
A Fast Semidefinite Approach to Solving Binary Quadratic Problems

Peng Wang, Chunhua Shen, Anton van den Hengel
School of Computer Science, The University of Adelaide, Australia

Abstract

Many computer vision problems can be formulated as
binary quadratic programs (BQPs). Two classic relaxation
methods are widely used for solving BQPs, namely, spec-
tral methods and semidefinite programming (SDP), each
with their own advantages and disadvantages. Spectral
relaxation is simple and easy to implement, but its bound
is loose. Semidefinite relaxation has a tighter bound, but
its computational complexity is high for large scale prob-
lems. We present a new SDP formulation for BQPs, with
two desirable properties. First, it has a similar relaxation
bound to conventional SDP formulations. Second, com-
pared with conventional SDP methods, the new SDP for-
mulation leads to a significantly more efficient and scalable
dual optimization approach, which has the same degree of
complexity as spectral methods. Extensive experiments on
various applications including clustering, image segmen-
tation, co-segmentation and registration demonstrate the
usefulness of our SDP formulation for solving large-scale
BQPs.

1. Introduction
Many problems in computer vision can be formulated as

binary quadratic problems, such as image segmentation, im-

age restoration, graph-matching and problems formulated

by Markov Random Fields (MRFs). Because general BQPs

are NP-hard, they are commonly approximated by spectral

or semidefinite relaxation.
Spectral methods convert BQPs into eigen-problems.

Due to their simplicity, spectral methods have been applied

to a variety of problems in computer vision, such as image

segmentation [20, 25], motion segmentation [13] and many

other MRF applications [2]. However, the bound of spectral

relaxation is loose and can lead to poor solution quality in

many cases [5, 12, 9]. Furthermore, the spectral formula-

tion is hard to generalize to accommodate inequality con-

straints [2].
In contrast, SDP methods produce tighter approxima-

tions than spectral methods, which have been applied to

problems including image segmentation [6], restoration [10,

17], subgraph matching [18], co-segmentaion [7] and gen-

eral MRFs [23]. The disadvantage of SDP methods, how-

ever, is their poor scalability for large-scale problems. The

worst-case complexity of solving a generic SDP problem

involving a matrix variable of size n × n and O(n) linear

constraints is about O(n6.5), using interior-point methods.

In this paper, we present a new SDP formulation for

BQPs (denoted by SDCut). Our approach achieves higher

quality solutions than spectral methods while being signif-

icantly faster than the conventional SDP formulation. Our

main contributions are as follows.

(i) A new SDP formulation (SDCut) is proposed to solve

binary quadratic problems. By virtue of its use of the dual

formulation, our approach is simplified and can be solved

efficiently by first order optimization methods, e.g., quasi-

Newton methods. SDCut has the same level of compu-

tational complexity as spectral methods, roughly O(n3),
which is much lower than the conventional SDP formula-

tion using interior-point method. SDCut also achieves a

similar bound with the conventional SDP formulation and

therefore produces better estimates than spectral relaxation.

(ii) We demonstrate the flexibility of SDCut by applying it

to a few computer vision applications. The SDCut formu-

lation allows additional equality or inequality constraints,

which enable it to have a broader application area than the

spectral method.

Related work Our method is motivated by the work of

Shen et al. [19], which presented a fast dual SDP approach

to Mahalanobis metric learning. The Frobenius-norm reg-

ularization in their objective function plays an important

role, which leads to a simplified dual formulation. They,

however, focused on learning a metric for nearest neighbor

classification. In contrast, here we are interested in discrete

combinatorial optimization problems arising in computer

vision. In [8], the SDP problem was reformulated by the

non-convex low-rank factorization X = YY�, where Y ∈
R

n×m,m � n. This method finds a locally-optimal low-

rank solution, and runs faster than the interior-point method.

We compare SDCut with the method in [8], on image co-

segmentation. The results show that our method achieves a

better solution quality and a faster running speed. Olsson et
al. [17] proposed fast SDP methods based on spectral sub-

gradients and trust region methods. Their methods cannot

be extended to accommodate inequality constraints, while

ours is much more general and flexible. Krislock et al. [11]

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.173

1310

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.173

1310

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.173

1310

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.173

1312

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.173

1312

have independently formulated a similar SDP for the Max-

Cut problem, which is simpler than the problems that we

solve here. Moreover, they focus on globally solving the

MaxCut problem using branch-and-bound.

Notation A matrix is denoted by a bold capital letter (X)

and a column vector is by a bold lower-case letter (x). Sn
denotes the set of n× n symmetric matrices. X � 0 repre-

sents that the matrix X is positive semidefinite (p.s.d.). For

two vectors, x ≤ y indicates the element-wise inequality;

diag(·) denotes the diagonal entries of a matrix. The trace

of a matrix is denoted as trace(·). The rank of a matrix

is denoted as rank(·). ‖·‖1 and ‖·‖2 denote the �1 and �2
norm of a vector respectively. ‖X‖2F = trace(XX�) =
trace(X�X) is the Frobenius norm. The inner product of

two matrices is defined as 〈X,Y〉 = trace(X�Y). X ◦Y
denotes the Hadamard product of X and Y. X ⊗ Y de-

notes the Kronecker product of X and Y. In indicates the

n × n identity matrix and en denotes an n × 1 vector with

all ones. λi(X) and pi(X) indicate the ith eigenvalue and

the corresponding eigenvector of the matrix X. We define

the positive and negative part of X as:

X+ =
∑

λi>0 λipip
�
i , X− =

∑
λi<0 λipip

�
i , (1)

and explicitly X = X+ +X−.

Euclidean projection onto the p.s.d. cone Our method

relies on the following results (see Sect. 8.1 of [1]):

X+ = argminY�0 ‖Y −X‖2F . (2)

Although (2) is an SDP problem, it can be solved efficiently

by using eigen-decomposition. This is the key observation

to simplify our SDP formulation.

2. Spectral and Semidefinite Relaxation

As a simple example of a binary quadratic problem, we

consider the following optimization problem:

min
x

x�Ax, s.t. x ∈ {−1, 1}n, (3)

where A ∈ Sn. The integrality constraint makes the BQP
problem non-convex and NP-hard.

One of the spectral methods (again by way of example)

relaxes the constraint x ∈ {−1, 1}n to ‖x‖22 = n:

min
x

x�Ax, s.t. ‖x‖22 = n. (4)

This problem can be solved by the eigen-decomposition

of A in O(n3) time. Although appealingly simple to im-

plement, the spectral relaxation often yields poor solution

quality. There is no guarantee on the bound of its solu-

tion with respect to the optimum of (3). The poor bound

of spectral relaxation has been verified by a variety of au-

thors [5, 12, 9]. Furthermore, it is difficult to generalize the

spectral method to BQPs with linear or quadratic inequal-

ity constraints. Although linear equality constraints can be

considered [3], solving (4) under additional inequality con-

straints is in general NP-hard [2].

Alternatively, BQPs can be relaxed to semidefinite pro-

grams. Firstly, let us consider an equivalent problem of (3):

min
X�0

〈X,A〉, s.t. diag(X) = e, rank(X) = 1. (5)

The original problem is lifted to the space of rank-one p.s.d.

matrices of the form X = xx�, The number of variables

increases from n to n(n + 1)/2. Dropping the only non-

convex rank-one constraint, (5) is a convex SDP problem,

which can be solved conveniently by standard convex op-

timization toolboxes, e.g., SeDuMi [21] and SDPT3 [22].

The SDP relaxation is tighter than spectral relaxation (4).

In particular, it has been proved in [4] that the expected

values of solutions are bounded for the SDP formulation

of some BQPs (e.g., MaxCut). Another advantage of the

SDP formulation is the ability of solving problems of more

general forms, e.g., quadratically constrained quadratic pro-

gram (QCQP). Quadratic constraints on x are transformed

to linear constraints on X = xx�. In summary, the con-

straints for SDP can be either equality or inequality.

The general form of the SDP problem is expressed as:

min
X�0

〈X,A〉, (6a)

s.t. 〈X,Bi〉 = bi, ∀i = 1, . . . , p, (6b)

〈X,Bj〉 ≤ bj , ∀j = p+1, . . . ,m. (6c)

The most significant drawback of SDP methods is the poor

scalability to large problems. Most optimization toolboxes,

e.g., SeDuMi [21] and SDPT3 [22], use the interior-point

method for solving SDP problems, which hasO(n6.5) com-

plexity, making it impractical for large scale problems.

3. SDCut Formulation
Before we present the new SDP formulation, we first in-

troduce a property of the following set:

Ω(η) = {X ∈ Sn|X � 0, trace(X) = η}. (7)

The set Ω(η) is known as a spectrahedron, which is the in-

tersection of a linear subspace (i.e. trace(X) = η) and the

p.s.d. cone.

For the set Ω(η), we have the following theorem, which

is an extension of the one in [15].

Theorem 1. (The spherical constraint on a spectrahedron).
For X ∈ Ω(η), we have the inequality ‖X‖F ≤ η, in which
the equality holds if and only if rank(X) = 1.

Proof. For a matrix X ∈ Ω(η), ‖X‖2F = trace(XX�) =
‖λ(X)‖22 ≤ ‖λ(X)‖21. Because X � 0, then λ(X) ≥ 0
and ‖λ(X)‖1 = trace(X). Therefore

‖X‖F = ‖λ(X)‖2 ≤ ‖(λ(X))‖1 = η. (8)

Because ‖x‖2 = ‖x‖1 holds if and only if only one el-

ement in x is non-zero, the equality holds for (8) if and

only if there is only one non-zero eigenvalue for X, i.e.,

rank(X) = 1.

13111311131113131313

This theorem shows the rank-one constraint is equivalent

to ‖X‖F = η for p.s.d. matrices with a fixed trace.

The constraint on trace(X) is common in the SDP

formulation for BQPs. For x ∈ {−1, 1}n, we have

diag(xx�) = e, and so trace(xx�) = n. Therefore

‖X‖F ≤ η is implicitly involved in the SDP formulation

of BQPs.

Then we have a geometrical interpretation of SDP relax-

ation. The non-convex spherical constraint ‖X‖F = η is

relaxed to the convex inequality constraint ‖X‖F ≤ η:

min
X�0

〈X,A〉, s.t. ‖X‖2F − η2 ≤ 0, (6b), (6c). (9)

Inspired by the spherical constraint, we consider the fol-

lowing SDP formulations:

min
X�0

〈X,A〉, s.t. ‖X‖2F − η2 ≤ ρ, (6b), (6c). (10)

min
X�0

〈X,A〉+ σ(‖X‖2F − η2), s.t. (6b), (6c). (11)

where ρ < 0 and σ > 0 are scalar parameters. Given a ρ,

one can always find a σ, making the problems (10) and (11)

equivalent.

The problem (10) has the same objective function

with (9), but its search space is a subset of the feasible set

of (9). Hence (10) finds a sub-optimal solution to (9). The

gap between the solution of (10) and (9) vanishes when ρ
approaches 0.

On the other hand, because ‖X‖2F − η2 ≤ 0, the objec-

tive function of (11) is not larger than the one of (9). When

σ approaches 0, the problem (11) is equivalent to (9). For

a small σ, the solution of (11) approximates the solution

of (9). When σ approaches 0, the bound of (11) is arbitrar-
ily close to the bound of (9).

Although problems (10) and (11) can be converted into

standard SDP problems, solving them using interior-point

methods can be very slow. Next, we show that the dual

of (11) has a much simpler form.

Result 1. The dual problem of (11) can be simplified to

max
u

− 1

4σ
‖C(u)−‖2F−u�b−ση2, (12)

s.t. uj ≥ 0, ∀j = p+ 1, . . . ,m,

where C(u) =
∑m

i=1 uiBi +A.

Proof. The Lagrangian of the primal problem (11) is:

L(X,u,Z) =〈X,A〉 − 〈X,Z〉+ σ‖X‖2F − ση2

+
m∑
i=1

ui(〈X,Bi〉−bi), (13)

with Z � 0 and uj ≥ 0, ∀j = p+ 1, . . . ,m. Z ∈ R
n×n is

the dual variable w.r.t. the constraint X � 0; u ∈ R
m is the

dual variable w.r.t. the constraints (6b), (6c).

Since the primal problem (11) is convex, and both the

primal and dual problems are feasible, strong duality holds.

The primal optimal X� is a minimizer of L(X,u�,Z�), i.e.,

∇X=X�L(X,u�,Z�) = 0. Then we have

X�=
1

2σ
(Z�−A−

m∑
i=1

u�
iBi) =

1

2σ
(Z�−C(u�)). (14)

By substituting X� in the Lagrangian (13), we obtain the

dual problem:

max
u,Z

− 1

4σ
‖Z−C(u)‖2F − u�b− ση2, (15)

s.t. Z � 0, uj ≥ 0, ∀j = p+ 1, . . . ,m.

As the dual (15) is still a SDP problem, it seems that no

efficient method can be used to solve (15) directly, other

than the interior-point algorithms.
Fortunately, the p.s.d. matrix variable Z can be elimi-

nated. Given a fixed u, the dual (15) can be simplified to:

min
Z
‖Z−C(u)‖2F , s.t. Z � 0. (16)

Based on (2), the problem (16) has an explicit solution:

Z = C(u)+. By substituting Z to (15), the dual problem is

simplified to (12).

We can see that the simplified dual problem (12) is not a

SDP problem. The number of dual variables is m, i.e., the

number of constraints in the primal problem (11). In most of

cases, m� n2 where n2 is the number of primal variables,

and so the problem size of the dual is much smaller than

that of the primal.
The gradient of the objective function of (12) can be cal-

culated as

g(ui) = − 1

2σ
〈C(u)−,Bi〉 − bi, ∀i = 1, . . . ,m. (17)

Moreover, the objective function of (12) is differentiable but
not necessarily twice differentiable, which can be inferred

on the results in Sect. 5 in [1].
Based on the following relationship:

X� =
1

2σ
(C(u�)+−C(u�)) = − 1

2σ
C(u�)−, (18)

the primal optimal X� can be calculated from the dual opti-

mal u�.
Implementation We have used L-BFGS-B [26] for the

optimization of (12). All code is written in MATLAB (with

mex files) and the results are tested on a 2.7GHz Intel CPU.
The convergence tolerance settings of L-BFGS-B is set

to the default, and the number of limited-memory vectors is

set to 200. Because we need to calculate the value and gra-

dient of the dual objective function at each gradient-descent

step, a partial eigen-decomposition should be performed to

compute C(u)− at each iteration; this is the most computa-

tionally expensive part. The default ARPACK embedded in

MATLAB is used to calculate the eigenvectors smaller than

0. Based on the above analysis, a small σ will improve the

solution accuracy; but we find that the optimization prob-

lem becomes ill-posed for an extremely small σ, and more

iterations are needed for convergence. In our experiments,

σ is set within the range of [10−4, 10−2].

13121312131213141314

There are several techniques to speed up the eigen-

decomposition process for SDCut: (1) In many cases, the

matrix C(u) is sparse or structural, which leads to an effi-

cient way for calculating Cx for an arbitrary vector x. Fur-

thermore, because ARPACK only needs a callback function

for the matrix-vector multiplication, the process of eigen-

decomposition can be very fast for matrices with specific

structures. (2) As the step size of gradient-descent, ‖Δu‖1,

becomes significantly small after some initial iterations, the

difference ‖C(u)−C(u+Δu)‖1 turns to be small as well.

Therefore, the eigenspace of the current C is a good choice

of the starting point for the next eigen-decomposition pro-

cess. A suitable starting point can accelerate convergence

considerably.

After solving the dual using L-BFGS-B, the optimal

primal X� is calculated from the dual optimal u� based

on (18).

Finally, the optimal variable X� should be discretized to

the feasible binary solution x�. The discretization method is

dependent on specific applications, which will be discussed

separately in the section of applications.

In summary, the SDCut is solved by the following steps.

Step 1: Solve the dual problem (12) using L-BFGS-B,

based on the application-specific A, B, b and the σ cho-

sen by the user. The gradient of the objective function is

calculated through (17). The optimal dual variable u� is

obtained when the dual (12) is solved.

Step 2: Compute the optimal primal variable X� using (18).

Step 3: Discretize X� to a feasible binary solution x�.

Computational Complexity The complexity for eigen-

decomposition is O(n3) where n is the number of rows of

matrix A, therefore our method is O(kn3) where k is the

number of gradient-descent steps of L-BFGS-B. k can be

considered as a constant, which is irrelevant with the ma-

trix size in our experiments. Spectral methods also need

the computation of the eigenvectors of the same matrix A,

which means they have the same order of complexity with

SDCut. As the complexity of interior-point SDP solvers is

O(n6.5), our method is much faster than the conventional

SDP method.

Our method can be further accelerated by using faster

eigen-decomposition method: a problem that has been stud-

ied in depth for a long time. Efficient algorithms and well

implemented toolboxes have been available recently. By

taking advantage of them, SDCut can be applied to even

larger problems.

4. Applications
In this section, we show several applications of SDCut

in computer vision. Because SDCut can handle different

types of constraints (equality/inequality, linear/quadratic),

it can be applied to more problems than spectral methods.

Application 1: Graph Bisection

−2 −1 0 1 2

−2

−1

0

1

2

−2 −1 0 1 2

−2

−1

0

1

2

−2 −1 0 1 2

−2

−1

0

1

2

−2 −1 0 1 2

−2

−1

0

1

2

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

Original data NCut RatioCut SDCut
Figure 1: Results of 2d points bisection. The thresholds are set to the median of
score vectors. The two classes of points are shown in red ‘+’ and blue ‘◦’. RatioCut
and NCut fail to separate the points correctly, while SDCut succeeds.

Formulation Graph bisection is a problem of separat-

ing the vertices of a weighted graph into two disjoint sets

with equal cardinality, and minimize the total weights of

cut edges. The problem can be formulated as:

min
x∈{−1,+1}n

x�Lx, s.t. x�e = 0, (19)

where L = D −W is the graph Laplacian matrix, W is

the weighted affinity matrix, and D = diag(We) is the

degree matrix. The classic spectral clustering approaches,

e.g., RatioCut and NCut [20], are in the following forms:

RatioCut: min
x∈Rn

x�Lx, s.t. x�e = 0, ‖x‖22 = n, (20)

NCut: min
x∈Rn

x�L̃x, s.t. x�c = 0, ‖x‖22 = n, (21)

where L̃ = D−1/2LD−1/2 and c = D1/2e. The solutions

of RatioCut and NCut are the second least eigenvectors of

L and L̃, respectively. For (19), X = xx� satisfies:

diag(X) = e, and 〈X, ee�〉 = 0. (22)

Since x�Dx is constant for x ∈ {−1, 1}n, we have

min
x∈{−1,1}n

x�Lx⇐⇒ min
x∈{−1,1}n

x�(−W)x. (23)

By substituting −W and the constraints (22) into (6)

and (11), we then have the formulation of the conventional

SDP method and SDCut.

To obtain the discrete result from the solution X�, we

adopt the randomized rounding method in [4]: a score vec-

tor x�
r is generated from a Gaussian distribution with mean

0 and covariance X�, and the discrete vector x� ∈ {−1, 1}n
is obtained by thresholding x�

r with its median. This pro-

cess is repeated several times and the final solution is the

one with the highest objective value.

Experiments To show the new SDP formulation has bet-

ter solution quality than spectral relaxation, we compare the

bisection results of RatioCut, NCut and SDCut on two ar-

tificial 2-dimensional data. As shown in Fig. 1, the data in

the first row contain two point sets with different densities,

and the second data contain an outlier. The similarity matrix

W is calculated based on the Euclidean distance of points i

13131313131313151315

10
0

10
1

10
2

10
3

−100

−60

−40

−30

−20

Iteration

b
o
u
n
d

σ = 1e-01

σ = 5e-02

σ = 1e-02

σ = 1e-03

σ = 1e-04

Figure 2: The convergence of the objective value of the
dual (12), which can be seen as a lower bound. SDCut
is tested to bisect a random graph with 200 vertices and
0.5 density. The bound is better when σ is smaller.

600 800 1000 1250 1500 1750 2000

10
2

10
3

10
4

Number of vertices

A
ve

ra
ge

 C
PU

 ti
m

e
(s

)

SDCut
SeDuMi
SDPT3

600 800 1000 1250 1500 1750 2000

10
2

10
3

Number of vertices

A
ve

ra
ge

 C
PU

 ti
m

e
(s

)

SDCut Edge density = 0.2
SDCut Edge density = 0.5
SDCut Edge density = 0.8

Figure 3: Computation time for graph bisection. All the results are the average of 5 random graphs. Left:
Comparison of SDCut, SeduMi and SDPT3. Right: Comparison of SDCut under different edge densities. σ is set
to 10−3 in this case. SDCut is much more faster than the conventional SDP methods, and is faster when the graph
is sparse.

σ bound obj norm rank iters

10−1 −39.04 −20.55 55.05 18 59
5× 10−2 −29.91 −20.92 63.80 14 64
10−2 −22.93 −21.26 81.32 9 79
10−3 −21.45 −21.29 87.91 7 150
10−4 −21.31 −21.31 88.68 7 356

Table 1: Effect of σ. The lower bound, objective value 〈X�,−W〉, norm and rank
of X� and iterations are shown in each column. The number of variables is 19900
for SDP problems. The results correspond to Fig. 2. Better solution quality and more
iterations are achieved when σ becomes small.

and j:

Wij =

{
exp(−d(i, j)2/γ2) if d(i, j) < r
0, otherwise.

(24)

The parameter γ is set to 0.1 of the maximum distance. Ra-

tioCut and NCut fail to offer satisfactory results on both of

the data sets, possibly due to the loose bound of spectral re-

laxation. Our SDCut achieves better results on these data

sets.

Moreover, to demonstrate the impact of the parameter σ,

we test SDCut on a random graph with different σ’s. The

graph has 200 vertices and its edge density is 0.5: 50% of

edges are assigned with a weight uniformly sampled from

[0, 1], the other half has zero-weights. In Fig. 2, we show

the convergence of the objective value of the dual (12), i.e.

a lower bound of the objective value of the problem (6). A

smaller σ leads to a higher (better) bound. The optimal ob-

jective value of the conventional SDP method is −21.29.

For σ = 10−4, the bound of SDCut (−21.31) is very close

to the SDP optmial. Table 1 also shows the objective value,

the Frobenius norm and the rank of solution X�. With the

decrease of σ, the quality of the solution X is further opti-

mized (the objective value is smaller and the rank is lower).

However, the price of higher quality is the slow convergence

speed: more iterations are needed for a smaller σ.

Finally, experiments are performed to compare the com-

putation time under different conditions. All the times

shown in Fig. 3 are the mean of 5 random graphs when

σ is set to 10−3. SDCut, SeDuMi and SDPT3 are com-

pared with graph sizes ranging from 600 to 2000 vertices.

Our method is faster than SeDuMi and SDPT3 on all graph

sizes. When the problem size is larger, the speedup is more

significant. For graphs with 2000 vertices, SDCut runs 11.5
times faster than SDPT3 and 17.0 times faster than Se-

DuMi. The computation time of SDCut is also tested under

0.2, 0.5 and 0.8 edge density. Our method runs faster for

smaller edge densities, which validates that our method can

take the advantage of graph sparsity.

We also test the memory usage of MATLAB for SDCut,

SeDuMi and SDPT3. Because L-BFGS-B and ARPACK

use limited memory, the total memory used by our method

is also relatively small. Given a graph with 1000 ver-

tices, SDCut requires 100MB memory, while SeDuMi and

SDPT3 use around 700MB.

Application 2: Image Segmentation
Formulation In graph based segmentation, images are

represented by weighted graphs G(V,E), with vertices cor-

responding to pixels and edges encoding feature similarities

between pixel pairs. A partition x ∈ {−1, 1}n is optimized

to cut the minimal edge weights and results into two bal-

anced disjoint groups. Prior knowledge can be introduced

to improve performance, encoding by labelled vertices of a

graph, i.e., pixels/superpixels in an image. As shown in the

top line of Fig. 4, 10 foreground pixels and 10 background

pixels are annotated by red and blue markers respectively.

Pixels should be grouped together if they have the same

color; otherwise they should be separated.

Biased normalized cut (BNCut) [14] is an extension of

NCut [20], which considers the partial group information

of labelled foreground pixels. Prior knowledge is encoded

as a quadratic constraint on x. The result of BNCut is a

weighted combination of the eigenvectors of normalized

Laplacian matrix. One disadvantage of BNCut is that at

most one quadratic constraint can be incorporated into its

formulation. Furthermore, no explicit results can be ob-

tained: the weights of eigenvectors must be tuned by the

user. In our experiments, we use the parameters suggested

in [14].

Unlike BNCut, SDCut can incorporate multi-

ple quadratic constraints on x. In our method, the

partial group constraints of x are formulated as:

(t�fPx)2 ≥ κ‖t�fP‖21, (t�bPx)2 ≥ κ‖t�bP‖21 and

((tf − tb)
�Px)2 ≥ κ‖(tf − tb)

�P‖21, where κ ∈ [0, 1] .

tf , tb ∈ {0, 1}n are the indicator vectors of foreground and

background pixels. P = D−1W is the normalized affinity

13141314131413161316

Figure 4: Segmentation results on the Berkeley dataset. The top row shows the original images with partial labelled pixels. Our method (bottom) achieves better results than
BNCut (middle).

Methods BNCut SDCut SeDuMi SDPT3

Time(s) 0.258 23.7 372 329
obj −112.55 −116.10 −116.30 −116.32

Table 2: Results on image segmentation, which are the mean of results of images
in Fig. 4. SDCut has similar objective value with SeDuMi and SDPT3. σ is set to

10−2. obj = 〈x�x��,−W〉.

matrix, which smoothes the partial group constraints [25].

After lifting, the partial group constraints are:

〈Ptft
�
fP,X〉 ≥ κ‖t�fP‖21, (25a)

〈Ptbt
�
bP,X〉 ≥ κ‖t�bP‖21, (25b)

〈P(tf − tb)(tf − tb)
�P,X〉 ≥ κ‖(tf − tb)

�P‖21. (25c)

We have the formulations of the standard SDP and SDCut,

with constraints (22) and (25) for this particular application.

The standard SDP (6) is solved by SeDuMi and SDPT3.

Note that constraint (22) enforces the equal partition; af-

ter rounding, this equal partition may only be partially sat-

isfied, though. We still use the method in [4] to generate a

score vector, and the threshold is set to 0 instead of median.

Experiments We test our segmentation method on the

Berkeley segmentation dataset [16]. Images are converted

to Lab color space and over-segmented into SLIC superpix-

els using the VLFeat toolbox [24]. The affinity matrix W
is constructed based on the color similarities and spatial ad-

jacencies between superpixels:

Wij =

{
exp(−‖fi−fj‖22

σ2
f

− d(i,j)2

σ2
d

) if d(i, j)<r,

0 otherwise.

(26)

where fi and fj are color histograms of superpixels i, j, and

d(i, j) is the spatial distance between superpixels i, j.

From Fig. 4, we can see that BNCut did not accurately

extract foreground, because it cannot use the information

about which pixels cannot be grouped together: BNCut

only uses the information provided by red markers. In con-

trast, our method clearly extracts the foreground. We omit

the segmentation results of SeDuMi and SDPT3, since they

are similar with the one using SDCut. In Table 2, we com-

pare the CPU time and the objective value of BNCut, SD-

Cut, SeDuMi and SDPT3. The results are the average of the

five images shown in Fig. 4. In this example, σ is set to 10−2

for SDCut. All the five images are over-segmented into 760
superpixels, and so the numbers of variables for SDP are

the same (289180). We can see that BNCut is much faster

than SDP based methods, but with higher (worse) objective

values. SDCut achieves the similar objective value with Se-

DuMi and SDPT3, and is over 10 times faster than them.

Application 3: Image Co-segmentation

Formulation Image co-segmentation performs partition

on multiple images simultaneously. The advantage of co-

segmentation over traditional single image segmentation is

that it can recognize the common object over multiple im-

ages. Co-segmentation is conducted by optimizing two cri-

teria: 1) the color and spatial consistency within a single im-

age. 2) the separability of foreground and background over

multiple images, measured by discriminative features, such

as SIFT. Joulin et al. [7] adopted a discriminative cluster-

ing method to the problem of co-segmentation, and used a

low-rank factorization method [8] (denoted by LowRank) to

solve the associated SDP program. The LowRank method

finds a locally-optimal factorization X = YY�, where the

columns of Y is incremented until a certain condition is

met. The formulation of discriminative clustering for co-

segmentation can be expressed as:

min
x∈{−1,1}n

〈xx�,A〉, s.t. (x�δi)2<λ2, ∀i = 1, . . . , q, (27)

where q is the number of images and n =
∑q

i=1 ni is total

number of pixels. Matrix A = Ab + (μ/n)Aw, and Aw =
In−D−1/2WD−1/2 is the intra-image affinity matrix, and

13151315131513171317

Dataset horse face car-back car-front

#Images 10 10 6 6
#Vars of BQPs (27) 4587 6684 4012 4017

Time(s)
LowRank 1724 3587 2456 2534
SDCut 430.3 507.0 251.1 1290

obj
LowRank −4.90 −4.55 −4.19 −4.15
SDCut −5.24 −4.94 −4.53 −4.27

rank
LowRank 17 16 13 11
SDCut 3 3 3 3

Table 3: Performance comparison of LowRank [8] and SDCut for co-segmentation.
SDCut achieves faster speeds and better solution quality than LowRank, on all the

four datasets. obj = 〈x�x��,A〉.σ is set to 10−4.

Abλk(I−ene�n/n)(nλkIn+K)−1(I−ene�n/n) is the inter-

image discriminative clustering cost matrix. W is a block-

diagonal matrix, whose ith block is the affinity matrix (26)

of the ith image, and D = diag(Wen). K is a kernel

matrix, which is based on the χ2−distance of SIFT features:

Klm = exp(−∑k
d=1((x

l
d − xm

d)2/(xl
d + xm

d))). Because

there are multiple quadratic constraints, spectral methods

are not applicable to problem (27).

The constraints for X = xx� are:

diag(X) = e, 〈X, δiδ
�
i 〉 ≤ λ2, ∀i = 1, . . . , q. (28)

We then introduce A and the constraints (28) into (6)

and (11) to get the associated SDP formulation.

The strategy in LowRank is employed to recover a score

vector x�
r from the solution X�, which is based on the

eigen-decomposition of X�. The final binary solution x�

is obtained by thresholding x�
r (comparing with 0).

Experiments The Weizman horses1 and MSRC2

datasets are used for this image co-segmentation. There are

6 ∼ 10 images in each of four classes, namely car-front,

car-back, face and horse. Each image is oversegmented to

400∼ 700 SLIC superpixels using VLFeat [24]. The num-

ber of superpixels for each image class is then increased to

4000∼7000.

Standard toolboxes like SeDuMi and SDPT3 cannot han-

dle such large-size problems on a standard desktop. We

compare SDCut with the LowRank approach. In this ex-

periment, σ is set to 10−4 for SDCut. As we can see in

Table 3, the speed of SDCut is about 5.7 times faster than

LowRank on average. The objective values (to be mini-

mized) of SDCut are lower than LowRank for all the four

image classes. Furthermore, the solution of SDCut also has

lower rank than that of LowRank for each class. For car-

back, the largest eigenvalue of the solution for SDCut has

81% of total energy while the one for LowRank only has

56%.

Fig. 5 visualizes the score vector x�
r on some sample

images. The common objects (cars, faces and horses) are

identified by our co-segmentation method. SDCut and

LowRank achieve visually similar results in the experi-

ments.

1http://www.msri.org/people/members/eranb/
2http://www.research.microsoft.com/en-us/

projects/objectclassrecognition/

Figure 5: Co-segmentation results on Weizman horses and MSRC datasets. The
original images, the results of LowRank and SDCut are illustrated from top to bottom.
LowRank and SDCut produce similar results.

Application 4: Image Registration
Formulation In image registration, K source points

must be matched to L target points, where K < L. The

matching should maximize the local feature similarities of

matched-pairs and also the structure similarity between the

source and target graphs. The problem is expressed as a

BQP, as in [18]:

min
x∈{0,1}KL

h�x+ αx�Hx, (29a)

s.t.
∑

j xij = 1, ∀i = 1, . . . ,K, (29b)∑
i xij ≤ 1, ∀j = 1, . . . , L, (29c)

where xij = x(i−1)L+j = 1 if the source point i is matched

to the target point j; otherwise 0. h ∈ R
KL records the

local feature similarity between each pair of source-target

points; Hij,kl = exp(−(dij − dkl)
2/σ2) encodes the struc-

tural consistency of source points i, j and target points k, l.
By adding one row and one column to H and X = xx�,

we have: Ĥ = [0, 0.5h�; 0.5h, αH], X̂ = [1, x�;x, X].

Schellewald et al. [18] formulate the constraints for X̂ as:

X̂11 = 1, (30a)

2 · diag(X) = X�1: +X:1, (30b)

N · diag(X) = eK , (30c)

M ◦X = 0, (30d)

where N = IK ⊗ e�L and M = IK ⊗ (eLe
�
L − IL) +

(eKe�K − IK) ⊗ IL . Constraint (30b) arises from the

fact that xi = x2
i ; constraint (30c) arises from (29b); con-

straint (30d) avoids undesirable solutions that match one

point to multiple points. The SDP formulations are obtained

by introducing into (6) and (11) the matrix Ĥ and the con-

straints (30a) to (30d). In this case, the BQP is a {0, 1}-
problem, instead of {−1, 1}-problem. Based on (29b),

13161316131613181318

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.6
−0.4

−0.2
0

0.2
0.4

−1

−0.5

0

0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

−0.5

0

0.5

−0.5

0

0.5
−0.6

−0.4

−0.2

0

0.2

0.4

−0.5

0

0.5

−0.5

0

0.5
−0.5

0

0.5

−0.1
−0.05

0
0.05

0.1

0

0.05

0.1

0.15

0.2
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

−0.55
−0.5

−0.45
−0.4

−0.35

−0.1

−0.05

0

0.05

0.1
0.25

0.3

0.35

0.4

0.45

−0.1
−0.05

0
0.05

0.1

0

0.05

0.1

0.15

0.2
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

source points target points matching results

Data 2d-toy 3d-toy bunny

variables in BQP (29) 450 450 2500

Time(s)

SDCut 16.1 19.0 412
SeDuMi 2828 3259 > 10000
SDPT3 969 981 > 10000

Figure 6: Registration results. For 2d (top row) and 3d (middle row) artificial data,
15 source points are matched to a subset of 30 target points. For bunny data (bottom
row), there are 50 source points and 50 target points. σ is set to 10−4.

η = trace(X̂) = K+1. The binary solution x� is obtained

by solving the linear program:

max
x∈RKL

x�diag(X�), s.t. x ≥ 0, (29b), (29c), (31)

which is guaranteed to have integer solutions [18].

Experiments We apply our registration formulation on

some toy data and real-world data. For toy data, we firstly

generate 30 target points from a uniform distribution, and

randomly select 15 source points. The source points are ro-

tated and translated by a random similarity transformation

y = Rx + t with additive Gaussian noise. For the Stan-

ford bunny data, 50 points are randomly sampled and simi-

lar transformation and noise are applied. σ is set to 10−4.

From Fig. 6, we can see that the source and target points

are matched correctly. For the toy data, our method runs

over 170 times and 50 times faster than SeDuMi and SDPT3

respectively. For the bunny data with 3126250 variables,

SDCut spends 412 seconds and SeDuMi/SDPT3 did not

find solutions after 3 hours running. The improvements on

speed for SDCut is more significant than previous experi-

ments. The reason is that the SDP formulation for registra-

tion has much more constraints, which slows down SeDuMi

and SDPT3 but has much less impact on SDCut.

Conclusion In this paper, we have presented an efficient

semidefinite formulation (SDCut) for BQPs. SDCut pro-

duces a similar lower bound with the conventional SDP for-

mulation, and therefore is tighter than spectral relaxation.

Our formulation is easy to implement by using the L-BFGS-

B toolbox and standard eigen-decomposition software, and

therefore is much more scalable than the conventional SDP

formulation. We have applied SDCut to a few computer vi-

sion problems, which demonstrates its flexibility in formu-

lation. Experiments also show the computational efficiency

and good solution quality of SDCut. We have made the code

available online3.
Acknowledgements This work was in part supported by

ARC Future Fellowship FT120100969 and ARC project

DP120101172. Correspondence should be address to C.

Shen.

References
[1] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University

Press, 2004.
[2] T. Cour and J. Bo. Solving markov random fields with spectral relaxation. In

Proc. Int. Conf. Artificial Intelligence & Statistics, 2007.
[3] T. Cour, P. Srinivasan, and J. Shi. Balanced graph matching. In Proc. Adv.

Neural Info. Process. Systems, pages 313–320, 2006.
[4] M. X. Goemans and D. Williamson. Improved approximation algorithms for

maximum cut and satisfiability problems using semidefinite programming. J.
ACM, 42:1115–1145, 1995.

[5] S. Guattery and G. Miller. On the quality of spectral separators. SIAM J. Matrix
Anal. Appl., 19:701–719, 1998.

[6] M. Heiler, J. Keuchel, and C. Schnorr. Semidefinite clustering for image seg-
mentation with a-priori knowledge. In Proc. DAGM Symp. Pattern Recogn.,
pages 309–317, 2005.

[7] A. Joulin, F. Bach, and J. Ponce. Discriminative clustering for image co-
segmentation. In Proc. IEEE Conf. Comput. Vis. & Pattern Recogn., 2010.

[8] M. Journee, F. Bach, P.-A. Absil, and R. Sepulchre. Low-rank optimization on
the cone of positive semidefinite matrices. SIAM J. Optimization, 20(5), 1999.

[9] R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad and spectral.
J. ACM, 51:497–515, 2004.

[10] J. Keuchel, C. Schnoerr, C. Schellewald, and D. Cremers. Binary partition-
ing, perceptual grouping and restoration with semidefinite programming. IEEE
Trans. Pattern Analysis & Machine Intelligence, 25(11):1364–1379, 2003.

[11] N. Krislock, J. Malick, and F. Roupin. Improved semidefinite bounding proce-
dure for solving max-cut problems to optimality. Math. Program. Ser. A, 2013.
Published online 13 Oct. 2012 at http://doi.org/k2q.

[12] K. J. Lang. Fixing two weaknesses of the spectral method. In Proc. Adv. Neural
Info. Process. Systems, pages 715–722, 2005.

[13] F. Lauer and C. Schnorr. Spectral clustering of linear subspaces for motion
segmentation. In Proc. Int. Conf. Comput. Vis., 2009.

[14] S. Maji, N. K. Vishnoi, and J. Malik. Biased normalized cuts. In Proc. IEEE
Conf. Comput. Vis. & Pattern Recogn., pages 2057–2064, 2011.

[15] J. Malick. The spherical constraint in boolean quadratic programs. J. Glob.
Optimization, 39(4):609–622, 2007.

[16] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and
measuring ecological statistics. In Proc. IEEE Conf. Comput. Vis. & Pattern
Recogn., volume 2, pages 416–423, 2001.

[17] C. Olsson, A. Eriksson, and F. Kahl. Solving large scale binary quadratic prob-
lems: Spectral methods vs. semidefinite programming. In Proc. IEEE Conf.
Comput. Vis. & Pattern Recogn., pages 1–8, 2007.

[18] C. Schellewald and C. Schnörr. Probabilistic subgraph matching based on con-
vex relaxation. In Proc. Int. Conf. Energy Minimization Methods in Comp. Vis.
& Pattern Recogn., pages 171–186, 2005.

[19] C. Shen, J. Kim, and L. Wang. A scalable dual approach to semidefinite metric
learning. In Proc. IEEE Conf. Comput. Vis. & Pattern Recogn., pages 2601–
2608, 2011.

[20] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans.
Pattern Analysis & Machine Intelligence, 22(8):888–905, 8 2000.

[21] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones. Optimizat. Methods & Softw., 11:625–653, 1999.

[22] K. C. Toh, M. Todd, and R. H. Ttnc. SDPT3—a MATLAB software package for
semidefinite programming. Optimizat. Methods & Softw., 11:545–581, 1999.

[23] P. Torr. Solving markov random fields using semi definite programming. In
Proc. Int. Conf. Artificial Intelligence & Statistics, 2007.

[24] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of com-
puter vision algorithms. http://www.vlfeat.org/, 2008.

[25] S. X. Yu and J. Shi. Segmentation given partial grouping constraints. IEEE
Trans. Pattern Analysis & Machine Intelligence, 26(2):173–183, 2004.

[26] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-BFGS-B: For-
tran subroutines for large-scale bound-constrained optimization. ACM Trans.
Mathematical Software, 23(4):550–560, 1997.

3http://cs.adelaide.edu.au/˜chhshen/projects/
BQP/

13171317131713191319

