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Abstract
In this paper, we focus on face clustering in videos.

Given the detected faces from real-world videos, we parti-
tion all faces into K disjoint clusters. Different from cluster-
ing on a collection of facial images, the faces from videos
are organized as face tracks and the frame index of each
face is also provided. As a result, many pairwise constraints
between faces can be easily obtained from the temporal
and spatial knowledge of the face tracks. These constraints
can be effectively incorporated into a generative clustering
model based on the Hidden Markov Random Fields (HM-
RFs). Within the HMRF model, the pairwise constraints are
augmented by label-level and constraint-level local smooth-
ness to guide the clustering process. The parameters for
both the unary and the pairwise potential functions are
learned by the simulated field algorithm, and the weights
of constraints can be easily adjusted. We further introduce
an efficient clustering framework specially for face cluster-
ing in videos, considering that faces in adjacent frames of
the same face track are very similar. The framework is ap-
plicable to other clustering algorithms to significantly re-
duce the computational cost. Experiments on two face data
sets from real-world videos demonstrate the significantly
improved performance of our algorithm over state-of-the-
art algorithms.

1. Introduction
We are interested in clustering faces into groups cor-

responding to individuals appearing in real-world videos.

A successful solution of this problem can be applied to

many fields, including automatically determining the cast

of a feature-length film, content based video retrieval, rapid

browsing and organization of video collections, automatic

collection of large-scale face data set, etc. However, this

task is challenging. In real-word videos, lighting con-

ditions, facial expressions and head pose may drastically

change the appearance of faces. Partial occlusions caused
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by objects such as glasses and hair also cause problems.

In addition, the blur caused by motion and low spatial res-

olution are also common. Hence, the uncontrolled imag-

ing condition in real-world videos raise many difficulties

for face clustering.

Related works. Face clustering is a task of grouping

faces by visual similarity. It is closely related to face recog-

nition but has several different aspects. For face recogni-

tion, it is assumed that the number of persons and a training

facial image data set are known beforehand. The data set

consists of certain labeled facial images, which is used for

training a classifier. When testing, each querying facial im-

age can be classified by the trained classifier and the best

matching person ID is returned. Hence, face recognition

can be considered as a supervised classification problem. In

contrast, since no labelled faces are provided, face cluster-

ing is considered as a unsupervised problem.

Although a large body of work has been conducted on

face recognition, face clustering is a rather novel topic

with few publications in the literature. Those works can

be grouped into two categories: purely data-driven meth-

ods and clustering with prior knowledge. Most data-driven

methods are fully unsupervised, and focus on obtaining a

good distance measure or mapping raw data to a new space

for better representing the structure of the inter-personal

dissimilarities from the unlabeled faces[10, 11, 19, 12, 1].

Fitzgibbon and Zisserman [10] proposed an affine invari-

ant distance measure to achieve robustness to face pose

changing. To the best of our knowledge, this work is the

first attempt for face clustering in movies. Then they [11]

extended their work to a Joint Manifold Distance (JMD),

where each subspace represents a set of facial images of the

same person detected in consecutive video frames. Wang et

al. [19] proposed a Manifold-Manifold Distance (MMD),

in which a nonlinear manifold is divided into several lo-

cal linear subspaces. MMD integrates the distances be-

tween pair of subspaces respectively from one of the in-

volved manifolds. Hu et al. [12] introduced a between-set

distance called Sparse Approximated Nearest Point (SANP)
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distance, where the dissimilarity of two sets is measured as

the distance between their nearest points. Arandjelovic and

Cipolla [1] clustered faces over face appearance manifolds

in an anisotropic manifold space which exploits the coher-

ence of dissimilarities between manifolds.

In addition to fully unsupervised methods, another kind

of data-driven clustering methods try to utilize some par-

tial supervision to help clustering. Prince and Elder [18]

combined clustering with a Bayesian approach to count the

number of different people that appear in a collection of

face images. The parameters of a generative model describ-

ing the face manifold are learned from the training data.

This model enables the computation of the posterior prob-

ability over possible clusterings, so that Bayesian model

selection can be applied to compare partitions of varying

sizes. Du and Chellappa [8] presented an on-line context-

aided face association method, which uses a Conditional

Random Fields (CRFs) to combine multiple contextual fea-

tures. Wolf et al. [23] described a set-to-set similarity mea-

sure, the Matched Background Similarity (MBGS), which

can tell the differences between images with similar back-

ground, so that the similarities due to pose, lighting, and

viewing conditions can be ignored.

The aforementioned methods are all purely data-driven,

which only exploit information contained in the data. Their

performance significantly depends on the data quality. Con-

sidering the huge uncertainty in real-world videos, purely

data-driven methods are expected to be unstable. Instead,

prior knowledge could be exploited to guide the clustering

in order to achieve robustness and increase the generaliza-

tion ability of the methods. Berg et al. [4] considered using

extra information to enhance the face clustering, where the

faces are collected from web news pages. A set of names

automatically captured from associated news captions are

employed to supervise the clustering. However, such text-

based labels are not always available for faces in videos.

Fortunately, there is readily useful prior knowledge for face

clustering in videos: The faces in the same face track must

be the same person, no matter how different the appear-

ances of the faces look like; If two face tracks overlaps in

some frames, then faces in these two tracks must be differ-

ent persons, no matter how same they look like. Thus, we

can easily obtain plenty of must-link and cannot-link con-

straints without much extra cost. However, few works have

exploited such constraints. In [21], constraints are exploited

to modify the distance matrix and to guide the clustering to

satisfy such constraints. However, the method is very com-

putationally expensive. As reported in [21], it takes about 6

days on a data set of 10000 faces. The latest work on face

clustering with constraints is presented in [7], called unsu-

pervised logistic discriminative metric learning (ULDML).

A metric is learned such that must-linked faces are close,

while cannot-linked faces are far from each other.

In the literature of constrained clustering, many meth-

ods have been proposed to exploit pairwise constraints to

guide the clustering, such as COP-KMEANS [22], con-

strained EM [20], HMRF-KMeans [2] and PPC [17]. COP-

KMEANS embeds constraints in hard manner, while the

other three adopt the soft constraints. However, the weights

of these soft constraints are totally user-defined. In contrast,

the weights of constraints can be easily adjusted through

learning in our algorithm.

Method overview. In this paper we propose a prob-

abilistic constrained clustering model based on Hidden

Markov Random Fields. Together with the pairwise con-

straints, the local smoothness assumptions are also incorpo-

rated into the model to achieve the robust performance. The

local smoothness is implemented in two levels: the label-

level smoothness means that if two observations xi and xj
are similar, then their labels yi and yj should be similar;

the constraint-level smoothness tells that given a must-link
(cannot-link) between x1 and x2, if x3 is close to x2, then
it is assumed that there is also a must-link (cannot-link) be-
tween x1 and x3 [14][16]. The proposed model is optimized

by the simulated field algorithm [6]. Such that the parame-

ters are learned effectively, and the weights of pairwise con-

straints can be easily adjusted. Note that there are many is-

sues in the whole process of face clustering in videos, such

as face detection, face tracking, face features and determin-

ing the number of persons, etc. However, in this paper we

only focus on showing how and to what extent the pairwise

constraints can help the face clustering in videos. Our task

can be briefly described as follows: given the number of
persons K, the detected faces and their tracks, and features
of each face, we partition all faces into K disjoint clusters.

The main contributions of this work are highlighted in

three aspects. (1) We propose a probabilistic constrained

clustering model based on HMRFs, in which the pairwise

constraints, label-level and constraint-level local smooth-

ness assumptions are incorporated together to guide the

clustering process. (2) The model parameters are effec-

tively learned through the simulated field algorithm, and the

weights of constraints can be easily adjusted. In contrast, in

many existing constrained clusterings [2][17], no practical

suggestions are provided to determine the weights of con-

straints. (3) We present an efficient clustering framework

specially for face clustering in videos, considering that faces

in adjacent frames of the same face track are very similar.

Any clustering algorithm can be directly used in this frame-

work to significantly reduce the computational cost.

The remaining of this paper is structured as follows: In

Section 2, a constrained clustering model based on HMRFs

is introduced; The optimization of the proposed model is

given in Section 3; Section 4 shows the face clustering ex-

periments on two face data sets in videos, followed by the

conclusions in Section 5.
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2. A constrained clustering based on Hidden
Markov Random Fields

2.1. Problem formulation
Given a unlabeled data set X = {x1, x2, . . . , xn|xi ∈

R
d}, our goal is to partition it into K (predefined) dis-

joint clusters. The latent label set is denoted as Y =
{y1, y2, . . . , yn}, yi ∈ {1, 2, . . . ,K}. A pairwise constraint

set C = {Cml,Ccl} is also provided to guide the cluster-

ing, such that the clustering result should satisfy these con-

straints. The must-link constraints Cml = {(xi, xj)} in-

dicates that xi and xj should be in the same cluster. The

cannot-link constraints Ccl = {(xi, xj)} requires that xi
and xj should be partitioned into different clusters. A

n × n symmetric matrix W = {wij} is adopted to rep-

resent all the pairwise constraints: if (xi, xj) ∈ Cml, then

wij = 1; if (xi, xj) ∈ Ccl, then wij = −1; if (xi, xj) /∈ C ,

wij = 0. As we will show later, through constraint propa-

gation, −1 ≤ wij ≤ 1: wij > 0 means must-link, wij < 0
means cannot-link; |wij | denotes the confidence of the con-

straint, i.e., the cost of violating this constraint.

2.2. Hidden Markov Random Fields
Hidden Markov Random Fields [13] is a commonly used

generative model. It is defined based on two assumptions:

(a) given the latent variables Y , the observed variables X
are independent, i.e. P (X|Y ) =

∏n
i=1 p(xi|yi); (b) given

the observed variables X , Y constitute a Markov network.

The correlations between Y are embedded by a neighbour-

hood system. Its general formulation is as follows [13]:

P (X,Y ) = P (X|Y )P (Y )

=
1

Z

n∏

i=1

ψu(xi, yi)
n∏

i=1

∏

j∈Ni

ψp(yi, yj),(1)

where ψu denotes the unary potential function, ψp denotes

the pairwise potential function, and Z is the partition func-

tion, Ni represents the neighbourhood set of xi.

2.2.1 Unary potential function ψu

ψu(xi, yi) embeds the correlation between the observation

xi and its latent label yi. There have been many different

methods to design the unary potential. For simplicity, we

assume it as a Gaussian distribution, as follows:

ψu(xi, yi) = N (xi|μyi
Σyi), (2)

where μyi
is the mean vector of the yith clus-

ter, Σyi
denotes the covariance matrix. Θ =

{(μ1,Σ1), . . . , (μK ,ΣK)} denotes the parameter set of

ψu. Θ should be learned in optimization.

2.2.2 Pairwise potential function ψp

ψp(yi, yj) embeds the correlation between yi and yj . All

correlations in Y can be represented by a neighbourhood

system, denoted as a n × n symmetric matrix V = {vij}.
vij > 0 means the positive correlation, i.e. yi and yj should

be same; vij < 0 means the negative correlation, i.e. yi and

yj should be different; vij = 0 means no correlation. Since

V plays a key role in the pairwise potential, we present a

detailed discussion about how to generate V in the next sec-

tion. Here we firstly show how to utilize a generated V in

pairwise potential, as follows:

ψp(yi, yj) = exp(−βφ(yi, yj)) = exp
(
β[
∑

vij≥0
vij

(−1 + δ(yi, yj)) +
∑

vij<0
vijδ(yi, yj)]

)
, (3)

where φ(yi, yj) is called pairwise energy function, β is a

positive trade-off parameter between unary and pairwise po-

tential, and it will be learned. δ is defined as follows: if

yi = yj , then δ(yi, yj) = 1, else δ(yi, yj) = 0. Equation (3)

has an intuitive interpretation in probability: when vij > 0,

if yi �= yj , then ψp(yi, yj) = exp(−β|vij |) < 1, i.e., the

prior probability of this configuration will decrease; when

vij < 0, if yi = yj , then ψp(yi, yj) = exp(−β|vij |) < 1,

i.e., the prior probability of this configuration will decrease;

when vij = 0, ψp(yi, yj) = 1, i.e., the prior probability of

any configuration of yi and yj is equal. In summary, when a

correlation exists between yi and yj , configurations that vi-

olate the correlation should be penalized in probability. The

penalty degree depends on the confidence of the correlation

, i.e., |vij |.
2.3. The neighbourhood system V

The neighborhood system V takes the key role in the

HMRFs model, since it embeds the correlations between

the latent variables Y . In this paper we present a combined

neighborhood system, including the normalized affinity ma-

trix, the propagated pairwise constraints and a trade-off pa-

rameter.

Normalized affinity matrix. Its formulation is as fol-

lows [15]:

V ls = L = D−
1
2AD−

1
2 , Aij = exp(−d2(xi,xj)/σiσj), (4)

where A is the affinity matrix of a k-nn graph, i.e., if xj
is not within the k-nearest neighbors of xi, then Aij = 0.

Note that Aii = 0. k = 10 in our experiments. L is its

normalized affinity matrix. The degree matrix D is diago-

nal, and Dii =
∑n

j=1Aij . d(xi, xj) denotes the distance

between xi and xj (here the Euclidean distance is used).

σi = d(xi, xh), where xh is the hth nearest neighbor of xi.
Following the suggestion in [15], we set h = 7. V ls embeds

the label-level local smoothness assumption.

Propagated pairwise constraints. In many existing

works [20][2][17], the original pairwise constraint matrix

W are used to represent the correlations between Y . How-

ever, W is often sparse, especially when given a few con-

straints. It fails to provide enough information to guide

the clustering process. To alleviate this limitation, pairwise

constraints can be propagated to gain many soft constraints,

based on the constraint-level local smoothness assumption.

[16] presents a closed-form propagation method, as follows:

V pc = (1− α)2(I − αL)−1W (I − αL)−1, (5)
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where user-defined constant α = γ
1+γ ∈ (0, 1), which can

be seen as the propagation degree: when α→ 0, V pc =W ,

i.e., the propagation degree is small; when α → 1, V pc is

far fromW , i.e., the propagation degree is large. It has been

proven that |V pc
ij | ≤ 1 [16]. It is considered that there is a

soft constraint between xi and xj : W
∗
ij > 0 means a soft

must-link; V pc
ij < 0 means a soft cannot-link. From the in-

terpretation of Equation (3), the propagated constraints to-

tally satisfy the requirement of the neighborhood system.

Combined neighborhood system. Constraint propaga-

tion leads to many more constraints than given constraints.

However, it is found that the magnitudes of most propa-

gated constraints are too small to represent correlations be-

tween samples, especially for the local correlations between

nearby samples. V ls just compensates for this limitation. A

natural choice is to combine V pc and V ls, as follows:

ψp(yi, yj) = exp
{
β ∗ (λ

∑

V ls
ij ≥0

V ls
ij (−1 + δ(yi, yj))+

[
∑

vpc
ij ≥0

vpcij (−1 + δ(yi, yj)) +
∑

vpc
ij <0

vpcij δ(yi, yj)]
)}
. (6)

Equation (6) has an intuitive interpretation: it penalizes the

configuration that violates either propagated constraints (in-

cluding given constraints and constraint-level local smooth-

ness) or label-level local smoothness. As a result, it en-

forces the clustering to satisfy both of these two terms. This

neighborhood system is denoted as V com = (V ls, V pc, λ).
The user-defined constant λ represents the trade-off be-

tween the constraints and label-level local smoothness.

3. Objective function and its optimization
3.1. Objective function

In Section 2, we have presented a generative model based

on HMRFs, with four different neighborhood systems. For

the clustering task, a natural choice is the maximization of

the log complete likelihood function. The objective func-

tion is as follows:

L(Y,Θ, β) = logP (Y,X|Θ, β)

= −1

2

n∑

i=1

K∑

k=1

δ(yi, k)
(
log|Σk|+ (xi − μk)

TΣ−1
k

(xi − μk)
)− β

n∑

i=1

∑

j∈Ni

φ(yi, yj)− logZ, (7)

where the pairwise energy function φ(yi, yj) is defined in

Equations (3) and (6). Since we choose V com as the nigh-

borhood system, the corresponding clustering model is de-

noted as HMRF-com.

3.2. Optimization: simulated field algorithm
Given the neighborhood system, Y is not independent

with each other. As a result, the exact computation of Z,

the learning of β and the inference of Y become intractable.

We have to use some approximate methods to gain a sub-

optimal solution. In this paper, we adopt an approximate

method called simulated field algorithm [6]. Its main idea

is: when treating a particular latent variable yi, ignoring

the fluctuations of its neighbors, through fixing the states

of the neighbors; as a result, the overall computation re-

duces to deal with independent variables. The main proce-

dure is shown in Algorithm 1. Its computational complexity

is O(TKn(r + d2) + n2), where T denotes the number of

iterations in optimization, and r is the maximal number of

neighbors for any sample. Since V com is used as the neigh-

borhood system, r = n− 1. Actually r can be significantly

decreased through making the neighborhood system sparse.

However, we do not make this processing in this paper.

• Given Θ(t−1), β(t−1), P (Y |X,Θ(t−1), β(t−1)), up-
date Y (t)

Firstly, for all latent variables, Y
(t)

are simulated

from P (yi|xi, y(t,i)Ni
,Θ(t−1), β(t−1)), in a sequential form.

y(t,i) = {y(t)1 , . . . , y
(t)
i−1, y

(t−1)
i+1 , y

(t−1)
n }. Note that Y

(t)

are temporal configurations of the labels, in order to ease

the following computations. They should be distinguished

from the predicted labels. Then, for each latent variable, set

its neighbors to Y
(t)

and replace the marginal distribution

P (Y |β(t−1)) by the following formulation:

P (Y |Y (t)
, β(t−1)) =

n∏

i=1

P (yi|y(t)Ni
, β(t−1))

=
n∏

i=1

P (yi, y
(t)
Ni
, β(t−1))

∑K
yi=1 P (yi, y

(t)
Ni
, β(t−1))

,(8)

Algorithm 1 Simulated field algorithm for HMRF-based

clustering

Input: unlabeled data set X , pairwise constraints C, α, λ
Output: predicted labels of Y and parameters Θ and β

Step 1 Use K-means to initialize the labels Y and the pa-

rameters Θ(0); Setting β(0) = 0;

Step 2 Compute the neighborhood system V as described

in Section 2.3;

Step 3 Set t = 1, repeat the following three steps, until con-

vergence:

(3.1) given parameters Θ(t−1), β(t−1) and the posterior

probability P (Y |X,Θ(t−1), β(t−1)), update configurations

Y
(t)

;

(3.2) given configurations Y
(t)

, update the posterior proba-

bility P (Y |X,Θ(t−1), β(t−1)) and parameters Θ(t), β(t).

(3.3) set t = t+ 1;

Step 4 Set Y ∗ = argmaxY P (Y |X,Θ∗, β∗), then output

Y ∗, Θ∗ and β∗.
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where P (yi, y
(t)
Ni
, β(t−1)) = 1

Z exp
( − β(t−1)φ(yi, y

(t)
Ni

)
)
.

Note that the partition function Z is eliminated in

P (yi|y(t)Ni
, β(t−1)). The problem becomes tractable.

• Given Y
(t) , update P (Y |X,Θ(t−1), β(t−1)), Θ(t),

β(t)

In this step, parameters learning and inference are done by

the Expectation Maximization (EM) algorithm. Following

the work in [6], we run a single iteration in this step.

E step: compute the posterior probability and the expecta-

tion of the joint log likelihood function

P (yi|xi, y(t)Ni
,Θ(t−1), β(t−1))

=
ψu(yi, xi,Θ

(t−1))P (yi|y(t)Ni
, β(t−1))

∑K
yi=1 ψu(yi, xi,Θ(t−1))P (yi|y(t)Ni

, β(t−1))
, (9)

Q(Θt, βt|Θt−1, βt−1)

= EY |X,Θt−1,βt−1,y(t)

(
logP (Y,X|Θ, β, Y (t)

)
)
. (10)

M step: update the parameters

Θ(t) = argmax
Θ

n∑

i=1

K∑

yi=1

P (yi|xi, y(t)Ni
,Θ(t−1), β(t−1))

logψu(yi, xi,Θ), (11)

β(t) = argmax
β

n∑

i=1

K∑

yi=1

P (yi|xi, y(t)Ni
,Θ(t−1), β(t−1))

logP (yi|y(t)Ni
, β). (12)

Since ψu(yi, xi,Θ) is Gaussian distribution, the closed-

form solution for Θ is be gained easily. For β, we find

a local optimal value in each iteration through the local

search method [3]. Note that Q(Θt, βt|Θt−1, βt−1) is an

approximation of the expectation of the objective function

L(Y,Θ, β).
4. Face clustering in videos
4.1. Comparison of clustering algorithms

Three state-of-the-art clustering algorithms of different

types are compared in our experiments:

Traditional clustering: K-means [5] is used as baseline to

check whether the prior knowledge can help the clustering.

Constrained clustering: penalized probabilistic clustering

(PPC) [17] embeds pairwise constraints in Gaussian mix-

ture models. Its main limitation is the requirement of a large

number of constraints. Besides, the learning of the mix-

ture coefficient parameter π is solved by grid search in [17],

which is infeasible when the dimension of data is larger than

5. For simplicity, in our experiments we set π = 1
K . Mag-

nitudes of all constraints in PPC are set to 1.

Specific algorithm for face clustering in videos: as men-

tioned in Section 1, the face clustering presented in [21] is

not compared, due to its high computational cost. We com-

pare with ULDML [7], in which positive pairs are generated

based on must-link constraints, while negative pairs based

on cannot-link constraints. Then a Mahalanobis metric is

learned through the logistic regression, such that the dis-

tance between two faces in a positive pair is small, while

the distance between two faces in a negative pair is large.

In order to decrease the computational cost, in our experi-

ments PCA [5] is firstly adopted to project the original face

feature into a 100-dimensional space1, then ULDML is run

on the projected data set. Following the work in [7], we

also use the low-rank constraint on the covariance matrix,

i.e., M = LTL, where L is a 35 × 100 matrix. In [7], the

authors define a distance matrix between face tracks, based

on the learned metric between faces. Then a complete-

link hierarchical clustering method is run on this distance

matrix to predict the label of each face track. This algo-

rithm is denoted as ULDML-cl. Note that the other three

algorithms are all doing clustering on faces, rather than on

face tracks. So we also compare with K-means utilizing the

learned metric, denoted as ULDML-km. Another important

issue in ULDML is the initialization of L. In experiments

it is found that the performance of the random initialization

with L2 normalization is often worse than the performance

of the initialization using PCA. In our experiments the re-

sults using the PCA initialization are reported.

4.2. An efficient clustering framework
The computational complexity of Algorithm 1 is

O(TKn(r+d2)+n2). The number of detected faces from

videos is often up to several thousands or more. Such a size

takes a long time using HMRF-com or PPC. However, it is

found that the faces in adjacent frames of the same track

are very similar. Taking advantage of this characteristic, we

develop an efficient clustering framework. The main idea is

firstly doing clustering on a subset of faces, then determin-

ing the labels of all faces based on the labels of the subset.

Details are presented in Algorithm 2. If most face tracks

are pure, then the clustering accuracy of this framework

would not become worse than the accuracy of clustering

on the whole data set directly. The following experiments

will demonstrate this point. In our experiments, PPC and

HMRF-com (Algorithm 1) are adopted in Stage 2 of Algo-

rithm 2 respectively. In order to check the effect on cluster-

ing accuracy of Algorithm 2, we run K-means in two ways:

(a) run K-means directly on the whole data set (projected

to the same dimension with the subset using PCA), denoted

as Kmeans-1; (b) adopt K-means in Stage 2 of Algorithm 2,

denoted as Kmeans-2. Since ULDML is originally designed

to do clustering on face tracks, it is run on the whole data

set. The computational complexity of using HMRF-com in

this framework is O(TKns(r+ d2)+n2
s +n), where ns is

the size of the subset, and here r = ns − 1. Since ns

n < 0.1

1In our experiments, since the summation of 100 largest eigenvalues

takes about 90% of the summation of all eigenvalues, this projection will

not lose much information of the original data set.
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data set person face dimension track overlapped track must-link cannot-link

BF0502-whole [9] 6 17737 1937 229 20 954005 116762

BF0502-subset 6 687 10 229 20 687 180

Notting-Hill-whole [24] 5 4660 18000 76 6 210293 11759

Notting-Hill-subset 5 456 5 76 6 1140 216

Table 1. Two face data sets from different real-world videos.

(a) (b) (c)
Figure 1. Detected faces from Notting-Hill [24]: (a) faces in the same track are must-linked; (b) two faces in the same frame are cannot-

linked; (c) faces from two overlapped tracks are cannot-linked.

Algorithm 2 An efficient clustering framework for face

clustering in videos

Input: the whole face data set X , the whole set of pairwise

constraints C
Output: the predicted labels of each faces Y

Stage 1 Construct a subset Xs by uniformly sampling a

fixed number (user defined) of faces from each face track,

and determine the corresponding subset of pairwise con-

straints Cs;

Stage 2 Adopt a clustering algorithm on Xs with Cs, and

predict their labels Y s;

Stage 3 Determine the labels of all faces Y based on Y s.

Specifically, for all faces in one face track, their labels are

determined as the mode value among the labels in Y s of this

track. For example, 5 faces are sampled from a track, and

their labels are predicted as (3,1,2,3,3) in Stage 2. Then the

labels of all faces in this track are determined as 3.

often holds in practice, the complexity is significantly re-

duced compared with Algorithm 1.

4.3. Two face data sets in videos
We evaluate the clustering algorithms on two publicly

available face data sets: BF0502 [9] and Notting-Hill [24].

BF0502 is derived from the TV series “ Buffy the Vampire

Slayer”. The detected faces of 6 main casts are used, in-

cluding 17337 faces in 229 tracks. 3 faces are uniformly

sampled from each track, then a subset of 687 faces is

gained. Each face is represented as a 1937 dimensional

vector. Notting-Hill is detected from the movie “ Notting

Hill”. Faces of 5 main casts are used, including 4660 faces

in 76 tracks. The original data set does not provide the fea-

ture of each face. For simplicity, we represent each face

by the pixel intensities of RGB channels, a 18000 dimen-

sional vector. 6 samples are uniformly sampled from each

track, then a subset of 456 faces is gained. In order to avoid

overfitting and reduce the computational cost, on both sub-

sets we use PCA to project the original feature space to a

lower dimensional space. The number of projected dimen-

sion is user-defined, and we suggest it is equal to or slightly

larger than the number of clusters. The pairwise constraints

are derived from three sources: (a) the faces in the same

face track should be must-linked; (b) two faces in the same

frame should be cannot-linked; (c) if two face tracks are

overlapped, i.e., two faces from them appear in the same

frame, then faces in one track should be cannot-linked with

faces in the other track. The transitivity of must-links are

utilized here. A simple example is shown in Figure 1. De-

tails of both data sets are summarized in Table 1.

4.4. Clustering results
Clustering evaluation. For simplicity, we compute the

accuracy based on the confusion matrix, which is derived

from the match between the predicted labels of all faces and

the ground-truth labels.

Parameter setting. For two user-defined constants,

α is chosen from {0.05, 0.1, . . . , 0.95}, and λ ∈
{100, 10−1, . . . , 10−6}. As mentioned in Section 3.2,

Equation (10) is an approximation of the expectation of the

objection function. Its final value after optimization can be

utilized to determine α and λ. More specifically, α and λ
that lead to larger value of Equation (10) are preferred. An-

other issue is setting the search space of β. To shrink this

search space, we amplify the absolute value of each con-

straint, i.e., v
(ls)
ij × 100 and v

(pc)
ij × 100. Then the search

space of β is set to {0.1 : 0.1 : 1.5}. Note that the cost of

constraint violation depends on α, λ, β together. Since α,

λ are easily determined and β is automatically learned, the

weights of constraints can be easily adjusted.

We test all algorithms in three cases: with cannot-links,

with must-links and with all-links. Such a setting provides a

clear view of different effects of different constraints. Each

algorithm is repeated 30 times in each case. The averaged
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accuracy and standard deviation are computed as the output.

Clustering accuracy. The results on BF0502 are shown

in Table 2. HMRF-com outperforms all others in both

must-links and all-links: about 4-18.7% increases in must-

links, and about 1-11% increases in all-links. In cannot-

links, HMRF-com is slightly lower than PPC. The results

on Notting-Hill are shown in Table 3. The accuracies of

HMRF-com are higher than all others (except ULDML-cl)

in all cases: about 3.5-7.8% increases in cannot-links, about

2-12% increases in must-links and about 5.5-15% increases

in all-links. ULDML-cl gives degenerate results in all cases.

Kmeans-2 are higher than the accuracies of Kmeans-1 on

both data sets. This demonstrates that Algorithm 2 can

maintain or even gives higher accuracy compared with run-

ning clustering on the whole data set directly. Note that

accuracies on the subset are not shown in Table 2 and 3. De-

note the accuracy on subset as HMRF-com-sub, and on the

whole data as HMRF-com-whole. On BF-0502, HMRF-

com-sub is about 4% lower than HMRF-com-whole, while

about 7% on Notting-Hill. The gap mainly depends on sam-

pling and data. Similar gaps occur in other methods.

A clustering example of HMRF-com on Notting-Hill is

shown in Figure 2. The purities of 5 clusters (top-down) are

90.66%, 70.72%, 100%, 93.95% and 43.47% respectively.

The first and third cluster take over 50% of the whole data

set, while the last cluster takes less than 10%, so that the

clustering accuracy is up to 85.26%. As shown in Fig-

ure 2, the faces have different resolutions, different head

poses, different facial expressions and partial occlusions in

Notting-Hill. Obviously 85.26% is an encouraging cluster-

ing result on such a data set. Since face images are not pro-

vided in [9], the clustering result on BF0502 are not shown.

Figure 2. A clustering result of HMRF-com on Notting-Hill-

whole, including 5 clusters shown in 5 rows respectively. 11 faces

are randomly chosen from each cluster. The incorrect faces are

highlighted by the red rectangle, and their numbers are approxi-

mately equal to their proportions in each cluster.

Robustness. Since all above clustering methods give

local optimal results, the robustness is an important mea-

sure of their performances. The robustness can be reflected

from the standard deviation, i.e., a small standard deviation

means good robustness. As shown in Table 2 and 3, PPC has

smaller standard deviations than Kmeans-s in most cases. It

tells that pairwise constraints can alleviate the uncertainty in

faces. HMRF-com has much lower standard deviations than

PPC and Kmeans-s in all cases. It benefits from the com-

bination of pairwise constraints and local smoothness. Al-

though given a fixed initialization by PCA, ULDML-km on

Notting-Hill still has a large standard deviation. Its standard

deviations on BF0502 are small, but its accuracies are low.

Since complete-link hierarchical clustering gives a fixed re-

sult, standard deviations of ULDML-cl on both data sets

are 0. However, its performance varies dramatically on dif-

ferent data sets: On BF0502, it gives a much better result

than K-means, while a degenerate result on Notting-Hill.

We consider that the instability of ULDML is mainly due to

the isolation between metric learning and clustering. Metric

learning pursues the constraint satisfaction, while clustering

wants to satisfy the cluster assumption. Their goals are dif-

ferent and there are no direct relations in theory. Although

a well learned metric is expected to help clustering, there is

no guarantee. In contrast, we perform constraint satisfac-

tion and clustering simultaneously, in a unified model.

Computational complexity. The computational com-

plexity of HMRF-com in Algorithm 2 isO(TKns(r+d
2)+

n2
s + n). The complexity of metric learning in ULDML is

O(Tn(n + d) × 35). Specifically, on BF0502, the aver-

age time of HMRF-com is about 119.26s, while ULDML

takes 410.56s. On Notting-Hill, HMRF-com takes 19.58s,

while ULDML takes 84.24s. The time of PPC is about half

of HMRF-com. Computations of distance matrix between

samples and dimensionality reduction by PCA are not in-

cluded, because they are shared in above methods.

All above comparisons demonstrate the superior perfor-

mance of our algorithm to state-of-the-art algorithms. Note

that we have studied the influences of different parts in

HMRF-com, including affinity matrix, constraint propaga-

tion, combination, constraint weights and sampling. We

find constraint propagation and constraint weights make the

key contributions to the performance. Other parts bring ad-

ditional benefits. Due to the page limitation, the details are

not presented in this paper.

Methods Cannot-link Must-link All-link

Kmeans-1 39.31±4.51 39.31±4.51 39.31±4.51

Kmeans-2 42.05±5.45 42.05±5.45 42.05±5.45

PPC 46.07±5.52 43.64±4.61 42.54±3.98

ULDML-km 44.08±2.8 29.05±2.84 41.62±0

ULDML-cl 42.72±0 39.01±0 49.29±0

HMRF-com 45.96±1.46 47.77±3.31 50.30±2.73
Table 2. Clustering accuracies on BF0502-whole.

Methods Cannot-link Must-link All-link

Kmeans-1 69.16±3.22 69.16±3.22 69.16±3.22

Kmeans-2 73.43±8.12 73.43±8.12 73.43±8.12

PPC 70.26±8.98 79.71±2.14 78.88±5.15

ULDML-km 69.64±9.43 72.66±12.78 73.18±8.66

ULDML-cl 38.76±0 51.72±0 36.87±0

HMRF-com 76.94±3.58 81.33±0.43 84.39±1.47
Table 3. Clustering accuracies on Notting-Hill-whole.
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5. Conclusions
This paper has showed how to utilize the readily

available pairwise constraints to help face clustering in

videos. Together with pairwise constraints, label-level and

constraint-level local smoothness assumptions are also in-

corporated into the neighborhood system of the Hidden

Markov Random Fields. It provides enough constraints

on the labels to guide the clustering, such that it shows a

promising and robust performance. Model parameters are

learned through simulated field algorithm, and the weights

of constraints can be easily adjusted. An efficient clustering

framework is also specifically developed for face cluster-

ing in videos, considering that faces in adjacent frames of

the same face track are very similar. It not only reduces

the computational cost significantly, but also maintains the

clustering accuracy. This framework demonstrates the fea-

sibility of our algorithm to scale to larger face data sets from

videos, which will be one of our future work. Experiments

on two face data sets from real-world videos have demon-

strated the outstanding performance of our algorithm.
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