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Abstract

This paper considers the problem of reconstructing the
shape of thin, texture-less objects such as leafless trees when
there is noise or deterministic error in the silhouette ex-
traction step or there are small errors in camera calibra-
tion. Traditional intersection-based techniques such as the
visual hull are not robust to error because they penalize
false negative and false positive error unequally. We pro-
vide a voxel-based formalism that penalizes false negative
and positive error equally, by casting the reconstruction
problem as a pseudo-Boolean minimization problem, where
voxels are the variables of a pseudo-Boolean function and
are labeled occupied or empty. Since the pseudo-Boolean
minimization problem is NP-Hard for nonsubmodular func-
tions, we developed an algorithm for an approximate so-
lution using local minimum search. Our algorithm treats
input binary probability maps (in other words, silhouettes)
or continuously-valued probability maps identically, and
places no constraints on camera placement.

The algorithm was tested on three different leafless trees
and one metal object where the number of voxels is 54.4
million (voxel sides measure 3.6 mm). Results show that our
approach reconstructs the complicated branching structure
of thin, texture-less objects in the presence of error where
intersection-based approaches currently fail.1

1. Introduction

The reconstruction of thin, texture-less objects such as

leafless trees is a necessary step for agricultural applications

such as robotic pruning. In these applications, the exact

shape of the object is not known a priori, but it is known

1Mention of trade names or commercial products in this publication is

solely for the purpose of providing specific information and does not imply

recommendation or endorsement by the U.S. Department of Agriculture.

USDA is an equal opportunity provider and employer.

(a) Original image (b) Silhouette Probability Map

(c) Visual Hull reconstruction (d) Our reconstruction

Figure 1. [Best viewed color.] The goal of this paper is to

reconstruct the shape of leafless trees in the presence of sil-

houette extraction and camera calibration error. Left: VH re-

construction. Right: reconstruction using our algorithm. Re-

sults throughout this document are displayed with Meshlab

(http://meshlab.sourceforge.net, developed with support from the

3D-CoForm project).

that the objects do not contain concavities.2 For these rea-

sons, we pursue a Shape from Silhouette (SfS) method for

reconstructing thin, texture-less objects from images.

The visual hull (VH) is a type of SfS reconstruction gen-

erated by intersecting the backprojected silhouette view-

2A concavity in the 3D sense is an egg-shaped depression in the surface

of the object.
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ing cones of N cameras [16]. The VH reconstruction

can be implemented in fast algorithms for either voxel-

based or polyhedral-based representations ([5],[7],[9],[17],

[19],[20]), and allows the use of silhouettes when other fea-

tures are not available or reliable.

In real-world applications, silhouette or camera calibra-

tion error is often present, and the VH approach is ill-

equipped to deal with this error, particularly false negatives

(false negatives are pixels that are marked background but

represent the target object). Reconstructions of thin objects

are particularly sensitive to the effects of silhouette errors,

whether from silhouette extraction errors, noise, or camera

calibration error, because the two-dimensional projections

of thin objects may be only a few pixels wide. As a result,

small errors in silhouette extraction can have large effects

on the accuracy of a VH reconstruction. In addition, voxel

and pixel resolution settings, even when silhouettes are ac-

curate, can produce VH reconstructions that fail to recon-

struct many portions of thin objects.

When a reconstruction resembles the original object, we

call it a representative reconstruction. Given these prelim-

inaries, a statement of our problem is: assuming silhouette

and camera calibration error is present, generate represen-

tative reconstructions of thin, texture-less objects from sil-

houette images. We consider a solution to this problem to

be the final step of a three-dimensional reconstruction sys-

tem, as the various characterisitics of the objects we con-

sider means that photoconsistency approaches will recover

little useful information about the shape of the object.

The set of input silhouettes may take one of two differ-

ent forms. In the first, silhouette images are binary-valued.

We call this problem the Shape from Inconsistent Silhou-

ette (SfIS) problem.3 The second is Shape from Silhou-

ette Probability Maps (SfSPM); instead of binary silhou-

ettes, silhouette probability maps (SPM) are given as input,

where the probalities that the pixels represent the object are

continuously-valued. SPMs are used to avoid making early

committments to one label or the other. In this paper, SfIS

is considered a special case of the SfSPM problem, where

the probabilites are restricted to binary values.

Our approach to SfSPM is to penalize false positive and

false negative SPM error equally. To that end, we give

a pseudo-Boolean error function (f : B
n �→ R, where

B = {0, 1} and R denotes the set of real numbers) that char-

acterizes the match between the SPMs and the reconstruc-

tion as the pixel-by-pixel differences between the SPMs and

the image of the reconstruction. This error function penal-

izes false positive and false negative error equally, unlike

the VH approach.

The error function is non-submodular, and to minimize a

non-submodular pseudo-Boolean function is NP-Hard (un-

3What we call SfIS is the same as Landabaso et al’s SfS-IS (Shape from

Silhouette with Inconsistent Silhouettes) [15].

less P=NP).4 Consequently, we focus on local minimum

search methods to find representative reconstructions from

SPMs, and describe a local minimum search algorithm that

uses heuristics developed for SfSPM. Experimental results

on three different trees and one metal object are shown in

§4. These results show that our solution is a great improve-

ment over the existing intersection-based approaches, as it

reconstructs the complicated branching structure of trees,

even under silhouette extraction and camera calibration er-

ror.

Our contributions to the state-of-the-art on SfIS, SfSPM,

and the reconstruction of thin, textureless objects are as fol-

lows:

1. The formulation of the SfSPM (and by extension, SfIS)

problem as a pseudo-Boolean optimization problem

where false negative and false positive error is equally

weighted.

2. Introduce local minimum search algorithms of pseudo-

Boolean optimization to the SfSPM problem and show

how heuristics developed for SfSPM allow for lower

values of the error function to be found.

3. A reconstruction method that produces representative

reconstructions of thin, texture-less objects in the pres-

ence of silhouette extraction and camera calibration er-

ror.

1.1. Related work

Recent works on SfIS and SfSPM have sought to com-

pensate for the problems of VH approaches by delaying de-

cisions about a voxel’s label until more information about

the voxel can be gained. All of these works use a voxel-

based representation for the reconstruction. They can be

divided into three main categories: sensor fusion, proba-

bilistic, and minimization of silhouette inconsistency ap-

proaches.

In the sensor fusion approach, an observation is repre-

sented using a sensor model, and then the model informa-

tion is fused to determine voxel occupancy probabilities.

Franco and Boyer [8] used a forward sensor model for each

pixel in order to jointly infer voxel occupancy probabilities

from all pixels. Dı́az-Más et al [6] fused sensor uncertanity

models using Dempster-Shafer theory. Guan et al [11] de-

tected static occluding objects by using a Bayesian sensor

formulation for voxels, and later, fusing the information to

determine the location of occluders.

The next category concerns probabilistic methods. Che-

ung et al [4] proposed a projection test called SPOT, or

Sparse Pixel Occupancy Test, which attempts to increase

speed and reduce the effects of segmentation noise. Land-

abaso et al [15] extended the ideas of [4] concerning projec-

tion tests with the Sampled Projection Test with a different

4See §2.1 for a more in-depth discussion.
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error function. Also, in [15], the authors propose a method

called the unbiased hull that compensates for silhouette er-

ror by classifying voxels that backproject to a minimum

number of silhouettes T � as occupied (while taking into ac-

count occlusion by the visual hull). T � is found by min-

imizing an error function that describes the probability of

voxel misclassification.

Our work is most closely aligned with that of Haro and

Pardás [13]. Their approach is to minimize an approxima-

tion of the silhouette inconsistency error, where the func-

tion used depends on whether the SfIS or SfSPM problem

is being considered. They consider voxels as continuously-

valued variables in the range of 0 and 1, and seek a min-

imum by gradient descent. Binary voxel labels are deter-

mined by a threshold. In comparison, our approach uses

a closed-form, exact silhouette inconsistency error function

which is identical for SfIS and SfSPM and considers voxel

labels as Boolean during the minimization process, and is

not dependent on the setting of parameters or thresholds.

2. Formulation of the pseudo-Boolean error
function

We represent the difference between SMPs and images

of any reconstruction as a closed-form pseudo-Boolean

function.

The pseudo-Boolean error function is formulated over a

set of voxels x = {x0, x1, ...., xn−1}. A voxel is empty if

its label is 1, and occupied if its label is 0. Note that this

labeling is the reverse of most other literature on this sub-

ject, and is only done to make the function simpler. For

instance, if we had labeled empty voxels 0 and occupied

voxels 1, all of the variables (xi) would have been negated

(x̄i). By simply switching the labels, the formulation of the

error function is more straightforward as it consists exclu-

sively of non-negated variables.

Let an individual pixel in a SPM be pi. ri is the value

of the reconstruction image pixel at the same location as

pi. Since the labels of occupied and empty are reversed for

voxels, we also reverse the usual labeling for pixels. Con-

sequently, the value of pi represents the probability that pi

is viewing background. For example, if pi = 0, then pi is

viewing the object with one hundrend precent probability

P (pi = object) = 1, and if ri = 0, then ri back-projects to

the reconstruction where voxels are labeled occupied.5

Given voxel labeling x, the value of reconstruction pix-

els can be found. Let Spi
be the set of voxels that are in-

tersected by a viewing ray from pixel pi. Then the label of

reconstruction image pixel ri is

5Pixel probabilities are binary for the SfS-IS problem, and

continuously-valued for the SfSPM problem.

ri =
∏

xa∈Spi

xa (1)

In other words, ri = 1, representing background, only if

all voxels viewed by pi are empty.

The Silhouette Inconsistency Error (SIE) function rep-

resents the differences between reconstruction images and

silhouette probability maps. For SPMs and reconstruction

image pair of pixels pi and ri,

SIE(pi, ri) = |pi − ri| (2)

Before presenting the general formula for the SfSPM

problem, we will first represent |pi − ri| as a pseudo-

Boolean function by considering the two cases of the SfIS

problem: when pi is 0 (a silhouette pixel) or when pi is 1 (a

non-silhouette pixel), and substituting for ri as in Eq 1:

SIE(pi,x) =

{∏
xa∈Spi

xa pi = 0,

1−∏
xa∈Spi

xa pi = 1
(3)

We now represent |pi−ri| as a pseudo-Boolean function

for the general case that pi is continuously-valued (pi ∈
[0, 1]):

SIE(pi,x) =(1− pi)
∏

xa∈Spi

xa + pi(1−
∏

xa∈Spi

xa) (4)

SIE(pi,x) =pi − (1− 2pi)
∏

xa∈Spi

xa (5)

For the special case that pi ∈ {0, 1}, Eq. 5 is equivalent

to Eq. 3.

SIE for a set of input images I is the sum of the SIE error

of the individual pixels as in Eq 6.

SIE(I,x) =
∑
pi∈I

SIE(pi,x) (6)

As mentioned in §1, the SIE portion of the cost func-

tion treats false positive and false negative errors equally.

We will now show how traditional intersection-based ap-

proaches treat these types of error, with reference to our

error function SIE, as applied to the SfIS problem.

First we split SIE(I,x) into two parts: the false positive

error (FP ) and the false negative error (FN ). If a pixel

pi is part of the silhouette (0) and the reconstruction image

pixel ri is 1, then pi is a false positive. The opposite case is

a false negative. Then the false positive and false negative

error is
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FP (I,x) =
∑

pi∈I,pi=0

SIE(pi,x) (7)

FN(I,x) =
∑

pi∈I,pi=1

SIE(pi,x) (8)

SIE(I,x) =FP (I,x) + FN(I,x) (9)

In the VH approach, the false negative error is zero: all non-

silhouette pixels project to empty voxels. We can conclude

that the VH approach minimizes false negative error, set-

ting it to zero, while ignoring false positive error. We can

represent the VH approach in terms of a pseudo-Boolean

function as follows, where M is a very large constant, such

as the number of pixels in all images.

SIEvh(I,x) = FP (I,x) + M · FN(I,x) (10)

The global minimum of SIEvh is the VH reconstruc-

tion, where false positive and false negative errors are un-

equally weighted. As a result, false negative pixels have a

disproportionally large impact on the VH reconstruction as

compared to false positive pixels.

2.1. Complexity of minimizing SIE

Provided that there is at least one pixel in the SPMs

where P (pi = object) > P (pi = background), SIE
is nonsubmodular. Finding the global minimum of nonsub-

modular pseudo-Boolean functions is a NP-Hard problem

([3]). We mention that the global minimum of submodular

pseudo-Boolean functions can be found in polynomial time

by using graph cut methods, such as the algorithm by Kol-

mogorov and Zabin [14] or QPBO [12]; QPBO may also

find some labels for variables of nonsubmodular functions

when the function is quadratic. Even after reduction to a

quadratic pseudo-Boolean function, graph cut methods such

as QPBO [12] are unable to label any voxel for SIE in Eq.

6, even when there is a small number of voxels, such as

50. For these reasons, in the next section we describe an

approximation solution to minx SIE(x) that finds a local

minimum given an initial voxel labeling.

3. Local minimim search
The search from a local minimum is a method borrowed

from the optimization community. A more in-depth discus-

sion can be found in [3], which is the source of our discus-

sion on the topic.

First we begin with a definition of a local minimum for

a pseudo-Boolean function f . For a labeling of voxels x,

there is a neighborhood N of other labelings y, where y
is equal to x except that the label of one voxel differs be-

tween the two labelings. A particular labeling x is called

a local minimum if there are no other labelings y in the

neighborhood of x that have a lower value of f than x
does. In other words, x is a local minimum if and only

if f(x) ≤ f(y) ∀y ∈ N (x).
This property of local minima can be stated in terms of

partial first derivatives as follows. Let ∂f
∂xi

be the partial

first derivative of f with respect to xi. Then, x is a local

minimum if and only if for each voxel xi of x the following

is satisfied:

xi =

{
1 if ∂f

∂xi
(x) ≤ 0

0 if ∂f
∂xi

(x) ≥ 0
(11)

In order to find a local minimum given an initial label-

ing x(0), the labels of individual voxels are changed until

Eq 11 is satisfied for all voxels. This process to find a lo-

cal minimum xmin for f , when f = SIE, is presented in

pseudocode by algorithm LOCAL-MIN-SEARCH, Alg 1.

Algorithm 1 LOCAL-MIN-SEARCH(f(·)), x(0), c)

Require: c = f(x(0))
1: n = number of voxels

2: k = 0
3: while x(k) is not a local minimum do
4: for all i = 0 to n do
5: condition0 = ∂f

∂xi
(x(k)) < 0 and x

(k)
i = 0

6: condition1 = ∂f
∂xi

(x(k)) > 0 and x
(k)
i = 1

7: if condition0 or condition1 then
8: x(k+1) = x(k)

9: x
(k+1)
i = ¬x

(k)
i

10: c = c− | ∂f
∂xi

(x(k))|
11: k = k + 1
12: end if
13: end for
14: end while
15: return local minimum x(k), value of f at x(k), c

Local minimum search is similar to Iterated Condition-

ing Modes, or ICM, which has been used to minimize en-

ergy functions in vision ([2], [10], and comparison to other

techniques for energy minimization [21]).

3.1. Local minimum searches for SfSPM

For any value c, where SIE(x) = c, there are many dif-

ferent labelings y such that SIE(y) = c. This observation

is similar to that of the traditional VH theory as presented

by Laurentini [16]. In the VH theory, there are many label-

ings of voxels that are silhouette consistent. However, the

VH is chosen to be the labeling with the greatest volume.

In our alteration of the local minima search, we also specify

that any local minima xmin where SIE(xmin) = c have

the greatest volume labeling out of all labelings y where
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SIE(y) = c. We refer to this as the greatest volume prop-
erty.

We require that the local minimum labeling xmin has

the greatest volume property because of the following situ-

ation, as shown in Fig 2a. In that figure, Camera 0 has no

silhouette error, as silhouette pixels from Camera 0 project

to at least one of the three occupied voxels. Camera 1 has

some false negative error from voxel v. If voxel v is re-

moved as in Fig 2b, the false negative error for Camera 1

will decrease by e1, but the false positive error for Camera

0 will increase by e0, e0 > e1. Because of this type of

deadlock, voxel v will never be removed during algorithm

LOCAL-MIN-SEARCH.

Since the local minimum search is done iteratively, thin

protrusions and isolated voxels in the local minimum, like

those in Fig. 2a are common, and the local minimum search

would frequently stall on these types of labelings. However,

by altering the local minimum search to require that local

minima have the greatest volume property, it is possible to

avoid getting trapped in minima with high values of SIE.

We will illustrate this process in Fig. 2c. Here, the voxel

labeling has the same value of SIE, c, as in Fig. 2a, though

Fig. 2c represents the maximal labeling for SIE(x) = c.

Then when we test whether or not to change voxel v’s label

to empty, we can see in Fig. 2d that the value of SIE de-

creases by e1, since the false negative error is removed for

Camera 1 and Camera 0 has no error.

To alter LOCAL-MIN-SEARCH for SfSPM, we sim-

ply change the conditions on line 6 so that vox-

els with ∂f
∂xi

(x(k)) ≥ 0 and x
(k)
i = 1 will have

their labels changed. We call this altered algorithm

LOCAL-MIN-SEARCH-SFSPM.

4. Experiments

4.1. Implementation details

We have implemented LOCAL-MIN-SEARCH-SFSPM

in C++, on a machine with 8 Intel Xeon processors at 2.4

GHz and 36 GB RAM. The success of many optimization

search methods depends heavily on the starting point of the

search, and we found that LOCAL-MIN-SEARCH-SFSPM

is sensitive to the initial labeling x(0). In our implemen-

tation, we set x(0) to the visual hull labeling. Algorithm

LOCAL-MIN-SEARCH-SFSPM will also return different

results depending on the order in which voxels are tested

(Alg. 1, line 4 has the voxel indices tested in increasing or-

der). We found that randomizing the voxel indices for test-

ing on every iteration (at the while loop on line 3 of Alg.

1) produced better results with lower values of SIE than a

fixed ordering.
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Figure 2. [Best viewed in color] Example in 2D illustrating the

need for an altered local minimum search for SfSPM. There are

two 1D cameras, Camera 0 and Camera 1. The regions of both

cameras that represent silhouette regions are denoted with an S,

and the viewing rays on the boundary of S are black lines. Camera

0’s entire image consists of silhouette pixels, while Camera 1 has

two non-silhouette regions, one either side of a central silhouette

region. Gray lines represent the boundary of Camera 1.

4.2. Experiments on trees and thin metal object

Our tests were conducted on three different leafless trees

with different branching characteristics. The trees were re-

moved from a research orchard plot, defoliated for use in

the tests, and mounted in a stand. We also experimented

with a less complicated object: a metal pole with a cop-

per coil suspended from the pole. All of these experiments

used the same camera configuration, which consisted of 10

low-cost webcameras and 20 industrial cameras, both with

image size 640x480 pixels, mounted on one wall and ceil-

ing and pointed toward the area where the trees and metal

object would be placed. The webcams had a larger field of

view than the industrial cameras, and inspecting the camera

calibration matrices for both types of cameras showed that

the focal length in terms of pixel dimensions for the web-

cameras was half that of the industrial cameras. Because

the size of the tree was large (roughly 2 meters high by 2

meters wide), many cameras only viewed a portion of the

tree.

We acquired silhouettes and silhouette probability maps

through background subtraction (reviews and evaluations

are given in [1] and [18]). We acquired 50 images of the

scene without the objects and modeled each pixel as one

Gaussian distribution. Then, we compared images acquired
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with the object in the scene and the background model, then

assigned a probability that each pixel represented the object.

For the silhouette probability maps, we discretized the con-

tinuous range [0, 1] into 256 values for ease in displaying

the silhouette probability maps as unsigned 8-bit integer im-

ages. The silhouette probability maps were thresholded at

0.5 to produce silhouettes for the experiments. In this man-

ner, we were able to compare the results of our algorithm

for the SfIS problem by using the silhouettes and the SfSPM

problem by using the silhouette probability maps, when the

silhouettes and silhouette probability maps are derived from

the same background model.

Since we used a background subtraction method to ex-

tract silhouettes, silhouette error resulted from the fol-

lowing: the target object matched the background color,

shadow effects, thin object regions relative to pixel size, and

image sensor noise. Camera calibration was performed us-

ing a custom-made calibration rig with seven different cal-

ibration patterns so that all cameras could be calibrated to

the same world coordinate frame. However, the calibration

error was dependent on the camera’s location with respect

to the calibration rig and the images used for calibration,

and some cameras did have higher calibration error than

others (average error for external parameters ranged from

0.2-10 pixels, and the webcameras had greater calibration

error than the industrial cameras, as was expected). While

this error was small, since the objects to be tested were quite

thin, the camera calibration error did have a large effect on

the quality of a visual hull reconstruction.

The number of voxels in SIE was 54.4 million (voxel

sides measured 3.6 mm) and the number of terms was 8.6
million. The degree of SIE was 975 for all of the tests.

The LOCAL-MIN-SEARCH-SFSPM algorithm was imple-

mented in parallel and run times ranged from 16-40 min-

utes, depending on the dataset. The number of iterations

for the while loop at line 3 of LOCAL-MIN-SEARCH was

14-16, depending on the dataset.

4.3. Evaluation and Discussion

Results for the four datasets are shown in Figs. 3 - 6. The

reconstructions using our approach for both the SfIS and

SfSPM problems offer a great improvement over the tradi-

tional visual hull approach. Our approach reconstructs very

complicated branching structure in the presence of small

camera calibration error and silhouette extraction error. A

negative aspect of our approach is the small noisy regions

in the reconstruction, which could be removed with some

post-processing techniques.6

While the values of SIE may differ by 100, 000 or more

for the SfIS versus SfSPM problems, we found that the re-

constructions are largely the same. We hypothesize that

6Our results are shown without postprocessing other than to smooth the

voxels into a surface.

the small differences between the SfIS and SfSPM recon-

structions are an artifact of the random order for voxel test-

ing (as mentioned §4.1) rather than of using binary versus

continuously-valued silhouette probability maps.

We compared our approach to SPOT [4] and Unbiased

Hull from Landabaso et al [15], where the choice of pro-

jection test was SPOT. While SPOT works well for noisy

silhouettes of thicker objects such as humans, SPOT does

not reconstruct branching structure. The unbiased hull ap-

proach was able to reconstruct more of the large-scale fea-

tures of the tree than SPOT, but it introduced artifacts near

the boundaries of image viewing regions and misses small-

scale features of branches. In the absence of occlusion by

the visual hull, which is typical in our datasets, the unbi-

ased hull approach classifies voxels that backproject to a

minimum number of silhouettes T � as occupied; T � is se-

lected by exhaustively evaluating the cost function for each

possible value of T �. Larger-scale details exert a greater

influence over the value of the cost function than fine de-

tails in the unbiased hull approach, so larger branches are

reconstructed and smaller branches are not. Our recon-

structions are more representative of the original object

than the intersection-based comparison methods because

our method does not assume that one threshold, such as T �,

will be applicable to all voxels.

5. Closing remarks
We presented an algorithm for reconstructing thin, tex-

tureless objects from silhouette probability maps or silhou-

ettes by formulating the difference between input and recon-

struction images as a pseudo-Boolean minimization prob-

lem. We were able to reconstruct the objects with greater

fidelity than the tradiional visual hull technique. Our ap-

proach is flexible in that it is not dependent on the number

of cameras or the characteristics of those cameras. As a re-

sult, we were able to successfully use a mixture of high-cost

and low-cost cameras with varying degrees of accuracy for

reconstruction.
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Figure 5. Dataset Tree C.
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