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Abstract

In this work, we propose an exemplar-based face image
segmentation algorithm. We take inspiration from previous
works on image parsing for general scenes. Our approach
assumes a database of exemplar face images, each of which
is associated with a hand-labeled segmentation map. Given a
test image, our algorithm first selects a subset of exemplar im-
ages from the database, Our algorithm then computes a non-
rigid warp for each exemplar image to align it with the test
image. Finally, we propagate labels from the exemplar images
to the test image in a pixel-wise manner, using trained weights
to modulate and combine label maps from different exemplars.
We evaluate our method on two challenging datasets and com-
pare with two face parsing algorithms and a general scene
parsing algorithm. We also compare our segmentation results
with contour-based face alignment results; that is, we first run
the alignment algorithms to extract contour points and then
derive segments from the contours. Our algorithm compares
favorably with all previous works on all datasets evaluated.

1. Introduction

In face image analysis, one common task is to parse an in-

put face image into facial parts, e.g., left eye and upper lip.

Most previous methods accomplish this task by marking a few

landmarks [1, 22] or a few contours [4, 18] on the input face

image. In this paper, we seek to mark each pixel on the face

with its semantic part label; that is, our algorithm parses a face

image into its constituent facial parts.

Compared to segment-based representations, we argue that

landmark- and contour-based representations have several key

limitations.

• Other than eye corners and mouth corners, most land-

marks are not well-defined. For example, it is unclear

how many landmarks should be defined on the chinline,

or how noses should be represented: should there be a

line segment along the nose ridge, or a contour around the

nostrils? Due to the lack of agreement, different datasets

have different contour models. This creates difficulty for

practitioners interested in unifying different datasets for

robust algorithm development.
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Figure 1. Our exemplar-based algorithm parses a face image into its

constituent facial parts using a soft segmentation.

• Contour-based representations are not general enough to

model several facial parts useful for robust face analy-

sis. For example, teeth are important cues for analyzing

open-mouth expressions; ears are important cues for an-

alyzing profile faces; strands of hair are often confused

by algorithms as occluders. It would be difficult to model

these important parts using contours, and it is unclear how

many landmark points should be used.

• It is difficult to encode uncertainty in contour-based rep-

resentations. For example, the precise location of the tip

of an eyebrow or the contour of a nose ridge are difficult

to determine, even for human labelers. Such uncertainty

leads to errors in human labeled face data that are used in

both the training and evaluation of algorithms.

Segment-based representations alleviate the aforemen-

tioned limitations: segments can represent any facial part, be

they hair or teeth, and soft segmentation can model uncer-

tain transitions between parts. Although semantic segmenta-

tion for general scenes has received tremendous attention in

recent years [7, 8, 12, 19], there has been relatively little atten-

tion given specifically to face part segmentation, with the ex-

ception of [15, 21]. Since facial parts have special geometric

configurations compared to general indoor and outdoor scenes,

we propose an exemplar-based face image segmentation algo-

rithm, taking inspiration from previous work in image parsing

for general scenes.

Specifically, our approach assumes a database of face im-

ages, each of which is associated with a hand-labeled segmen-

tation map and a set of sparse keypoint descriptors. We em-

phasize that these keypoints need not correspond between dif-
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ferent images in the database; we extract keypoints and their

descriptors independently from each image using SIFT [14].

Given a test image, our algorithm first employs Belhumeur et
al. [1] to select m top exemplar images from the database as

input. Our algorithm then computes a nonrigid warp for each

top exemplar; each nonrigid warp aligns the exemplar image

to the test image by matching the set of sparse precomputed

exemplar keypoints to the test image. Finally, we propagate

labels from the exemplar images to the test image in a pixel-

wise manner, using trained weights that modulate and combine

label maps differently for each part type.

We evaluate our method on two challenging datasets [6, 9]

and compare with two face parsing algorithms [15, 21] and a

general scene parsing algorithm [12]. We also compare our

segmentation results with contour-based face alignment re-

sults: that is, we first run the alignment algorithms [4, 18, 22]

to extract contour points and then derive segments from the

contours. Our algorithm compares favorably with these previ-

ous works on all datasets tested. As a byproduct, our algorithm

can recover contours of facial parts as well, although we do not

focus on this representation. In summary, this paper makes the

following contributions.

1. A novel algorithm for robustly segmenting face parts. We

recover a soft segmentation, which naturally encodes the

segment class uncertainty in the image. Rather than ar-

tificially placing a hard boundary between, e.g., skin and

eyebrow regions, we recover label probabilities at each

pixel. Our algorithm is exemplar-based; exemplars can

also encode continuous, probabilistic segment labels.

2. A learning algorithm for finding optimal parameters for
calibrating exemplar label types. Some part labels oc-

cur more frequently than others (e.g., “skin” labels occur

more frequently than “eye” labels), and tend to dominate

adjacent labels that occur less frequently. To correct these

biases, we train a set of label weights that adjust the rela-

tive importance of each label type.

3. A rich training dataset for face segmentation. Our dataset

is built as an extension of the recent Helen Facial Fea-

ture Dataset [9]. The images are high resolution, and our

dataset features segments that are created from densely-

sampled, hand-labeled contours. Hair mattes are also in-

cluded for future work in hair segmentation.

2. Related Work
We are inspired by the recent work of Luo et al. [15], who

proposed a hierarchical technique for face parsing. In their

work, they recover pixel-wise labels for eyes, eyebrows, nose,

mouth, and background, which includes the skin. Their ap-

proach can be divided into three stages: (1) detect face parts

(e.g., upper face, lower face), (2) detect face components (e.g.,

mouth, eyes), and (3) use component-specific segmentors on

each component to estimate pixel-wise labels. There are two

aspects of this approach that can be improved. First, because

they operate at the lowest level, the component-specific seg-

mentors do not generalize well to labeling larger and/or less

distinct regions of the face, such as the cheeks or the chin.

Second, because they produce only a binary classification, the

component-specific segmentors do not generalize well to more

complicated label interactions, such as those that exist between

the inner mouth region, the lips, and the skin around the lips,

for example. Instead, we propose a nonparametric approach

that naturally extends to these difficult cases.

Previously, Warrell and Prince [21] introduced LabelFaces
based on a scene parsing approach applied to faces. Warrell

and Prince argued that the scene parsing approach is advan-

tageous because it is general enough to handle unconstrained

face images, where the shape and appearance of features vary

widely and relatively rare semantic label classes exist, such as

moustaches and hats. As part of their contribution, they intro-

duced priors to loosely model the topological structure of face

images (so that mouth labels do not appear in the forehead, for

example). However, the labels they generate are often coarse

and inaccurate, especially for small face components like eyes

and eyebrows. We show in this work that our approach pro-

duces accurate, fine-scale label estimates in unconstrained face

images.

There are several recent scene parsing approaches in the lit-

erature that do not target faces, but nonetheless do share some

aspects with our approach ([7, 8, 12, 19] to name just a few).

A full review is outside the scope of this paper. Of these ap-

proaches, Liu et al. [12] is particularly relevant. Like our ap-

proach, they propose a nonparametric system that transfers la-

bels from exemplars in a database to annotate a test image. At

its core, Liu et al.’s system relies on the SIFT Flow [13] al-

gorithm to densely transfer labels from exemplars to the test

image. Unfortunately, SIFT Flow is slow, even with a coarse-

to-fine strategy. For example, [13] reported a runtime of 31
seconds for 256 × 256-pixel image pairs with a C++ imple-

mentation running on modern hardware.

Targetting face image matching, we employ an efficient

sparse matching approach that does not require global opti-

mization, and therefore requires much less computation for

each image pair. This savings allows us to use a large set of

top exemplar images for label transfer (in [12] they use m ≤ 9
top exemplar images; we use m = 100), which is important in

our approach for two reasons. First, by aggregating label votes

from many exemplars, our approach is robust to outliers and

noise. Second, it partially explains why we can avoid global

optimization of the flow field: by using a large number of top

exemplars, the sparse keypoint matches cover the test image

well and good matches occur almost everywhere.

Furthermore, our algorithm produces soft segmentations

while [12] produces hard segmentations; specifically, our al-

gorithm assigns each pixel a probability value for each label

type. To this end, we propose a training algorithm for estimat-
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ing a set of weights that convert label maps from exemplars

to label probabilities on the test image. We remark that soft

segmentation is useful for future work on hair segmentation,

among other applications.

3. Our Approach
In this section we first give an overview of our approach

and then present technical details of each step. We start with

some notation. Let pi be a probability vector for pixel i:

pi = [pi,1, pi,2, . . . , pi,K ]
T

(1)

s.t.
∑K

k
pi,k = 1, 0 ≤ pi,k ≤ 1,

where pi,k is the probability that pixel i belongs to segment

class k. Each pi encodes label uncertainty at the pixel level,

which reflects the natural indistinctness of some facial features

(e.g., light eyebrows, chin line). We seek to estimate pi for all

pixels i = 1, 2, . . . , N in the test image I .

3.1. Overview

Database Construction Our database M is composed of a

set of exemplars {Mj}Jj=1. Each exemplar Mj has four parts:

an image, a label map, a very sparse set of facial landmark

points, and a sparse set of SIFT [14] keypoint descriptors.

Each label map can either be soft (i.e., so that each pi has sev-

eral non-zero components), or hard (i.e., so that each pi has

exactly one nonzero component). We use 12 landmark points:

2 mouth corners, 4 eye corners, 2 points on the eyebrows (each

centered on the top edge), 2 points on the mouth (one on the

top edge of the upper lip and one on the bottom edge of the bot-

tom lip), 1 point between the nostrils, and 1 chin point. About

150 SIFT keypoints are automatically extracted from each im-

age independently in the database. We make a distinction here

between landmarks, which are defined consistently across im-

ages (e.g., the mouth corners), and keypoints, which are not

necessarily consistent across images. Each SIFT keypoint de-

scriptor is computed using a window radius of approximately

1/4 the inter-ocular distance (IOD).

Runtime Pre-processing Given a test image, we first use a

face detector (i.e., [20]) to roughly locate the face and estimate

its scale. The test image is then rescaled so that the face has an

IOD of approximately 55 pixels, which is the size of the exem-

plar faces. Second, dense SIFT decriptors [14] are extracted

using the same window size (1/4 IOD) across all pixels. To

search for a subset of m top exemplar faces in the database,

we use Belhumeur et al. [1] on our 12 landmark points. The

output of the pre-processing is a set of m exemplars, each of

which is associated with a similarity transformation that aligns

the exemplar to the face in the test image.

Step 1: Nonrigid exemplar alignment For each keypoint in

each of the top m exemplars, search within a small window in

the test image to find the best match; record the matching score

and the location offset of the best match for each keypoint.

Warp the label map of each top exemplar nonrigidly using a

displacement field interpolated from the location offsets.

Step 2: Exemplar label map aggregation Aggregate

warped label maps using weights derived from the keypoint

matching scores in Step 1. The weights are spatially vary-

ing among exemplar pixel locations and favor exemplar pixels

near keypoints that are matched well with the test image.

Step 3: Pixel-wise label selection Produce a label probabil-

ity vector at each pixel by first attenuating each channel in the

aggregated label map and then normalizing it. The attenuating

weights are trained offline in order to correct for label popula-

tion biases and maximize labeling accuracy. Hard segmenta-

tion can be generated by selecting the highest probability label

channel.

3.2. Step 1: Nonrigid Exemplar Alignment

Due to local deformation, a similarity transformation is not

sufficient to align an exemplar with the testing image. The goal

of Step 1 is to refine the registration using a nonrigid warp be-

tween each top exemplar label map and the test image. Dense

per-pixel correspondence algorithms like SIFT Flow [13] are

one strategy for this purpose. However, per-pixel correspon-

dence algorithms often perform global optimization, which is

computationally intensive and does not scale well to the many

exemplars we use for our task. In particular, we would like

to aggregate a large number of top exemplars (we use 100) in

order to be robust against outliers in one or a small number of

exemplars. Therefore, for efficiency reasons, we instead rely

on about 150 SIFT keypoints to compute the nonrigid warp

between each exemplar and the test image.

Given the similarity transformation estimated in the pre-

processing step, for each keypoint in one top exemplar, its true

correspondence in the test image is usually within a small win-

dow centered at the location predicted by the similarity trans-

formation. Therefore, we adopt a local search within the win-

dow to find its best match. To make the search robust to untex-

tured regions, we encourage the best match to be close to the

window center. Specifically, for each keypoint f with SIFT

descriptor sf , we search for the location offset Δxf that pro-

duces the best match in the window by using the following

objective function:

r(Δxf ) = gspatial(
Δxf

σspatial
) · gdesc( s(Δxf )−sf

σdesc
), (2)

where gspatial and gdesc are Gaussian functions and s(Δxf ) is

the SIFT descriptor at the offset location. In our implementa-

tion, we set σspatial = 10 to be the same as the search window

radius and σdesc = a · b, where a is the length of the SIFT

descriptor and b is the scale of the descriptor elements.
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Our algorithm computes a nonrigid warp for each exem-

plar label map by interpolating the displacements {Δxf}Ff=1,

where F is the number of SIFT keypoints in the exemplar.

The interpolation is implemented using a linear combination

of Gaussian Radial Basis Functions (RBF) [17] centered at

each keypoint, where each RBF bandwidth is proportional to

the distance to the nearest neighboring keypoint.

3.3. Step 2: Exemplar Aggregation

For each exemplar label map, we interpolate the matching

scores r(Δxf ) in Eq. (2) between its keypoints to generate

a matching score for each pixel; the interpolation uses the

same Gaussian RBFs as we use at the end of Step 1 to gen-

erate the nonrigid warping field. Note that r(Δxf ) ∈ [0, 1],
where higher values suggest better matches. Now, each non-

rigidly warped exemplar label map is associated with a per-

pixel matching score map. We aggregate these label maps by

taking a weighted sum as follows:

pi ∝
∑m

j
ri,j · pexemplar

i,j , (3)

where pexemplar
i,j is the label probability vector at pixel i in ex-

emplar j, and ri,j is the corresponding matching score.

3.4. Step 3: Pixel-wise Label Selection

The results from the previous stage are imperfect. Near

smaller regions, like the eyes, eyebrows, and lips, we observe

that, if the aggregated label probabilities are incorrect, they

tend to be incorrect in the direction of the larger surrounding

regions, namely the face skin and background. Consider, for

example, a region near the eyebrow edge. Assuming noise pre-

vents perfect correspondences, “skin” label correspondences

will occur more frequently than “eyebrow” label correspon-

dence simply because there are many more skin labels than

eyebrow labels. A common symptom of this label bias is

that estimated eyebrow regions (and other small regions of the

face) tend to be too small.

We compensate for this bias by re-weighting each compo-

nent of the aggregated label probability vector, and then renor-

malizing each pixel’s label probability vector afterward. Given

a tuning set with ground truth label probabilities, we find label

component weights α = [α1, α2, . . . , αK ] by minimizing the

following function Θ:

Θ(α) =
∑

k

θk(α) + λ
∑

k′>k

‖θk(α)− θk′(α)‖2

s.t.
∑K

k
αk = 1, ∀k : αk > 0, (4)

where

θk(α) =
1

Ck

J∑

j

∑

i∈φj,k

∥∥∥∥p
gt
i,j,k −

αkpi,j,k∑
k αkpi,j,k

∥∥∥∥
2

, (5)

pi,j,k and pgti,j,k are estimated and the ground truth label prob-

abilities for image j, pixel i, and class k, respectively; φj,k

is the set of pixels in image j for which pgti,j,k > 0; Ck is a

normalization parameter; and λ is a scalar regularization pa-

rameter.

Minimizing Eq. (4) is complicated by the normalization in

θk(α), which makes it nonlinear, and the sum over images and

pixels, which makes it large. However, Eq. (4) only needs to

be minimized offline once. In our implementation, we mini-

mize Eq. (4) using MATLAB’s fmincon function, which uses

the interior point method for large-scale constrained nonlinear

optimization problems [2].

We can use Eq. (4) to find optimal weights to maximize

different evaluation metrics. For example, setting Ck to the

total number of pixels in all images with label k according to

ground truth and λ = 0.5, we can maximize accuracy with

respect to a confusion matrix; setting Ck = 1 and λ = 0, we

can maximize accuracy with respect to F-measures. We will

discuss the pros and cons of different settings in Section 4.2.

After the label component weights have been found, we ad-

just each label probability vector. Optionally, we can select

the component with the largest probability value to generate

hard segmentation results. Hard segmentations are used in our

quantitative experiments for accuracy evaluation.

4. Results and Discussion
We have evaluated our method on two different datasets,

and we show that it clearly improves upon a recent general

scene parsing approach and existing face parsing approaches.

Additionally, we adapt a recent landmark localization method

and two face alignment algorithms to produce segmentation

results, and show that our method is more accurate.

4.1. Experimental Datasets

Our first experimental dataset is LFW [6]. Luo et al. [15]

showed segmentation results on 300 randomly selected images

from LFW. To compare with their results, we use the same sub-

set of images in our experiments. Following their procedure to

evaluate accuracy, we generated ground truth by annotating

each face with contour points around each segment.

Our second (primary) dataset is Helen [9], which is com-

posed of 2330 face images with densely-sampled, manually-

annotated contours around the eyes, eyebrows, nose, outer lips,

inner lips, and jawline. We use Helen because it features high-

quality, real-world photographs of people with a more bal-

anced proportion of genders, ages, and ethnicities than other

face datasets. We separated Helen into three parts for our ex-

periments: exemplar, tuning, and test sets. Our exemplar set

was used for all experiments, including experiments on LFW

images. Our Helen tuning and test sets were formed by tak-

ing the first 330 images in the dataset; they include no subjects

from the exemplar set. Our Helen test set is composed of 100

randomly selected images from the first 330, and our tuning

set comes from the remaining images.

We generated ground truth eye, eyebrow, nose, inside

mouth, upper lip, and lower lip segments automatically by us-
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left eye .90 .01 .09 .990 .003 .007

right eye .93 .01 .06 .990 .002 .008

nose .88 .01 .11 .992 .001 .001 .006

left brow .03 .91 .06 .002 .988 .010

mouth .90 .10 .001 .983 .016

right brow .02 .89 .09 .003 .982 .015

background .01 .04 .95 .002 .002 .004 .006 .005 .006 .975
(a) Results from [15] (b) Our results

Figure 2. Luo et al. [15] presented the accuracy of their segmentors

using the confusion matrix shown in (a). We repeated their experi-

ment using our method; our results are shown in (b) for comparison.

Based on the confusion matrix, our results look much more accurate.

However, this metric can be deceiving, as discussed in Section 4.2.

ing the manually-annotated contours as segment boundaries.

For face skin, we used the jawline contour as the lower bound-

ary; for the upper boundary, we separated the forehead from

the hair by manually annotating forehead and hair scribbles

and running an automatic matting algorithm [11] on each im-

age. Although we do not focus on hair segmentation in this

work, we also recovered “ground truth” hair regions using this

approach. The hair mattes from [11] are usually accurate, but

mistakes are inevitable. Therefore, to ensure fair accuracy

measurements, we manually annotated the face skin in all test

images.

4.2. Comparisons on LFW

We first show results on LFW, and compare with two re-

cent face parsing techniques [15, 21], two recent face align-

ment algorithms [4, 18] and a face landmark localization al-

gorithm [22], which we have adapted for face parsing; that is,

we derived segmentation results from the estimated contour

points using the same approach used to generate ground truth

segments in Helen. Warrell and Prince [21] also showed re-

sults on LFW, but their 150-image test subset and source code

are no longer available. We therefore simply report their num-

bers, and acknowledge that their results were computed on a

different (but qualitatively similar) set of images.

Luo et al. [15] presented the accuracy of their segmentors

using a confusion matrix. We repeated their experiment using

our method. First, we computed results on our Helen tuning

set, and used our continuous results to train the label weights

according to Section 3.4 (we matched the LFW segment repre-

sentation by grouping the Helen mouth components, and treat-

ing face skin as background). Figure 2 shows a comparison of

our results using our trained label weights, and the results re-

ported in [15].

Using the confusion matrix for comparison, our results look

much more accurate than [15]. However, Figure 3 shows a re-

sult that exemplifies a problem with the label weights found

by minimizing Eq. (4). Effectively, if we use Ck =
∑

j |φj,k|

(a) Estimated (b) Ground truth

Figure 3. The result on the left exemplifies the problem with the

label weights found by minimizing Eq. (4) using Ck =
∑

j |φj,k| and

λ = 0.5: the eye, eyebrow, nose, and mouth regions are too dilated

compared to the ground truth shown on the right despite maximizing

the diagonal of the confusion matrix in Figure 2 (b). Based on this

problem with the confusion matrix, we instead show accuracy using

the F-measure, and set Ck = 1 and λ = 0 in Eq. (4).

F-Measures for LFW Images

Method Eyes Brows Nose Mouth Overall

Warrell & Prince [21] 0.443 0.273 0.733 0.653 n/a

Zhu & Ramanan [22] 0.520 n/a n/a 0.635 n/a

Saragih et al. [18] 0.684 0.651 0.903 0.753 0.793

Gu & Kanade [4] 0.735 0.722 0.900 0.801 0.820

Ours 0.765 0.752 0.914 0.881 0.863

Table 1. The top row is copied from [21]. Zhu & Ramanan [22]

is a landmark localization method, Saragih et al. [18], and Gu &

Kanade [4] are face alignment methods. Segments were derived from

the contours generated by these methods. We used the model pro-

vided with Zhu & Ramanan’s implementation, which was trained

on the Multi-PIE face database [3]. We used our implementations

of Saragih et al. [18] and Gu & Kanade [4], both trained on Helen.

The “overall” values are computed using all eye, eyebrow, nose, and

mouth pixels. We see that our algorithm compares favorably to all

previous works on LFW.

and λ = 0.5, Eq. (4) finds label weights that maximize the re-

call rates of eye, eyebrow, nose, and mouth pixels, which are

relatively few and sensitive to errors, by sacrificing the recall

rate of background pixels, which are numerous and insensi-

tive to errors. The confusion matrix in Figure 2 (b) reflects

maximized recall rates, but does not give any indication of

the problem exemplified in Figure 3 (a). We therefore instead

show accuracy in Table 1 using the F-measure, which is the

harmonic mean of both recall and precision. We find that set-

ting Ck = 1 and λ = 0 in Eq. (4) results in a set of learned

label weights that give good performance with respect to the

F-measure, shown below.

Label Weights

Face skin 0.0765 Nose 0.1000

Left eye 0.0925 Inner mouth 0.2132

Right eye 0.0925 Upper lip 0.1114

Left brow 0.0615 Lower lip 0.1067

Right brow 0.0615 Background 0.0841

We compare the accuracy of our method with several other

face parsing and alignment methods [4, 18, 21, 22] in Table 1.

Our algorithm compares favorably to these works on LFW.
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Original Images

Estimated Results from Our Method

Ground Truth Segmentations

Figure 4. Selected results on LFW images (left two columns) and Helen images (right four columns). The inside of the mouth is not

given as ground truth for the LFW images, and so we show only the entire mouth segment. We observe that our algorithm works well on

grayscale images (third column) and images of young faces (fourth column). Our algorithm does not currently detect occlusions, and instead

“hallucinates” occluded parts of the face (fifth column). The last column shows a failure case due to the unusual expression. We note that our

algorithm generally produces excellent results. Best viewed in color.

F-Measures for Helen Images

Method Eyes Brows Nose In Mouth Upper Lip Lower Lip Mouth(all) Face Skin Overall

Zhu & Ramanan [22] 0.533 n/a n/a 0.425 0.472 0.455 0.687 n/a n/a

Saragih et al. [18] 0.679 0.598 0.890 0.600 0.579 0.579 0.769 n/a 0.733

Liu et al. [12] 0.770 0.640 0.843 0.601 0.650 0.618 0.742 0.886 0.738

Gu & Kanade [4] 0.743 0.681 0.889 0.545 0.568 0.599 0.789 n/a 0.746

Ours, Steps 1 & 3 omitted 0.766 0.687 0.896 0.678 0.637 0.703 0.853 0.861 0.779

Ours, Step 3 omitted 0.772 0.708 0.914 0.659 0.639 0.697 0.850 0.872 0.790

Ours, full pipeline 0.785 0.722 0.922 0.713 0.651 0.700 0.857 0.882 0.804

Table 2. Zhu & Ramanan [22], Liu et al. [12], Saragih et al. [18], and Gu & Kanade [4] were trained as described in Section 4.2. In this

case, the “overall” measure is computed over eye, eyebrow, nose, inner mouth, upper lip, and lower lip segments; face skin is excluded in the

overall measure, as it cannot be computed for Zhu & Ramanan, Saragih et al., or Gu & Kanade. The only area where Liu et al.’s system is more

accurate than ours is on the face skin. The difference is minimal and is primarily due to our algorithm incorrectly “hallucinates” skin in hair

regions, while Liu et al.’s system does not. In general, we see that our algorithm compares favorably to all previous works on this dataset, and

our full pipeline performs best overall.

4.3. Comparisons on Helen

We repeated the LFW experiment on the Helen test set.

Table 2 shows a comparison of the accuracy from three vari-

ants of our algorithm, Liu et al. [12], which is a general scene

parsing method, and the adapted output from Zhu et al. [22],

Saragih et al. [18], and Gu and Kanade [18], all ordered by

overall F-measure.

A large disparity in accuracy can be seen between the re-

sults from Zhu et al. [22] and the other methods. We conjec-

ture that this is due in part to the fact Zhu et al.’s provided

model was trained on MultiPIE, whereas the other methods

were trained on Helen, which includes a much richer set of

landmarks and faces. Regardless, we see that our approach

improves upon the segments generated by recent face align-

ment algorithms.

We used Liu et al.’s code trained on Helen to generate the

values in Table 2. Liu et al.’s algorithm requires four param-

eters. We set α = 0.06 (spatial prior weight) and β = 1
(smoothness weight) by performing a parameter sweep and

selecting the values that maximized the overall F-measure. In

[12] they suggest using K = 85 nearest neighbors and M = 9
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voting candidates. However, for a fairer comparison, we set

K = 100 and M = 100 to match the number of m top ex-

emplars used by our method. To ensure that this change of

K and M did not artificially reduce the performance of their

method, we varified that K = M = 100 produced more accu-

rate results than K = 85 and M = 9. We see in Table 2 that

our algorithm is much more accurate than Liu et al. in gen-

eral. Qualitatively, the segments generated by Liu et al. are

also less accurate; please see our supplementary material for a

visual comparison.

By comparing the fifth and sixth rows of Table 2, we ob-

serve that the local search and nonrigid exemplar alignment

from Step 1 of our algorithm modestly improves the quantita-

tive accuracy of our results. However, the improvement from

Step 1 is mostly visible in our continuous, probabilistic results,

which we cannot adequately judge quantitatively (i.e., to com-

pute the F-measures, we must first quantize our results).

We see a noticeable improvement from row six to row seven

in Table 2, especially in the inner mouth region, due to the

label weights. In our view, the mouth is the most challeng-

ing region of the face to segment. The shape and appearance

of lips vary widely between subjects, mouths deform signifi-

cantly, and the overall appearance of the mouth region changes

depending on whether the inside of the mouth is visible or not.

Unusual mouth expressions, like the one shown in the right-

most column of Figure 4, are not represented well in the ex-

emplar images, which results in poor label transfer from the

top exemplars to the test image. Despite these challenges, our

algorithm generally performs well on the mouth, with large

segmentation errors occurring infrequently. Our improvement

over other algorithms demonstrates the advantages of using

segments to parse face parts. For example, the inside of the

mouth is not well modeled using a classical contour based rep-

resentation.

4.4. Runtime

Our experimental implementation was written in MAT-

LAB, which makes it difficult to judge the true runtime of our

approach. However, we can roughly estimate it as follows.

Belhumeur et al. [1] report a runtime of less than one second

per fiducial and they note that most of the time is spent eval-

uating the local detectors. For 12 landmarks, their algorithm

should take approximately 12 seconds. Our MATLAB imple-

mentation of their algorithm represents 56% of the total com-

putation in our pipeline. We therefore estimate that the true

runtime of our algorithm would be approximately 21 seconds

with a C++ implementation. Furthermore, much of the com-

putation is devoted to interpolation and image warping, which

can be made very fast on the GPU.

To be more concrete, we can compare the actual runtime of

our current implementation with that of Liu et al. [12]. Liu et
al. use global optimization, which makes their approach very

slow. On a workstation with two quad-core 3.00 GHz Intel

Figure 5. A simple extension of our approach is contour estimation.

Please see Section 4.5 for details.

Xeon CPUs and 32 GB memory, their implementation took an

average of 18.5 minutes per test image with M = K = 100,

whereas our implementation took an average of 1.6 minutes

per test image with m = 100 after the runtime pre-processing

step (i.e., after Belhumeur et al.’s algorithm).

4.5. Extensions of Our Approach

Here we also show preliminary results for several exten-

sions of our approach.

Contour Estimation Estimating contours is not the focus

of this work. However, we can recover contours by treating

contour points in the exemplars in almost the same way that

we treat segment labels. That is, in Step 1, we warp the con-

tour point from each exemplar in the same way that we warp

the exemplar label maps. Then, in Step 2, we can aggregate

the contour points using an approach similar to Belhumeur et
al. [1]. Specifically, each contour point is found by computing

the weighted average location of the warped exemplar contour

points; each weight j is given by the match scores in Rj clos-

est to the contour point. Figure 5 shows two selected results

using this approach.

Hair Segmentation Several approaches for hair segmenta-

tion start by estimating a set of hair / not hair seed pixels in

the image, and then refine the hair region using a matting al-

gorithm ([16] is one example). We can also generate seeds

by counting the votes from hair / not hair labels from the top

exemplars, and thresholding the counts. Figure 6 shows seeds

generating using this approach, and hair mattes computed from

these seeds using [11].

Face Image Reconstruction and Synthesis Examplar-

based face image reconstruction/synthesis is applicable for

various face image editing tasks, including grayscale image

colorization [10] and automatic face image retouching [5]. We

can create a synthetic version of the input face by propagating

color and intensity information from the exemplar images to

the input image; this can be easily accomplished by replacing

the label vectors with the color (or intensity) channels of the

exemplar images. Figure 7 shows two examples.
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Figure 6. Preliminary results using an extension of our approach for

hair segmentation. Top row: input. Middle row: our automatically

generated “seeds” for hair (purple) and background (blue). Bottom

row: automatic matting results from [11]. We can recover accurate

hair mattes in many cases (first two columns), but the procedure often

fails on difficult cases (third column). Best viewed in color.

Figure 7. We can synthesize the input face by replacing the exemplar

label vectors with the color channels from the exemplar images. See

Section 4.5 for more details.

5. Conclusion and Future Work
In this paper, we have proposed an automatic face pars-

ing technique that recovers a soft segment-based representa-

tion of the face, which naturally encodes the segment class

uncertainty in the image. We argue that segments, unlike con-

tours or landmarks, can represent any facial part, including

hair, teeth, and cheeks. Second, we proposed a learning al-

gorithm for finding optimal label calibration weights, which

remove biases between label types. Third, we offer a new face

segmentation dataset built as an extension of the recent Helen

face dataset [9], which offers ground truth pixel-wise labels

for face parts in high quality images. Finally, we showed in

our experiments section that our approach parses faces more

accurately than other approaches.

In the future, we plan to introduce additional label types,

including ears, teeth, and neck. We also hope to explore one

or more of the extensions in Section 4.5.
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