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Abstract

With the increasing availability of high dimensional
data and demand in sophisticated data analysis algorithms,
manifold learning becomes a critical technique to per-
form dimensionality reduction, unraveling the intrinsic data
structure. The real-world data however often come with
noises and outliers; seldom, all the data live in a single
linear subspace. Inspired by the recent advances in sparse
subspace learning and diffusion-based approaches, we pro-
pose a new manifold denoising algorithm in which data
neighborhoods are adaptively inferred via sparse subspace
reconstruction; we then derive a new formulation to per-
form denoising to the original data. Experiments carried
out on both toy and real applications demonstrate the effec-
tiveness of our method; it is insensitive to parameter tuning
and we show significant improvement over the competing
algorithms.

1. Introduction
In computer vision and machine learning, input data are

often given as a set of high dimensional data points. A com-

mon technique to deal with data of large dimension is prin-

cipal component analysis (PCA). For simple data such as

well-aligned faces, PCA techniques are shown to be well

applicable; for data of high complexity, a single linear sub-

space then may not be sufficient to capture the intrinsic data

structure. In this case, mixture models (i.e. mixture of PCA

[22]) and product of linear subspaces (generalized principal

component analysis [24]) are proposed.

In more general cases of manifold learning, nonlinearal-

ity is often assumed to preserve the lower dimension em-

bedding [18, 21, 16, 3]. Both the ISOMAP [21] and LLE

[16] make an assumption of local Euclidean space and try

to preserve similar neighborhood structures in the embed-

ded spaces. The spectral manifold learning approaches [3]

compute the Eigen-maps for the graph Laplacian to directly

perform non-linear dimensionality reduction. From a differ-

ent angle, diffusion maps [8] defines diffusion distances be-

tween data samples; an input similarity measurement is im-

proved through a diffusion process. Diffusion-based meth-

ods [8, 14] essentially perform denoising on the similarity

metric on which spectral manifold learning methods can be

applied. The idea is to explicitly construct a new embedding

space with a corresponding metric which is more faithful

to the manifold structure and hence induces a better dis-

tance/similarity measure. These diffusion-based algorithms

[8, 14] have been successfully applied to clustering. The

same idea can be extended to the semi-supervised learning,

where a limited portion of data labels are given [30].

All the manifold learning methods above depend on the

construction of a good neighborhood graph, either explic-

itly [21, 16] or implicitly [3, 8, 25, 26]. When there are a

considerable amount of noises, the neighborhood assump-

tion starts to break down, leading to unsatisfactory results

for metric learning, clustering, and classification.

Essentially, the neighborhood or k-nearest neighborhood

definition forms a sparse sample assumption. Recent sem-

inal work in compressive sensing [4] demonstrates the sig-

nificance of having the sparse assumption in reconstruction,

if the data is indeed sparse. The idea of local sparse data

reconstruction [27] has achieved some significant improve-

ment in codebook-based image classification task. More-

over, as discussed before, data manifolds are often com-

posed of multiple subspaces. The sparse subspace cluster-

ing algorithm (SSC) [9] provides a tractable way of learn-

ing subspaces with the in-class sparse self-reconstruction

assumption. Here, inspired by sparse subspace learning and

diffusion-based approaches, we propose a new manifold de-

noising algorithm in which data neighborhoods are adap-

tively inferred via sparse subspace reconstruction; we then
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derive a new formulation to perform denoising to the origi-

nal data. In the experiments, we show significant improve-

ments over the existing manifold denoising algorithms. Al-

though we use the assumption in the SSC, our approach dif-

fers to SSC in the objective, formulation, algorithm design,

and the application. Next, we review related work in mani-

fold denoising and then give the detailed formulation of our

algorithm.

2. Related Work
Although manifold learning is an important topic in ma-

chine learning, manifold denoising has received relatively

less attention. Unlike the traditional manifold learning and

dimension reduction algorithms, the goal of a denoising al-

gorithm is to obtain a cleaner output in the same dimension-

ality as the input data. The outputs of a denoising algorithm

can be further used to facilitate tasks such as feature selec-

tion, clustering, and classification. The simplest denoising

technique is PCA which adopts a strategy of projection and

backward mapping. This two-phase method is often prone

to errors and sensitive to noises.

Some more sophisticated methods proposed recently fall

into two categories: manifold-based averaging [5, 28, 20,

23] and Laplacian-based spectral analysis [13, 11]. The first

line of research focuses on different designs of smooth ker-

nels which are used to average the local manifolds. The idea

behind them is that noises in the samples follows a normal

distribution and averaging local manifolds can reduce the

noise degree. These methods benefit from small computa-

tional burden and good effectiveness when dealing with the

standard noises. However, in high dimensional data spaces,

the assumption of standard noise often fails; in addition,

averaging tends to over-smooth the data samples. Further-

more, it is essential to choose the right parameters in kernel

construction for these methods. The second category makes

use of the Laplacian structures to smooth the data samples.

These methods obtain denoised outputs by reversing a dif-

fusion process of which graph Laplacian is the generator.

However, the problem associated with them is that graph

Laplacian only captures global gradient distribution of the

manifolds and it fails to reduce the local noise inherited

in sub-manifolds which are important to pattern discovery

such as clustering and classification. Lastly, both categories

face the same challenge to choose the number of neighbors

when either inferring the local manifolds or choosing local

reliable clusters.

In this paper, we try to overcame these problems us-

ing two strategies: 1) We use a recent subspace learn-

ing algorithm to capture the subspace structures which in-

dicate a good potential clusters and also a reliable simi-

larity measure. 2) We design a local sparse regulariza-

tion term which shares several common algebraic properties

with graph Laplacian but with the difference in emphasizing

the local subspace distributions. These two strategies offer

us the advantages to be less sensitive to the of scale of local

neighbors and free of the problem of over-smoothing.

3. Method

3.1. Notations

We assume a given set of n data samples/points, denoted

as S = {x1, x2, . . . , xn} where each xi ∈ R
m and m indi-

cates the input data dimension. We then denote them with

a matrix representation as X = [x1, x2, . . . , xn] ∈ R
m×n.

The objective of manifold denoising in this paper is there-

fore to compute a new denoised data matrix X̃ ∈ R
m×n

to facilitate clustering and classification in further applica-

tions. We assume the existence of C subspaces. Each data

sample xi here is associated with a label indicator vector

yi ∈ {0, 1}C such that yi(k) = 1 if xi belongs to the k-th

subspace, and otherwise yi(k) = 0. So a Partition Matrix
Y = [yT

1 ;y
T
2 ; . . . ;y

T
n ]

T ∈ {0, 1}n×C is used to represent

a clustering scheme. A similarity graph is then represented

as G = (V, E). The vertices V correspond to the data sam-

ples {x1, x2, . . . , xn}, and the edges E are weights denoted

by an n × n similarity matrix W with Wij indicating the

similarity between xi and xj . Ni represents a set of xi’s

neighbors in graph G, excluding xi and Ki = |Ni|.

3.2. Background: Sparse Subspace Clustering

Sparse subspace clustering(SSC) [9] builds clustering on

sparse learning with applications demonstrated in motion

segmentation [9]. The motivation of SSC is simple in that

each data sample xi can be expressed as a linear combina-

tion of all the data within the cluster, xi =
∑

j �=i aijxj with

implicit enforcement of sparsity. That is to learn a sparse

coefficient matrix A ∈ R
n×n such that aij = 1 if xi and xj

belong to a same subspace. Formally, SSC solves a follow-

ing convex optimization problem:

min
A
‖XA−X‖2F + β‖A‖1

s.t. diag(A) = 0, (1)

where ‖ · ‖F is the Frobenius norm and diag(A) is the diag-

onal vector of matrix A.

The sparse matrix A has two important usages: 1) For

each datum xi, its neighbors Ni can be easily inferred by

the nonzero elements in the i-th column of A. Therefore,

we don’t need to specify the number of nearest neighbors

for each datum as most of other methods do. In addi-

tion, we can theoretically guarantee that all chosen neigh-

bors of xi belong to the same subspace with xi. 2) A

natural similarity graph can be constructed in a easy way:

W = |A| + |A|T + I , where I , the identity matrix, is used

to enhance self-similarity.
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3.3. Sparse Subspace Denoising

3.3.1 Motivations

A straightforward idea behind a good denoising algorithm

is that, for each subspace, the new denoised data still re-

serves the intrinsic allocation of subspaces and also can

be easily reconstructed by simple PCA algorithm. Hence,

we proposed an optimization framework that aims to mini-

mize both subspace coherence error and reconstruction er-

ror. Take Fig.(1) as an illustrative examples. Initially we

have 3 overlapping subspaces, and some noisy points are

located at the overlapping part of subspaces(see the left part

of Fig.(1)). An good denoised output should satisfy two

metrics: 1) Points belonging to the same subspaces should

be still in the same subspaces; 2) They are close to what

they were. The first metric can be achieved by minimizing

the subspace coherence error while the second is satisfied

by minimizing the reconstruction error. The right side of

Fig.(1) is the output of our algorithm. We can see that, those

noisy points are moved towards the center of the subspace

they belong to and at the same time, we reserve the positions

of most of the points.

Figure 1. Illustrative examples for Sparse Subspace Denois-

ing(SSD). Best seen in larger resolution.

3.3.2 Subspace Coherence Error

Instead of using partition matrix Y directly, we adopted a

Scaled Partition Matrix, G, such that

G = Y(YTY)−
1
2 = [g1,g2, . . . ,gC ],

where gk = [g1k, . . . , gnk]
T (1 ≤ k ≤ C) is the k-th col-

umn of G. gik = Yik/
√
nk, where nk is the size of the

k-th subspace, can be regarded as the confidence that xi is

assigned to the k-th subspace. It is easy to verify that

GTG = (YTY)−
1
2YTY(YTY)−

1
2 = I,

where I is the identity matrix.

The principle of local denoising is that the subspace as-

signments in the neighborhood of each patient should be as

smooth as possible. Specifically, it assumes that the clus-

ter indicator value at xi should be well inferred by the local

neighbors Ni. So given a similarity graph G = (V, E), we

extract a subgraph Gi = (Vi, Ei) such that Vi = Ni ∪ xi

and Ei = E(Vi). The similarity matrix associated with the

subgraph Gi is W i = W (Ei). Using the label diffusion al-

gorithm [29], we can reconstruct a virtual label indicator

vector pk such that

pk = (1− α)(I − αLi)
−1gk

(Vi)
, 1 ≤ k ≤ C, (2)

where α is a constant (0 < α < 1) and gk
(Vi)

is the scaled

subspace indicator vector on the subgraph Vi. Li represents

the normalized transition matrix for the subgraph W i, i.e.,

Li(u, v) =
W i(u,v)

∑K+1
l=1 W i(u,l)

. Note that we do not actually per-

form any diffusion, since our setting is completely unsuper-

vised, rather we use pk as another way to get to an estimate

of gik. The pk is a vector of Ki + 1 and ĝik = pk(Ki + 1)
is the estimated cluster assignment indicator for gik. We

should have ĝik ≈ gik. Denote βi ∈ R
K+1 as the last row

of the matrix (1− α)(I − αLi)
−1, then we have

ĝik = βig
k
(Vi)

; (3)

Hence

ĝik ≈
βi(1 : Ki)g

k
(Ni)

1− βi(Ki + 1)
; (4)

where βi(1 : Ki) represents the first Ki elements of βi and

βi(Ki + 1) is the (K + 1)-th element in βi.

Therefore, we can construct a matrix B such that

Bij =

{
βi(l)

1−βi(Ki+1) if xj is the l-th element in Ni

0 otherwise
(5)

This sparse matrix B represents a linear relationship that

ĝk ≈ Bgk, (k = 1, . . . , C). To infer the subspace indica-

tors, one objective is to minimize the difference between ĝk

and gk:

n∑
i=1

C∑
k=1

(ĝik − gik)
2 =

C∑
k=1

‖ĝk − gk‖2

≈
C∑

k=1

‖gk −Bgk‖2

= Trace(GT (I −B)T (I −B)G) (6)

Denote Z = (I − B)T (I − B), then our subspace as-

signment results can be obtained by solving the following

optimization problems:

min
G∈Rn×C

Trace(GTZG)

s.t. GTG = I. (7)

This problem (7) can be solved by performing eigen-

decomposition of matrix Z [1]. That is, the optimal contin-

uous solution for (7) is the first C eigenvectors of the matrix

Z corresponding to the first C smallest eigenvalues.
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The idea behind the denoising principle is that the de-

noised features should be coherent to the subspace assign-

ments. So for each new feature f , we define the coherence

error CE as follows:

CE(f) =

n∑
j=1

(fj −
∑
l∈Nj

Bjlfl)
2 = ‖f −Bf‖2 = fTZf (8)

From (8), we can see that the coherence error (CE) evalu-

ates two aspects : 1) The extent of match between the fea-

ture and the local structure of the image manifold; 2)The

fitness between the feature and the subspace assignments.

The smaller CE is, the more relevant to the subspace struc-

tures the feature is.

To understand the later property further, we expand it in

a deeper way(given any feature vector f in the output data

X̃):

CE(f)

‖f‖2 = 1− fT (I − Z)f

fT f
= 1− fT [

∑n
i=1(1− λi)gig

T
i )]f

‖f‖2

= 1−
n∑

i=1

(1− λi) cos
2(Θ<gi,f>)

≈ 1−
C∑
i=1

(1− λi) cos
2(Θ<gi,f>) (9)

where λi is the eigenvalues of the matrix Z and Θ<gi,f>

is angle between the feature f and the eigenvector gi. Recall

that the optimal solution of the Scaled Partition Matrix is the

first C normalized eigenvectors corresponding to the first

C smallest eigenvalues. Therefore the smaller the CE, the

larger the fitness between f and the Scaled Partition Matrix

G.

Therefore, one objective can be defined as the coherence

error for the whole denoised data X̃ ∈ R
n×m as follows:

LCE =

m∑
j=1

CE(X̃j)

=
m∑
j=1

‖X̃j −BX̃j‖2 = Trace(ZX̃T X̃) (10)

3.3.3 Subspace Reconstruction Error

Another direction of denosing is to make sure the new

data points are not far away from the initial data manifolds

which are inferred by traditional data reconstruction tech-

nique PCA. We look at each data point xi and its neighbors

Ni, and assume them to be random samples from a linear

subspace, approximating a local manifold around xi (To

be exact, it can be guaranteed that neighbours inferred by

sparse subspace clustering(1) share the same subspace [9]).

Let Xi denotes the points in xi

⋃Ni, we can approximate

it with PCA:

Ri = UiU
T
i Xi(I − llT /(1 + ki)) +Xill

T /(1 + ki) (11)

where Ui ∈ R
m×di denote the di principal components

from PCA and ki = |Ni|. The number of the principal

component di can be estimated adaptively. We estimate di
by setting the variance of the chosen di principal compo-

nents account for at least 90% the whole variance.

So for the preferred denoised data X̃ , we seek to mini-

mize the sum of discrepancies to all neighbors. Specifically,

we minimize the following reconstruction error term:

LRE =
n∑

i=1

∑
j∈Ni

‖x̃i −Ri(j)‖ (12)

where Ri(j) stands for the local reconstructed data for the

j-th neighbor for xi in (11). This loss function can be ex-

pressed in a more compact way with data selection matrices.

Let S = [S1, S2, . . . , Sn] be a 1 × n block matrix where

each block Si ∈ R
n×(1+ki) corresponds to the neighbor-

hood indicator matrix. That is, Si is a binary matrix and its

element sjk = 1 if and only if xj is the k-th neighbor of xi.

Therefore we can express the reconstruction error in matrix

form:

LRE = ‖X̃S −R‖F (13)

where R = [R1, R2, . . . , Rn] and ‖ . . . ‖F denotes Frobe-

nious norm.
Hence the overall error can be expressed as a combina-

tion of subspace coherence error and subspace reconstruc-
tion error:

L(λ) = LCE + λLRE = Trace(Z ˜XT
˜X) + λ‖ ˜XS −R‖F (14)

Empirically, the coefficient λ ≥ 0 is chosen with validation

sets.

Fortunately, we have a closed-form of the optimal solu-

tion of (14):

X̃∗(λ) = RST (SST +
1

λ
Z)−1 (15)

Note that our algorithm depends on the neighborhood

graphs, so our algorithm is potential to be generalized into

an iterative way. After computing the denoised output

X̃∗(λ) in (15), the sparse subspace matrix can be refined.

A summary of the proposed algorithm is presented in Algo-

rithm.(1).

3.4. Analysis

In this section, we provide some preliminary analysis

of our method and its relationship with some existing de-

noising algorithms. First, we consider two extreme cases:

1) if λ = 0, our algorithm degenerates to over-smooth

case in which the solution X̃ becomes trivially constant;

2) if λ = ∞, our algorithm takes the form of X̃∗(∞) =
RST (SST )−1. An easy calculation shows that this is the

average of all local neighbors. This is very similar with [6]

in which mean-shift deblurring technique is used.
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Algorithm 1: Summary of Sparse Subspace Denoising

(SSD)

Input: Noisy data X , λ
Output: Clean data X̃

Step1: Construct Sparse Coefficient matrix A by eqn.

(1);

Step2: Compute subspace coherence error by

constructing Z from eqn. (5);

Step3: Compute reconstruct error with R and S given A;

Step4: Obtain the results by eqn. (15);

Step5: (optional) Iterate from Step1 using the results

from Step4 in replace of X .

Another line of denoising algorithms tends to use

Laplacian-Bertrami operator on smooth manifolds [13, 11].

Iterative Laplacian regularization is used to approximate the

global gradient of the data manifolds. They often use Nor-

malized Laplacian L+ = I −D−
1
2WD−

1
2 where D is the

degree matrix of the similarity matrix W . The key differ-

ence from ours is that, Laplacian regularization only consid-

ers the global structure while our algorithm focus on local

subspace structure. As pointed by [11], pure Laplacian de-

noising tends to be over smooth and local structure is more

helpful to reduce the effect of noise for applications such as

clustering and classification afterwards.

4. Experiements
4.1. Toy Data

In this section, we test our algorithm on two toy datasets.

The first one consists of two moon-like clusters, and the

second one contains two concentric circles. We add random

noise ε ∼ N (0, σ), where σ is the standard deviation. Each

dataset consists of 1000 data points for two classes.

First, we set σ = 1.5 and run our algorithm iteratively for

three rounds. We show the denoised results on Fig.(2). We

can see that, our SSD can successfully remove the added

noise and therefore facilitate the applications afterwards.

We also test the sensitivity of SSD with respect to the pa-

rameter setting of λ. we vary λ from 0.1 to 20, and calculate

the classification error(here we use Local and Global Con-

sistency (LGC) [29] as the basic classifier). Note that, we

use 10 randomly chosen labeled points and the rest as test.

For each λ, we report the average value of errors from 10

independent runs. The result is shown in Fig.(3)(A). It is ob-

served that, our results are not sensitive to the parameters,

although large values of λ tend to perform a little worse.

Hence, in all our experiments, we set λ = 2.

In addition, we vary the scales of noise (i.e., σ) and test

the classification performance(see Fig.(3)(B-C)). We can

see that, when noise is small, one round of SSD is enough to

clean the data, while iterative SSD can obtain cleaner data

with large noise. Therefore, in all our experiments later, we

run SSD for three rounds iteratively.

4.2. Real Data

In this section, we use our method as a pre-processing

tool to three common applications: clustering, semi-

supervised learning(SSL) and supervised classification.

And we compare our method to a few existing manifold

denoising algorithms : 1) Generalized Blurring Mean Shift

(GBMS) [5]; 2) Manifold Blurring Mean Shift (MBMS)

[28]; 3) Manifold Denoising (MD) [13]; 4) Locally Linear

Denoising (LLD) [11]. We used the codes of GBMS and

MBMS provided by the authors1. Also, the code of MD

is also provided by the author2. And we implemented the

codes of LLD and set the parameters as suggested in [11].

For the proposed method, we set λ = 2 in (15), and β = 1
in (1) for all the experiments.

4.2.1 Clustering

In this section, we evaluate the proposed methods on three

well-known face datasets: ORL [17], Yale [2], YaleB [10].

The ORL database consists of samples from 40 individu-

als, each of which owns 10 different images. These im-

ages were taken with a tolerance for tilting and rotation up

to 20◦. The facial expressions are various: open or closed

eyes, smiling or non-smiling and even occlusion of glasses.

All images are grayscale and normalized to a resolution of

112× 92 pixels. This dataset is mainly designed to test the

performance under scale and rotation variations. The Yale

database contains images from 15 subjects with 11 different

samples for each individual. The images differ from light-

ing conditions (left-light, center-light, right-light), facial ex-

pressions (happy, sad, surprised, and so on), and occlusion

(with/without glasses). We use the cropped images of size

32×32. This database is used to test the performance under

expression and illumination variations. The extended YaleB

dataset is a much more complicated one than Yale. It con-

sists of 38 subjects each of which has around 64 different

images.

Firstly, we perform clustering on three benchmark face

recognition datasets (ORL, Yale, Yale B). We use Normal-

ized Mutual Information (NMI) [19] to evaluate the perfor-

mance of clustering results. Higher NMI indicates better

concordance with the ground-truth labeling. We report the

comparison in Tab(1). We can see that, our algorithm out-

performs other algorithms consistently. Note that, GBMS

and MBMS sometimes even worsen the initial features due

to the tendency of over-smooth. Our method does not have

this problem.

1https://eng.ucmerced.edu/people/wwang5
2http://people.kyb.tuebingen.mpg.de/mmaier/ManifoldDenoising.html
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Figure 2. Denoised outputs by SSD for three rounds
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Figure 3. Classification Results. (A) shows the classification errors versus different values of λ, (B)-(C) shows classification error versus

different scales of noises on the datasets of two moons and two circles, respectively.

Baseline GBMS MBMS MD LLD SSD

ORL 0.767 0.769 0.793 0.803 0.811 0.901
Yale 0.129 0.137 0.127 0.134 0.146 0.207

Yale B 0.466 0.453 0.492 0.502 0.483 0.533
Table 1. Comparison on Face Clustering.

We also show some illustrative of the denoised images

from YaleB in Fig.(4). It is noticeable that SSD is capable

to adjust the face orientations and illuminations to make the

face image clearer and discriminative.

Figure 4. Examples of denoised images. The upper panel is the

initial faces while the lower panel is the denoised output. It is

observed that SSD can change the luminance to make the faces

easier to identify, e.g., SSD slightly lightened the 4th face and also

reduced the pixelation effect around the eyes.

4.2.2 Semi-supervised Learning

We test our method on the benchmarks of Chapelle’s book3.

An extensive review of the performance of existing algo-

rithms are available in [7]. All the databases have 12 splits

each of which has 10 labeled and 1400 unlabeled instances.

We use Local and Global Consistency (LGC) [29] as a ba-

sic semi-supervised learning algorithm. The comparison re-

sults are shown in Tab.(2).

We can see that, SSD can improve the baselines by re-

ducing the noise in the local structure. Note that, we don’t

make use of the label information. Instead, our algorithm

can infer the cluster distribution since we aim to minimize

the subspace coherence error. Again, we observe that, the

other existing methods suffer from the possibility of over

smooth thus diminishing the results. However, our method

reserves the basic topology of the subspace distribution due

to the objective of minimizing the reconstruction error.

3The data sets are available at http://www.kyb.tuebingen.mpg.de/ssl-

book/benchmarks.html

471471473



Table 2. A quantitative comparison on the benchmark datasets. Each split has 10 labeled data.

Methods/Dataset digit1 USPS BCI g241c COIL gc241n text

LGC 15.20 18.51 50.01 48.27 66.23 48.28 42.52

LGC+GBMS 15.34 19.77 50.39 45.24 66.01 44.39 40.13

LGC+MBMS 14.28 19.67 50.46 44.29 65.24 44.77 37.45

LGC+MD 13.06 20.58 49.82 38.98 66.59 40.93 34.58

LGC+LLS 14.02 18.68 49.97 42.56 65.68 43.11 35.67

LGC+SSD 11.02 15.33 43.14 40.76 59.97 40.79 31.96

4.2.3 Classification

In this section, we test the utilities of the proposed method

as a pre-processing tool for classification. We selected three

different datasets: Alphadigits4, COIL100 [15], and Caltech

256 [12]. Alphadigits is a popular dataset which consists

images of ten handwritten digits (0 to 9) and 26 capital let-

ters of the alphabet (A to Z) , with 28×16 pixels. COIL100

is a famous color 3D shape dataset which consists of 100
objects (72 images per object). We used the cropped im-

ages of size 32×32. The last dataset, Caltech256, is a well-

known natural image database. We selected 41 classes(such

as dog, hamburger, motorbikes, and so on) each of which

contains various number of objects. And we download well-

established SIFT feature 5.

The experimental setting is as follows: we randomly se-

lected different numbers of training data and the rest as test

data. For each specific number of training samples, we per-

form 10 independent runs and report the average accuracy.

We use two different basic classifier: 1NN classifier and

linear SVM. With denoising algorithms, the classification

accuracy can be improved. We report the relative improve-

ment with respect to the baseline. The results are shown in

Fig.(5). We can see that, when the number of training sam-

ples is very small, our algorithm can still boost up the per-

formance to a great extent. Furthermore, in natural image

dataset (e.g., Caltech 256), cluster information is severely

corrupted by the inherent noise. In this case, other denois-

ing algorithms failed to improve the data features. However,

our SSD is still capable to boost up the recognition perfor-

mance.

In addition, we show several examples of denoised im-

ages compared with the original ones in Fig.(6). The most

obvious change is that the denoised ones look smoother and

easier to identify. It is noticeable that our algorithm can re-

duce the pixel noise and even adjust the contents to make

the object more salient, while reserving the distinctive style

aspect.

5. Conclusion
In this paper, we have introduced a general manifold

learning algorithm which takes the advantages of subspace

4We downloaded the data from http://www.cs.nyu.edu/ roweis/data.html
5http://www.vision.ee.ethz.ch/ pgehler/projects/iccv09/

Figure 6. Examples of denoised images. The upper panel is the

initial faces while the lower panel is the denoised output. It is ob-

served that SSD reserves the distinctive style of each digit or letter

while smoothing a few minor outliers, e.g., digit 5 looks easier to

identify after denoting by SSD.

structures and the intrinsic data graph. Our algorithm re-

quires nearly no parameter tuning across different datasets

and we show significant improvement over the competing

methods on various applications such as clustering and clas-

sification. Future work could include a deep theoretically

analysis of the convergence property of iterative SSD and

an adaptive stopping criteria.
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Figure 5. Accuracy improvement comparison on three datasets (A-C refers to Alphadigits, COIL100, and Caltech 256 respectively). The

upper panels are the results using 1NN classifier. The lower panel are the results using SVM with linear kernels. The baseline refers the
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