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Abstract

Markov Random Fields (MRFs) have been successfully
applied to human activity modelling, largely due to their
ability to model complex dependencies and deal with lo-
cal uncertainty. However, the underlying graph structure
is often manually specified, or automatically constructed
by heuristics. We show, instead, that learning an MRF
graph and performing MAP inference can be achieved si-
multaneously by solving a bilinear program. Equipped with
the bilinear program based MAP inference for an unknown
graph, we show how to estimate parameters efficiently and
effectively with a latent structural SVM. We apply our tech-
niques to predict sport moves (such as serve, volley in
tennis) and human activity in TV episodes (such as kiss,
hug and Hi-Five). Experimental results show the proposed
method outperforms the state-of-the-art.

1. Introduction

Human activity recognition (HAR) is an important part

of many applications such as video surveillance, key event

detection, patient monitoring systems, transportation con-

trol, and scene understanding. HAR involves several sub-

fields in computer vision and pattern recognition, including

feature extraction and representation, human body detection

and tracking, and has attracted much research attention in

recent years. A suite of methods have been proposed for this

task and promising recognition rates have been achieved.

For example, in [11], more than 91% of actions can be cor-

rectly classified for the KTH dataset [15]. A detailed re-

view of different methods for HAR can be found in [1].

In this work, we focus on recognizing individual activities

in videos which contain multiple persons who may interact

with each other.

If one assumes that the activity of each person is an inde-

pendent and identically distributed (i.i.d.) random variable

from an unknown but fixed underlying distribution, one can

perform activity recognition by training a multiclass clas-

(a) i.i.d. method (b) MRF graph from heuristics

(c) MRF, Lan’s method (d) MRF, our method

Figure 1. Activity recognition within a tennis match: (a) an i.i.d.

method using multiclass SVM; (b) an MRF with a graph built us-

ing heuristics; (c) an MRF using Lan’s method[9]; (d) an MRF

with a graph learnt by our bilinear method. All algorithms se-

lect from four moves: normal hit (HT), serve (SV), volley (VL)

and others (OT). Green nodes denote successful labellings, and

red nodes failure.

sifer, or a group of binary classifiers, based on descriptors

such as HoG, HoF [6] or STIP [10] extracted from body

centred areas, as in [15], [12], [11]. We label these methods

as i.i.d. as they classify the action of each person separately.

These methods are thus very efficient, but they may not be

effective as the i.i.d. assumption is often not true in practice.

For example in a badminton game, a player smashing sug-

gests that his opponent is more likely to perform bending

and lobbing instead of serving.

Unlike traditional i.i.d methods, Markov Random Fields

(MRFs) [8] are able to model complex dependencies and

deal with local uncertainty in a consistent and principled

manner. A possible MRF is shown in Figure 1 (d), where

nodes represent the activity random variables, and the edges

reflect the dependencies. The reason that MRFs can achieve

a superior result to i.i.d. methods is because MRFs ob-

tain the joint optimum over all variables whereas the i.i.d.
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methods only seek optima for each variable separately. In

[5], MRFs are used to model activities like walking, queue-

ing, crossing etc. The MRFs’ graphs are built simply based

on heuristics such as two person’s relative position. These

heuristics may not be always reliable. For example, persons

waving to each other can be far away from each other. One

may deploy other heuristics, but they typically require spe-

cific domain knowledge, and apply only to a narrow range

of activities in a particular environment. Instead of using

heuristics, Lan et al. try to learn graphs based on the poten-

tial functions of the MRFs [9]. They seek the graph and the

activity labels that give the highest overall potential function

value (i.e. the smallest energy). The joint optimisation is

very different from a typical inference problem where only

labels are to be predicted. Thus they solve the joint opti-

misation problem approximately using a coordinate ascent

method by holding the graph fixed and updating the labels,

then holding labels fixed and updating the graph. Though

predicting each person’s activities is only a by-product —

predicting group activities is their task — their idea is gen-

erally applicable to HAR. A key problem with this method

is that coordinate ascent only finds local optima. Since the

graphs of MRFs encode the dependencies, constructing re-

liable graphs is crucial. A MRF with an incorrect graph

(such as Figure 1 (b) (c) ) may produce inferior results to

an i.i.d. method ( in Figure 1 (a)), whereas a MRF with a

correct graph (in Figure 1 (d)) produces a superior result, at

least for this example.

In this paper, we show Maximum A Posteriori (MAP) in-

ference for the activity labels and estimating the MRF graph

structure can be carried out simultaneously as a joint op-

timisation and that achieving the global optimum is guar-

anteed. We formulate the joint optimisation problem as

a bilinear program. Our bilinear formulation is inspired

by recent work in Linear Program (LP) relaxation based

MAP inference with known graphs in [7] and [16], and be-

lief propagation (BP) based MAP inference with unknown

graphs [9]. We show how to solve the bilinear program effi-

ciently via the branch and bound algorithm which is guaran-

teed to achieve a global optimum. We then apply this novel

inference technique to HAR with an unknown graph. Our

experimental results on synthetic and real data, including

tennis, badminton and TV episodes, show the capability of

our method.

The reminder of the paper is organized as follows. We

first introduce our task and the model representation in Sec-

tion 2.1 followed by the MAP problem and its LP relaxation

in Section 2.2. Then we give our bilinear formulation for

the MAP inference with unknown graphs in Section 3.1. In

Section 3.2 we show how to relax the bilinear program to

an LP. In Section 3.3 we describe how to solve the bilinear

program. In Section 4 we show how to train the model (i.e.

parameter estimation) for the MRFs. Section 5 provides the

experimental results followed by conclusions in Section 6.

2. Modelling HAR with unknown MRF graph

2.1. The Model

In HAR our goal is to estimate the activities of m per-

sons Y = (y1, y2, · · · , ym) ∈ Y, given an observation im-

age X ∈ X. To model the dependencies between activities,

we use a MRF with the graph G = (V,E) where the ver-

tex set V = {1, 2, · · · ,m} and the edge set E is yet to be

determined. We cast the estimation problem as finding a

discriminative function F (X,Y,G) such that for an image

X , we assign the activities Y and the graph G that exhibit

the best score w.r.t. F ,

(Y ∗, G∗) = argmax
Y ∈Y,G∈G

F (X,Y,G). (1)

As in many learning methods, we consider functions linear

in some feature representation Ψ,

F (X,Y,G;w) = w�Ψ(X,Y,G). (2)

Here we consider the feature map Ψ(X,Y,G) below,

Ψ(X,Y,G) =
[∑
i∈V

Ψ1(X, yi);
∑

(i,j)∈E
Ψ2(X, yi, yj)

]
.

(3)

The discriminative function F can be expressed as

F (X,Y,G;w) =∑
i∈V

w�1 Ψ1(X, yi)︸ ︷︷ ︸
−Ei(yi)

+
∑

(i,j)∈E
w�2 Ψ2(X, yi, yj)︸ ︷︷ ︸

−Ei,j(yi,yj)

, (4)

where w = [w1;w2]. Now, (1) is equivalent to

(Y ∗, G∗) = argmin
Y,G

∑
(i,j)∈E

Ei,j(yi, yj) +
∑
i∈V

Ei(yi), (5)

which becomes an energy minimisation problem with un-

known graph G. Here Ei,j(yi, yj) is the edge energy func-

tion over edge (i, j) ∈ E and the Ei(yi) is the node energy

function over vertex i ∈ V.

2.2. The MAP inference and its LP Relaxation

If G is known, the MAP problem becomes

Y ∗ = argmin
Y

∑
(i,j)∈E

Ei,j(yi, yj) +
∑
i∈V

Ei(yi). (6)
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A typical LP relaxation [16] of the MAP problem is

min
q

∑
(i,j)∈E

∑
yi,yj

qi,j(yi, yj)Ei,j(yi, yj)+

∑
i∈V

∑
yi

qi(yi)Ei(yi) (7)

s.t. qi,j(yi, yj) ∈ [0, 1],
∑
yi,yj

qi,j(yi, yj) = 1,

∑
yi

qi,j(yi, yj) = qj(yj), ∀(i, j) ∈ E, yi, yj .

qi(yi) ∈ [0, 1], ∀i ∈ V, yi.

The last constraint can be removed safely since it can be

derived from the other constraints. When qi(yi), ∀i ∈ V are

integers, the solution of problem (7) is an exact solution of

the problem (6).

3. Bilinear reformulation and LP relaxation
In this section we show how the MAP inference prob-

lem with an unknown graph can be formulated as a bilinear

program (BLP), which can be further relaxed to an LP. We

will also show how to obtain the labels and graph from the

solution of the BLP.

3.1. Bilinear program reformulation

Before we solve (5), let us consider a simpler case first

where the graph is unknown but the MAP solution Y ∗ is

known. We first introduce variables {zi,j}i,j indicating the

edge (i, j) exists or not, for all i, j ∈ V. Then the graph

G can be found by seeking the set of edges that give the

smallest energy as an integer program:

min
z

∑
i∈V

∑
j∈V

zi,jEi,j(y
∗
i , y

∗
j ) (8)

s.t.
∑
i∈V

zi,j ≤ d, zi,j = zj,i, zi,j ∈ {0, 1}, ∀i, j ∈ V, y∗i , y
∗
j .

Here we set Ei,j(yi, yj) = +∞ when i = j since (i, i) is

not an edge. Ei(yi) can be ignored, since it is independent

of the choice of edges. d ∈ N is a preset number that en-

forces the maximum degree of a vertex, allowing one to en-

force a sparse structure. However dropping the degree con-

straint does not change the nature of the problem. This inte-

ger program can be relaxed to a linear program by changing

the domain of zi,j from {0, 1} to [0, 1].
From (7) and (8), we can see that (5) can be relaxed to

the problem below,

min f(q, z) =
∑
i,j∈V

∑
yi,yj

qi,j(yi, yj)Ei,j(yi, yj)zi,j

+
∑
i∈V

∑
yi

qi(yi)Ei(yi). (9a)

s.t. qi,j(yi, yj) ∈ [0, 1],
∑
yi,yj

qi,j(yi, yj) = 1, (9b)

∑
yi

qi,j(yi, yj) = qj(yj), zi,j = zj,i, zi,j ∈ [0, 1],

∑
i∈V

zi,j ≤ d, ∀i, j ∈ V, yi, yj .

This problem is a BLP with disjoint constraints i.e. con-

straints on z do not involve q, and vice versa.

Solving the BLP in (9) returns {qi(yi), ∀i ∈ V, yi},
{qi,j(yi, yj), ∀i, j ∈ V, yi, yj} and {zi,j , ∀i, j ∈ V}. We

now show how to obtain the graph G∗ and the MAP Y ∗

(i.e. best activities) from BLP outcomes.

Obtaining the graph We start with E∗ = ∅. ∀i, j ∈
V, i �= j, if zi,j ≥ 0.5, E∗ = E∗ ∪{(i, j)}. Thus we have

the estimated graph G∗ = (V,E∗).

Obtaining the MAP Assume yi ∈ {1, 2, · · · ,K}, then

∀i ∈ V, y∗i = argmaxKk=1 qi(k). We have the estimated

label Y ∗ = (y∗1 , y
∗
2 , · · · , y∗m).

3.2. LP relaxation

BLP in (9) is non-convex. Here we show how to relax

it to an LP, which can be efficiently solved. By introducing

ui,j(yi, yj) for each (i, j, yi, yj), (9) is equivalent to

min
q,z,u

∑
i,j∈V

∑
yi,yj

ui,j(yi, yj) +
∑
i∈V

∑
yi

qk(yi)Ei(yi) (10a)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qi,j(yi, yj) ∈ [0, 1] ∀i, j ∈ V, yi, yj ,

zi,j ∈ [0, 1] ∀i, j ∈ V,∑
yi,yj

qi,j(yi, yj) = 1 ∀i, j ∈ V,∑
yi
qi,j(yi, yj) = qj(yj) ∀i, j ∈ V, yj ,

zi,j = zj,i ∀i, j ∈ V,∑
j∈V zi,j ≤ d ∀i ∈ V,

ui,j(yi, yj) ≥
qi,j(yi, yj)Ei,j(yi, yj)zi,j ∀i, j ∈ V, yi, yj .

(10b)

However, the above problem is still non-convex due to the

bilinear term qi,j(yi, yj)zi,j . The bilinear term can be fur-

ther substituted, however. Following the relaxation tech-

niques in [13, 4], we relax (10) to the following LP,

min
q,z,u,γ

∑
i,j∈V

∑
yi,yj

ui,j(yi, yj) +
∑
k∈V

∑
yk

qk(yk)Ek(yk),

(11a)
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s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qi,j(yi, yj) ∈ [0, 1] ∀i, j ∈ V, yi, yj ,

zi,j ∈ [0, 1] ∀i, j ∈ V,∑
yi,yj

qi,j(yi, yj) = 1 ∀i, j ∈ V,∑
yi
qi,j(yi, yj) = qj(yj) ∀i, j ∈ V, yj ,

zi,j = zj,i ∀i, j ∈ V,∑
j∈V zi,j ≤ d ∀i ∈ V,

ui,j(yi, yj) ≥
Ei,j(yi, yj)γi,j(yi, yj) ∀i, j ∈ V, yi, yj ,

γl ≤ γi,j(yi, yj) ≤ γu ∀i, j ∈ V, yi, yj ,

(11b)

where γl is

max{qli,j(yi, yj)zi,j + zli,jqi,j(yi, yj)− qli,j(yi, yj)z
l
i,j ,

qui,j(yi, yj)zi,j + zui,jqi,j(yi, yj)− qui,j(yi, yj)z
u
i,j},

and γu is

min{qui,j(yi, yj)zi,j + zli,jqi,j(yi, yj)− qui,j(yi, yj)z
l
i,j ,

qli,j(yi, yj)zi,j + zui,jqi,j(yi, yj)− qli,j(yi, yj)z
u
i,j}.

The LP relaxation (11) provides an efficient way of com-

puting lower bounds for the BLP (9). In order to solve (9),

we resort to branch and bound [3] detailed in the next sec-

tion.

3.3. Branch and bound solution

Branch and bound [3] is an iterative approach for find-

ing global ε-close solutions to non-convex problems. Con-

sider minimising a function f : R
n → R, over an n-

dimensional rectangle Qinit. Any Q ⊆ Qinit can be ex-

pressed as
∏n

i=1[li, ui] where li and ui are the smallest and

largest input values at the i-th dimension. Here we define

the length of Q as L(Q) = maxni=1(ui − li). The branch

and bound method requires two functions Φlb and Φub over

any Q ⊆ Qinit, such that

Φlb(Q) ≤ min
v∈Q

f(v) ≤ Φub(Q), (12a)

∀ε > 0, ∃δ > 0,L(Q) < δ ⇒ Φub(Q)− Φlb(Q) < ε.
(12b)

Here we consider f(q, z) in (9) and assume Qinit = [0, 1]n,

thus v = (q, z) ∈ Qinit.

Branch strategy Since there are fewer zi,j variables than

qi,j(yi, yj) variables, we always split Q along the zi,j vari-

ables as suggested in [4].

Bound strategy For any Q ⊆ Qinit, we let Φlb(Q) be the

solution of (11) when restricting (q, z) ∈ Q. Denoting its

solution (q∗, z∗), we let Φub(Q) = f(q∗, z∗) in (9). Clearly

minq,z∈Q f(q, z) ≤ f(q∗, z∗) since (q∗, z∗) ∈ Q. Since

(11) is a relaxation of (9), Φlb(Q) ≤ minq,z∈Q f(q, z).
Thus condition (12a) is satisfied. By the argument of

Lemma 1 in [4], Condition (12b) is also satisfied. Hence

the convergence holds.

4. Training
We now present a maximum margin training method for

predicting structured output variables, such as human ac-

tivity labels. Given � image-activities pairs, {(Xi, Y i)}�i=1

(note that the graphs are not known), we estimate w via La-

tent Structural Support Vector Machine (LSSVM) [19],

min
w

1

2
‖w ‖2 + C

�∑
i=1

[
max
Y,G′

[
w�Ψ(Xi, Y,G′)+

Δ(Y i, Y )
]−max

G
w�Ψ(Xi, Y i, G)

]
+

, (13)

where [a]+ = max{0, a}. Here C is the trade-off between

the regulariser and the risk, and Δ is the label cost that pe-

nalises incorrect activity labels. Here we use a well known

hamming distance for the label cost, that is

Δ(Y i, Y ) =
1

m

m∑
j=1

δ(yij �= yj), (14)

where the indicator δ(·) = 1 if the statement is true, 0 oth-

erwise. We follow [19] in solving (13) via Convex-Concave

Procedure (CCCP) [20] due to non-convexity of (13).

CCCP requires solving the following two problems:

max
G

w�Ψ(Xi, Y i, G). (15)

max
Y,G

w�Ψ(Xk, Y,G) + Δ(Y k, Y ). (16)

Here (15) is efficiently solved via (8). Clearly (16) is equiv-

alent to

min
Y,G

∑
(i,j)∈E

Ei,j(yi, yj) +
∑
i∈V

E′i(yi), (17)

where E′i(yi) = Ei(yi) − δ(yki �= yi). Note that (17) has

the same form as (5), and thus can also be formulated as a

bilinear program which in turn can be solved by the Branch

and Bound method.

Lan’s method The approach closest to ours is that pro-

posed by Lan et al. in [9] using LSSVM via CCCP to recog-

nise human activities. They also are required to solve (15)

and (16). They use an LP similar to (8) to solve (15), and

use a coordinate ascent style algorithm to approximately

169116911693



solve (16). The coordinate ascent style algorithm iterates

the following two steps: (1) holding G∗ fixed and solving,

Y ∗ = argmax
Y

w�Ψ(Xk, Y,G) + Δ(Y k, Y ) (18)

via belief propagation; (2) holding Y ∗ fixed and solving

G∗ = argmax
G

w�Ψ(Xi, Y ∗, G) (19)

via an LP (8). It is known that coordinate ascent style algo-

rithms are prone to converging to local optima. In the exper-

iment section we provide an empirical comparison between

Lan’s method and ours.

5. Experiments
We apply our method to a synthetic dataset and three real

datasets. The real datasets include two sports competition

datasets (tennis and badminton), and a TV episode dataset.

5.1. Synthetic data

To quantitatively evaluate the performance of different

methods for MAP inference and graph estimation, we ran-

domly generate node (unary) and edge (binary) energies for

different scales of problems. Specifically, 8 groups of en-

ergies are generated and each group corresponds to a fixed

number of nodes and a fixed number of activities. For each

group we randomly generate energies 50 times. The ground

truth graphs and activities labels are obtained by exhaustive

search for (5). For the true graph G = (V,E), predicted

graph G′ = (V,E′) with m nodes, true labels Y and pre-

dicted label Y ′, we define two errors below,

eg(G,G′) =
1

m(m− 1)

∑
i,j∈V

| zi,j − z′i,j |, (20)

el(Y, Y
′) =

1

m

m∑
i=1

δ(yi �= y′i), (21)

for which we call them the graph error and the label error

respectively.

Here we compare four methods: our bilinear method

(BLP), Lan’s method in [9] (Lan’s), the isolated graph (0

edge connections) with node status decided according to

node potentials (we call it the Isolate method), belief prop-

agation on fully connected graphs (BP+Full). We report the

average errors (for 50 runs) for the 12 groups of synthetic

data in Fig. 2. As expected, our bilinear method (the green

curves) outperforms all other methods on both graph pre-

diction and activity prediction. The superior results of our

method are due to the use of global optimisation techniques,

whereas Lan’s method achieves only local optima. The er-

rors for both Isolate and BP+Full are high, because their

graphs are not learnt. This shows the importance of learning
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(b) Label errors

Figure 2. A comparison of the graph error (a) and the label error

(b) by different methods. The average graph and label errors are

plotted with error bars indicating the standard errors. Note the two

subfigures share the same legend in (b). The black, red, blue and

green curves correspond to errors by using the Isolate method, the

BP+Full method, the Lan’s method, and our BLP method respec-

tively.

the graph structure. An interesting observation is that the

label prediction error of the Isolate method is much lower

than that of BP+Full, though their performance on graph es-

timation is reversed. This may be caused by (loopy) belief

propagation on graphs with many loops — fully connected

graphs are used in BP+Full.

5.2. Predict moves in sports

The task is to find sporting activity labels for m persons

Y = (y1, y2, · · · , ym) ∈ Y, given an observation image

X ∈ X. The bounding box for each athlete is already given.

5.2.1 Datasets

Two datasets are used here. The first one is the UIUC

badminton match dataset [17]. We only use the annotated
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men’s singles video with 3,072 frames. This dataset in-

cludes four moves: smash (SM), backhand (BH), forehand
(FH) and others (OT). The second dataset is created by us.

This dataset is a mixed-doubles tennis competition video of

2961 frames. We have annotated this video frame by frame.

The annotation includes the position and the size of each

body-centred bounding box, the pose and the action of each

player. This dataset includes four moves: normal hit (HT),

serve (SV), volley (VL) and others (OT). Thus the moves

for the i-th person can be expressed as a discrete variable

yi ∈ {1, 2, 3, 4}.

5.2.2 Features

We use the LSSVM (Section 4) to train a discriminative

model to predict moves. The feature Ψ in (3) consists of

two local features Ψ1, Ψ2 defined below,

Ψ1(X, yi) = si⊗ e1(yi), (22)

Ψ2(X, yi, yj) = ti⊗ tj ⊗ e1(yi)⊗ e1(yj)⊗ e2(ri,j)
(23)

• Move Local Appearance: Similar to [9], si =
(si,1, si,2, si,3, si,4) ∈ R

4, where si,j , (j = 1, 2, 3, 4)
is a move confidence score of assigning the i-th per-

son the j-th move. The the score is the discriminative

function value of a SVM classifier trained on the lo-

cal image descriptor similar to that in [17]. The only

difference is that we use histogram the dense gradi-

ents, rather than the silhouette of the human body area,

since estimating silhouette is tricky when both camera

and people are moving. All settings for the feature ex-

traction process are as suggested in the literature. We

pick this descriptor for two reasons. First, the descrip-

tor is extracted from a stack of 15 consecutive frames,

which accounts for the temporal action context. Sec-

ond the length of descriptor vector is well controlled

via the PCA projection.

• Pose: ti is a vector of body pose confidence scores

based on a SVM classifier trained on the same local

descriptor used for s. Here five discrete body poses

are considered: profile-left, profile-right, frontal-left,
frontal-right and backwards, thus ti ∈ R

5.

• Relative position: Here ri,j ∈ {1, 2, · · · , 6} is the rel-

ative position of person i and person j. There are six

possible relative positions including overlap, near-left,
near-right, adjacent-left, adjacent-right and far. The

relative position of two persons is determined accord-

ing to their 2D Euclidean distance as in [14].

• Tensor product: Here e1(yi) is a 4-dimensional vector

with 1 in the yi-th dimension, and 0 elsewhere. Like-

wise, e2(ri,j) is a 6-dimensional vector with 1 in the

ri,j-th dimension, and 0 elsewhere. ⊗ denotes the Kro-

necker tensor.

Intuitively, Ψ1 reflects the confidence of assigning one per-

son to different moves, Ψ2 captures the co-occurrence of

the related persons’ body poses, relative 2D position and

their moves. Based on this joint feature representation, our

model predict the moves via (5).

All datasets are randomly split into two parts: one for

training and the other for testing. We compare four meth-

ods:

• MCSVM uses a multiclass SVM trained on the local

image descriptor.

• SSVM uses a structural SVM [18] for training. Find-

ing the most violated constraint requires inference

which is done via BP. The graph is constructed by find-

ing the minimum spanning tree weighted by the 2D

Euclidean distance between persons.

• Lan’s method described in Section 4. The degree of

the vertex d is set to 1.0. This means each node can

have at most two edges ( zi,j ≥ 0.5 adds an edge).

• BLP (our method) described in Section 4. We use

Mosek package [2] to solve LP involved in our bilinear

method. We set the degree d in Eq. (11b) being 1.0.

The confusion matrices for two datasets are presented in

Table 1 and 2. We can see that in tennis dataset, our BLP

outperforms the other methods on all four moves. In bad-

minton dataset, our BLP outperforms the other methods on

3 moves: FH, BH and SM. SSVM achieves the best recog-

nition rate on OT, and our BLP achieves the second best.

As expected, MCSVM performs the worst in general, since

it relies on the local descriptors. An interesting observation

is that Lan’s method does not always outperform SSVM.

5.3. Predict activities in TV episodes

The TVHI dataset proposed in [14] is a benchmark for

predicting HAR in real TV episodes. It contains 300 short

videos collected from TV episodes and includes five ac-

tivities: handshake (HS), hug (HG), High-Five (HF), kiss
(KS) and No-Interaction (NO). Each of the first four activi-

ties consists of 50 video clips. No-Interaction contains 100

video clips. We also bisect this dataset into training and

testing parts as was done in the sports competition datasets.

We use the same four methods as in the sports competition

datasets. The confusion matrices are presented in Table 3.

Our BLP outperforms the others on all activities. Lan’s

method performs reasonably well on four activities: HS,

HG, HF, and KS, but performs poorly on NO.

We show prediction results in Fig. 3 for four methods

on different datasets. A green node means correct pre-

diction and a red node means wrong prediction. We can
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Table 1. Confusion matrices of the tennis dataset (sports match)
Alg. MCSVM SSVM Lan’s BLP

A/A OT SV HT VL OT SV HT VL OT SV HT VL OT SV HT VL
OT 0.43 0.31 0.11 0.15 0.48 0.17 0.20 0.14 0.30 0.29 0.20 0.21 0.59 0.08 0.22 0.11

SV 0 0.59 0.17 0.24 0.15 0.75 0 0.09 0.10 0.74 0.15 0.01 0.17 0.76 0.06 0

HT 0.23 0.27 0.23 0.27 0.31 0.18 0.31 0.21 0.31 0.09 0.35 0.25 0.39 0.07 0.39 0.15

VL 0.08 0.06 0.06 0.80 0.15 0.14 0.06 0.65 0.15 0 0 0.85 0 0 0.10 0.90

Table 2. Confusion matrices of the badminton dataset (sports match)
Alg. MCSVM SSVM Lan’s BLP

A/A OT FH BH SM OT FH BH SM OT FH BH SM OT FH BH SM
OT 0.38 0.15 0.12 0.34 0.65 0.21 0.03 0.11 0.56 0.21 0.06 0.17 0.61 0.19 0.02 0.18

FH 0.38 0.40 0 0.22 0.14 0.45 0.22 0.18 0.07 0.42 0.24 0.27 0.10 0.52 0.14 0.24

BH 0.14 0.23 0.44 0.19 0.32 0.24 0.39 0.05 0.01 0.16 0.65 0.18 0 0.27 0.66 0.07

SM 0.08 0.04 0.16 0.71 0.16 0.12 0.08 0.64 0.09 0.06 0.08 0.78 0.08 0.07 0.07 0.78

see that when the graph is learnt correctly, MRF-based ap-

proaches (see in the 2nd row, column 3, 4) outperform the

i.i.d. method MCSVM (see in the 2nd row, column 1). We

also see that Lan’s method often learns better graphs (see

the 3rd column) than the graphs built from heuristics in

SSVM (see the 2nd column). Overall, our BLP learns the

most accurate graph and therefore makes the most accurate

activity prediction.

6. Conclusion and future work

The structure of the graph used is critical to the suc-

cess of any MRF-based approach to human activity recogni-

tion, because they encapsulate the relationships between the

activities of multiple participants. These graphs are often

manually specified, or automatically constructed by heuris-

tics, but both approaches have their limitations. We have

thus shown that it is possible to develop a MAP inference

method for unknown graphs, and reformulated the problem

of finding MAP solution and the best graph jointly as a bi-

linear program, which is solved by branch and bound. An

LP relaxation is used as a lower bound for the bilinear pro-

gram. Using the bilinear program based MAP inference,

we have shown that it is possible to estimate parameters ef-

ficiently and effectively with a latent structural SVM. Ap-

plications in predicting sport moves and human activities in

TV episodes have shown the strength of our method.

The BLP formulation is not only applicable to MRFs,

but also to graphical models with factor graphs and directed

graphs (i.e. Bayesian networks). One possible future work

is to seek BP style algorithms to replace LP relaxations in

solving BLP. Another future direction is to consider tempo-

ral dependencies among video frames using tracking tech-

niques and dynamic hierarchy graphical models.
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