth segments and then simply
copies labels over from the ground-truth. This achieves an
accuracy of 80.78%. Notice that this procedure takes the
supremum of accuracy of exponentially many solutions, and

2Specifically, O2P uses 150 segments generated by Constrained Para-
metric Min-Cuts (CPMC) algorithm [6].

we only need 10 DivMBEST solutions to reach to 60.12%.

Diversity of solutions. We now turn to empirical analysis
that quantifies the amount of diversity in these solutions,
and how that affects the oracle performance. Details can
be found in the supplementary material. Here we briefly
describe the methodology and outline the main conclusions.

The first question we address is: how much diversity do the
DivMBEST solutions contain over MAP? To answer this,
we can look at the solution in the set that is most different
from MAP, as measured by average region overlap. With
just 10 solutions, this number drops to about 0.3 for O2P
and 0.1 for ALE. Thus, on average at least one out of 10
DivMBEST solutions for O2P overlaps MAP by only 10%.

Of course, diversity is useful only if it brings in improved
quality, and our next goal is to assess this. We computed
the covering of MAP by the oracle for every image, and
found that on average this covering is less than 61% for
O2P and 55% for ALE. If we constrain the covering to be
category-consistent, these numbers drop to 58% and 45%
respectively. Thus, we can conclude that the oracle seg-
mentations are not simply minor perturbations of the MAP.

Gain from diversity. Diving a bit deeper we can investi-
gate the modes of this diversity: how is the oracle different
from the MAP? The analysis above tells us that the set of
regions in the oracle tends to be very different from MAP.
But perhaps the oracle simply contains a better set of masks
for the same categories present in the MAP? We show in
the supplementary materials that this is not the case: if we
find the best labeling of any of the DivMBEST solutions re-
stricted to the set of categories present in MAP, we obtain
performance significantly inferior to that of the true oracle.

Thus, we can conclude that there are clear differences in
both the labels and segments of the oracle segmentations
compared to the MAP.

5. Re-ranking experiments

We now describe implementation details of our re-ranker,
and report the results on VOC2012 val and test sets.

5.1. Re-ranker features and training

Our re-ranker uses a number of features that we separate
into a few groups. In the discussion, below we say a label c
is present in y if at least one pixel in y is labeled c.

Model features rely on properties derived from the model
that produced y– model score of y, average pixel score,
number of CPMC masks used to construct foreground, the
final background threshold at the end of the greedy fore-
ground assembly, and the rank of y among the M diverse
hypotheses for the given input image. (5 dimensions)

Diversity features measure average per pixel agreement of
y with the majority vote by the diverse set (weighted or
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unweighted by the model scores). (2 dimensions)

Recognition features. We use outputs of object detec-
tors from [21] to get detector-based segmentations D1,D2,
where each pixel is assigned by majority vote on detec-
tion scores (thresholded & un-thresholded). Then we com-
pute the agreement matrix: for every c1, c2 we count pix-
els assigned to c1 by y and to c2 by D1, yielding a 441-
dimensional feature. We compute max/median/min of the
detection score (with and without thresholding) for every
category in y (120 dims); the average overlap between cat-
egory masks inD1,D2 and in y (2 dims); and pixelwise av-
erage detector scores for categories in y (2 dims). We also
use the the estimated posterior for each category present in
y, using the classifier from [27] (20 dimensions).

Segment features measure the geometric properties of the
segments in y: perimeter, area, and the ratio of the two;
computed separately for segments in every class and for the
entire foreground (63 dimensions). Relative location of the
centroids of masks for each category pair (420 dimensions).

Label features rely on information regarding the labels as-
signed to masks in y, but not the geometry of these masks.
For every pair of labels c1, c2 we compute the binary co-
occurrence (1 if both categories are present in y) and the
percentage of pixels assigned to c1 & c2. (420 dimensions)

All the features above are independent of the image x; the
following features rely on image measurements as well as
properties of the solution y.

Boundary features. We compute the total gPb proba-
bility of boundary response in a band along the category
boundaries; for 3 widths of the band, this produces a 3-
dimensional feature (with 3 more for normalized versions).
We also compute recall by the gPb map of the category
boundaries in the y; this produces a 10 dimensional feature
for ten equally spaced precision values. Finally, we com-
pute the histogram (6 bins) of Chamfer distance between
the boundaries in y and the thresholded gPb, and vice versa;
with 10 thresholds this produces a 120 dimensional feature.
For each category, we also computed normalized histogram
of gPb responses in the non-boundary regions (210 dims).

Entropy features. For every category (and the combined
foreground) we measure the entropy of color histograms,
computed per color channel with two binning resolutions,
yielding 126 dimensions. We do the same for textons, with
a single binning, for another 21 features.

We stress that most of these features rely on higher-order in-
formation that would be intractable to incorporate into the
CRF model used in stage 1. For instance, using features that
refer to segment boundaries is hard in CRF. However, eval-
uating these features on M segmentations is easy, which
allows us to use them at the re-ranking stage.

Training the re-ranker. The combined feature vector per
solution y has 1988 dimensions. The only hyper-parameter

for the re-ranker is the regularization parameter C (4a),
which is chosen via cross-validation on the val set3.

Re-ranker Results. In Fig. 3 we show the
DivMBEST+RERANK results (Re-rank) for ALE
and O2P models on VOC 2012 val. As a baseline, we
report the results of a binary classifier (Classifier) that
is trained to discriminate between the best and the worst
segmentations, and used at test-time to re-rank via the
classification score. We also compared against randomly
selecting one-out-of-M solutions (Rand).

For VOC 2012 validation DivMBEST+RERANK achieves
an accuracy of 29.27% on ALE and 48.2% on O2P . This
is in contrast to a MAP accuracy of 24.3% for ALE and
45.1% for O2P , which is an increase of more than 5% and
3% points respectively. The O2P re-ranker, trained on the
entire val set, was applied to VOC 2012 test with re-
sults summarized in Tbl. 1. DivMBEST+RERANK outper-
forms O2P -MAP by 1.6% points and achieves state-of-the-
art performance on this challenging dataset. In Fig. 5 we
show a few examples where DivMBEST+RERANK outper-
forms O2P -MAP.

Re-ranker Behavior Fig. 2 shows the behavior of the re-
ranker on VOC 2012 val: (a) shows the number of images
in which the oracle solution was originally at rank M . We
can see that there is a heavy tail in the distribution, indicat-
ing that high-quality solutions are often found near the bot-
tom of the list; (b) shows the number of images where the
re-ranker predicts solution M . We can see a much lighter
tail, suggesting that the re-ranker ‘plays it safe’ and predicts
MAP very frequently; (c) shows a scatter plot of re-ranker
score vs solution accuracy. We can see that the re-ranker
score is quite well correlated with the solution quality.

5.2. Human Experiments

Finally, to characterize the difficulty of the re-ranking prob-
lem we performed human-studies on Amazon Mechanical
Turk to investigate how well people perform the task of
picking a good segmentation. We selected 150 images from
the VOC 2012 validation set where the MAP segmenta-
tion was neither the worst nor the best segmentation. For
each image we constructed three tasks, comparing best-vs-
worst, best-vs-MAP and MAP-vs-worst DivMBEST seg-
mentations. Subjects were not shown the image and had
to pick the better segmentation simply by looking at label-
ings with category names annotated. Subjects were also
presented with a text box to give optional feedback on rea-
sons for their choice. An example of the interface is shown
in Fig. 4, with actual feedback received from AMT work-
ers. The comments are instructive because they show that
people are remarkably accurate at discriminating between

3We also used cross-validation to evaluate the feature set, rejecting
some additional features not listed here that did not contribute to re-ranking
accuracy.
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O2P -MAP 84.8 63.7 23.4 44.9 40.8 45.1 58.0 58.8 57.6 12.1 43.8 31.0 44.8 56.2 56.8 52.3 37.1 44.0 29.5 48.6 42.9 46.5
DivMBEST+RERANK 85.7 62.7 25.6 46.9 43.0 54.8 58.4 58.6 55.6 14.6 47.5 31.2 44.7 51.0 60.9 53.5 36.6 50.9 30.1 50.2 46.8 48.1

Table 1: VOC 2012 test set accuracies.
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(a) Oracle Solution Rank Histogram.
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(b) Predicted Solution Rank Histogram.
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(c) Re-ranker Score vs Solution Accuracy.

Figure 2: Statistics on VOC 2012 val with O2P model: (a),(b) show the number of images in which the oracle / top-re-
ranked solution was originally at rank M . We can see that there is a heavy tail in the oracle distribution, but a much lighter
tail in the re-ranker, suggesting that the re-ranker “plays it safe” and predicts MAP very frequently; (c) shows a scatter plot
of re-ranker score vs solution accuracy.
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Figure 3: DivMBEST+RERANK perfor-

mance on PASCAL VOC 2012 val using

(a) ALE and (b) O2P models vs. the the

number of solutions.

(a) (b) (c)

Figure 4: Example MTurk tasks along with user-provided responses which were instructive in the creation of segmentation-specific

features.

segmentations using cues such as category co-occurrence
(Fig. 4a), category specific silhouettes (Fig. 4b), and part-
whole relationships (Fig. 4c) - all of which provide support
for our choice of features. The results for subject perfor-
mance are shown in Tbl. 2. We can see that the binary
tasks of picking between the best-vs-worst and MAP-vs-
worst are easier than picking between best-vs-MAP solu-

tions (which often tend to be both of high-quality). For the
case of O2P , picking between best and MAP is substan-
tially more difficult - understandably so given that the MAP
solutions are relatively good. Most notable is that the seg-
mentations picked by humans achieve a significant increase
in accuracy over MAP, which is impressive considering that
the subjects never saw the original image.
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Original Image Ground Truth MAP Re−ranked

48.15% 70.28%

Original Image Ground Truth MAP Re−ranked

50.55% 83.03%

Original Image Ground Truth MAP Re−ranked

33.90% 95.05%

Original Image Ground Truth MAP Re−ranked

56.23% 71.99%

Figure 5: Cases where DivMBEST+RERANK outperforms O2P -

MAP. In each group of images, the first column shows the original

image followed by the ground-truth, MAP, and top re-ranked so-

lution returned by DivMBEST+RERANK. PASCAL intersection-

over-union accuracy is shown below the segmentations.

Binary Task Accuracies Pascal VOC Avg. Acc.

B-vs-W M-vs-W B-vs-M Best MAP Worst HR

ALE 71.9 64.4 61.7 38.0 19.1 3.2 20.5
O2P 73.9 73.1 56.3 62.8 43.6 24.5 49.0

Table 2: (left) Human accuracy in predicting (B)est-vs-(W)orst,

(M)AP-vs-(W)orst, and (B)est-vs-(M)AP solutions. (right) Pascal

VOC accuracies over 150 images for best, MAP, worst, and human

response (HR) solutions.

6. Conclusions

We have presented a two-stage hybrid approach to segmen-
tation: produce a set of diverse solutions from a genera-
tive model, then re-rank them using a discriminative re-
ranker. Our detailed analysis, applied to two models (ALE
and O2P ) shows that the set of solutions obtained in stage 1
contains segmentations dramatically more accurate than the
single MAP solution, and that the sources of diversity are
non-trivial. With the re-ranker trained using a novel struc-
tured SVM formulation, we obtain state of the art results on
VOC 2012 segmentation test set.

Chief among our future work directions is to continue clos-
ing the gap between what is achieved by the re-ranker and
what is possible based on our oracle analysis of the diverse
solution sets. The gap and the actual values of the oracle
suggest that efforts of CRF modelling community may be
misguided – the bottleneck is not optimization algorithms
for probabilistic models, rather the bottleneck is the absence
of rich features that can tell a dog from a cat.

This intuition, and the specific DivMBEST+RERANK ap-
proach developed in this paper, are applicable to vision
problems beyond segmentation, and indeed to other do-
mains such as natural language processing. Our current
work includes exploration of such applications.
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