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Abstract
We address the problem of inferring the pose of an

RGB-D camera relative to a known 3D scene, given only
a single acquired image. Our approach employs a regres-
sion forest that is capable of inferring an estimate of each
pixel’s correspondence to 3D points in the scene’s world
coordinate frame. The forest uses only simple depth and
RGB pixel comparison features, and does not require the
computation of feature descriptors. The forest is trained
to be capable of predicting correspondences at any pixel,
so no interest point detectors are required. The camera
pose is inferred using a robust optimization scheme. This
starts with an initial set of hypothesized camera poses, con-
structed by applying the forest at a small fraction of image
pixels. Preemptive RANSAC then iterates sampling more
pixels at which to evaluate the forest, counting inliers, and
refining the hypothesized poses. We evaluate on several var-
ied scenes captured with an RGB-D camera and observe
that the proposed technique achieves highly accurate relo-
calization and substantially out-performs two state of the
art baselines.

1. Introduction
This paper presents a new, efficient algorithm for esti-

mating the camera pose from a single RGB-D image, rela-

tive to a known scene (or environment). This has important

applications in robotics (the ‘lost robot’ problem), SLAM,

augmented reality, and navigation. A standard approach for

solving the problem is first to find a set of putative cor-

respondences between image pixels and 3D points in the

scene, and second to optimize the camera pose to mini-

mize some energy function defined over these correspon-

dences. In this work, we first demonstrate how regression

forests can be used to predict the correspondences, and fur-

ther show how to optimize the camera pose efficiently.

Our main contribution is the scene coordinate regression
forest (SCoRe Forest). As illustrated in Fig. 1, the forest is

trained to directly predict correspondences from any image

pixel to points in the scene’s 3D world coordinate frame.

The aim is that, in one go, the forest can remove the need for

the traditional pipeline of feature detection, description, and

matching. A SCoRe Forest is trained on a particular scene,
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Figure 1. Scene coordinate regression labels. (Top) A 3D rep-

resentation of a scene’s shared world coordinate frame, with over-

laid ground truth camera frusta for the images below. The color

visualization maps scene coordinates to the RGB cube. A scene

coordinate regression forest (SCoRe Forest) is trained to infer the

scene coordinates at any image pixel. (Bottom) Three test frames:

the input RGB and depth images; the ground truth scene coordi-

nate pixel labels; and the inliers inferred by the SCoRe Forest after

camera pose optimization. For this visualization we show all in-

lier pixels, but note that the optimization algorithm only actually

evaluates the forest at a much sparser set of pixels. Fig. 7 shows

example inferred camera poses.

using RGB-D images with known camera poses. The depth

maps and camera poses are sufficient to compute scene co-

ordinate training labels at every pixel. These labels are used

in a standard regression objective to learn the forest. SCoRe

Forests employ only simple RGB and depth image pixel

comparison features which are fast to compute.

Our second contribution is an efficient test-time camera

pose optimization algorithm based on RANSAC; see Fig. 2.
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The algorithm assumes only a single RGB-D image as in-

put. We optimize an energy function that measures the num-

ber of pixels for which the SCoRe Forest predictions agree

with a given pose hypothesis. Because we trained the forest

densely, we are free to test the forest at whichever (valid)

image pixels we please. The RANSAC algorithm can thus

efficiently evaluate the SCoRe Forest at only a sparse, ran-

domly sampled set of pixels. Note that the optimization

does not require an explicit 3D model of the scene; instead,

the forest implicitly encodes the scene structure. This could

be useful when a 3D model is not available, or in low power

(e.g. cellphone) scenarios. Our approach is also completely

stateless: we are able to localize the camera from a single

frame without tracking.

We validate the proposed camera pose estimation tech-

nique on a new dataset of seven varied scenes which will

be made available for research purposes. Our experiments

demonstrate superior localization accuracy compared to

two state of the art baselines, and high accuracy at recog-

nizing to which scene a particular image belongs.

1.1. Related work
Two common approaches for image-based camera re-

localization use global image matching and sparse feature

matching, though other approaches exist e.g. [23].

In global image matching (e.g. [17]), an approximate

camera pose is hypothesized by computing whole-image

similarity measures between a query image and a set of

keyframes with known associated keyposes. Given the set

of best matching images, the final camera pose is computed

as a weighted average of the keyposes. This approach was

extended to use synthetic RGB-D views in [11].

A perhaps more prevalent alternative uses sparse key-

point matching. Here a set of interest points are detected

in the image, assigned a descriptor based on appearance,

and matched against a database of descriptors. Much work

has focused on efficiency, scalability, and learning of fea-

ture detection [13, 26], description [4, 27, 34], and match-

ing [18, 25, 29]. Closely related to our approach, Lepetit et
al. [18] learn to match particular discrete features in images

with random forests. Our approach goes beyond this by us-

ing a regression approach such that every pixel can provide

correspondence to the scene, without feature detectors.

Given sparse keypoint matches, pose estimation is

achieved either via intermediate image retrieval [2, 8, 14] or

by directly establishing 2D-3D correspondences for a robust

pose optimization [19, 28]. Efficient keypoint-based relo-

calization modules have been proposed for visual SLAM

[9, 33] and robotics [30].

A limitation of keypoint-based approaches lies in their

inherent sparse representation of the scene: the number of

correctly detected and matched points directly impacts the

accuracy of the pose estimation. Our SCoRe Forests can

be applied as sparsely or densely as required, avoiding this

problem.

Sharing a similar spirit to our work, the LayoutCRF

[12, 35] defines a coarse grid of classification labels that

roughly cover an object, and then exploits layout consis-

tency terms in an MRF optimization framework to segment

the objects. Our approach instead regresses more precise

labels defined on 3D world space, and avoids expensive

image-space optimization. Taylor et al. [32] use a regres-

sion forest to infer correspondences between each depth im-

age pixels and points in a canonical articulated 3D human

mesh. Our approach extends [32] by: introducing an ef-

ficient camera pose optimization that evaluates the forest

sparsely; showing that the regression approach works well

on arbitrary scene model topologies and on RGB-D input

data; and demonstrating how to effectively exploit the sev-

eral predictions given by multiple trees in a forest.

2. Scene Coordinate Regression Forests
In this section we provide some background on regres-

sion forests, detail our new scene coordinate pixel labeling,

and discuss how this labeling is used to train a forest for

each scene. Sec. 3 will then describe how the camera pose

is optimized by evaluating the forest at a sparse set of pixels.

2.1. Regression forests
We give a brief introduction to regression forests; for

more details, please see [7]. Decision forests have proven

highly capable learning machines. They are most com-

monly used for classification tasks, e.g. [1, 18, 31], though

increasingly for regression problems, e.g. [10, 20, 32]. We

employ a fairly standard regression forest approach, opti-

mizing a reduction-in-spatial-variance objective.

A regression forest is an ensemble of T decision trees,

each consisting of split (internal) and leaf nodes. Each split

node contains a ‘weak learner’ represented by its parame-

ters θ = (φ, τ): feature parameters φ (see below), and a

scalar threshold τ . To evaluate a regression tree at a 2D

pixel location p in an image, we start at the root node and

descend to a leaf by repeatedly evaluating the weak learner:

h(p;θn) =
[
fφn

(p) ≥ τn

]
, (1)

where n denotes the index of a node in the tree, [·] is the 0-1

indicator, and fφ is one of the feature response functions

we define below in Sec. 2.2. If h(p;θn) evaluates to 0, the

path branches to the left child of n, otherwise it branches to

the right. This repeats until leaf node lt(p) is reached for

tree t in the forest.

Each leaf node in a regression tree stores a distribution

Pl(m) over a continuous variable m. In our application

these m ∈ R
3 are the coordinates in the scene’s 3D world

space, as described in Sec. 2.3. For efficiency, we represent
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the distribution Pl(m) as a setMl of modes of the distribu-

tion, which are found using mean shift. The final prediction

of the forest at pixel p is simply the union of these modes

across all trees: M(p) =
⋃

tMlt(p).

2.2. Image features

We investigate three variants of regression forests, each

of which uses a different combination of RGB and depth

features. We will refer to the variants as ‘Depth’, ‘Depth-

Adaptive RGB’ (DA-RGB), and ‘Depth-Adaptive RGB +

Depth’ (DA-RGB + D) forests.

All features are based on simple pixel comparisons [18,

31] and so are extremely fast to evaluate. The two types of

feature responses can be computed as follows:

f depth

φ
(p) = D

(
p+

δ1
D(p)

)
−D

(
p+

δ2
D(p)

)
(2)

f da-rgb

φ
(p) = I

(
p+

δ1
D(p)

, c1

)
− I

(
p+

δ2
D(p)

, c2

)

(3)

Here, δ indicates a 2D offset, D(p) indicates a depth pixel

lookup, and I(p, c) indicates an RGB pixel lookup in chan-

nel c. Each split node in the forest stores a unique set of pa-

rameters φn ⊆ {δ1, δ2, c1, c2, z}, with z ∈ {depth, da-rgb}
indicating the type of feature to use. Pixels with undefined

depth and those outside the image boundary are assigned

D = 6m, and are not used as examples for training or test.

These features can implicitly encode contextual informa-

tion, as the offsets can be fairly long range. The division by

D(p) makes the features largely depth invariant, and is sim-

ilar in spirit to [36]. We assume a reasonable registration

of depth and RGB images, such as is provided by standard

RGB-D camera APIs. However, the registration need not be

perfect as the forest will learn some degree of tolerance to

misregistration.

2.3. Scene coordinate labels

One of the main contributions of this work is the use of

scene coordinates to define the labels used to train the re-

gression forest. By using scene coordinate labels, the for-

est will learn to directly predict the position in the scene’s

world space that corresponds to a test pixel.

Our training set consists of a set of RGB-D frames with

known 6 d.o.f. camera pose matrices H that encode the 3D

rotation and translation from camera space to world space.

This data could be captured in several ways, for example

by tracking from depth camera input [15, 21], or by using

dense reconstruction and tracking from RGB input [22].

Our labels are defined as follows. At pixel p, the cal-

ibrated depth D(p) allows us to compute the 3D camera

space coordinate x. Using homogeneous coordinates, this

camera position can be transformed into the scene’s world

coordinate frame as m = Hx. Our labels are simply de-

fined as these scene world positions, m.

We train the forest using pixels drawn from all training

images, so the forest can be applied at any test image pixel.

In particular, one can evaluate the forest at any sparse set

of test pixels. If the forest were a perfect predictor, only

three pixel predictions would be required to infer the camera

pose. In practice, the forest instead makes noisy predictions,

and so we employ the efficient optimization described in

Sec. 3 to accurately infer the camera pose.

2.4. Forest training

Given the scene coordinate pixel labeling defined above,

we can now grow the regression forest using the standard

greedy forest training algorithm [7], summarized next. For

each tree, we randomly choose a set S of labeled example

pixels (p,m).1 The tree growing then proceeds recursively,

starting at the root node. At each node n, a set of candidate

weak learner parameters θ is sampled at random. Each can-

didate θ is evaluated in turn by (1) to partition the set Sn
into left and right subsets SL

n and SR
n respectively. Given

this partition, a tree training objective function Q(θ) is com-

puted. We have found the following simple reduction-in-

spatial-variance objective to work well:

Q(Sn,θ) = V (Sn)−
∑

d∈{L,R}

|Sd
n(θ)|
|Sn| V (Sd

n(θ)) , (4)

with V (S) = 1

|S|
∑

(p,m)∈S
‖m− m̄‖22 , (5)

and m̄ being the mean of m in S. The candidate param-

eter set θ which results in the largest reduction in vari-

ance is taken, and the training recurses on the resulting left

and right children. Tree growing terminates when a node

reaches a maximum depth Dmax, or the set Sn has only one

element.

Mode fitting. Once the tree has been grown, the final

stage of training is to summarize the distribution over m as

a set of modesMl, for each leaf node l. To reduce training

time, we sub-sample the set Sl of training pixels reaching

leaf l to at most Nss = 500 examples. We then run mean

shift mode detection [6] with a Gaussian kernel of band-

width κ = 0.1m. This clusters the points m in Sl into a

small set of modes. In our current implementation, we keep

only a single mode at a leaf node: the mode to which the

largest number of examples was assigned.

3. Camera Pose Optimization
The regression forest described in the previous section is

capable of associating scene coordinates with any 2D im-

age pixel. We now discuss how to use this information to

1For notational clarity p is used to uniquely index a pixel within a par-

ticular image. Training pixels are sampled up to the image boundary.
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Figure 2. Camera pose estimation. Top: An example RGB-D

test input. Middle: Our RANSAC optimization uses a scene coor-

dinate regression forest (SCoRe Forest) to obtain image to scene

correspondences. The algorithm maintains a set of inlier pixels

for each of several camera pose hypotheses. Bottom right: The

hypothesis with the lowest energy (highest number of inliers) is

chosen as the final inferred pose (shown as the blue frustum; the

ground truth is shown in red). For clarity of exposition, we show

all image pixels that are inliers to each hypothesis; in fact our al-

gorithm samples pixels sparsely and does not need to evaluate the

SCoRe Forest at every pixel.

estimate the camera location and orientation. The problem

is cast as the energy minimization

H∗ = argmin
H

E(H) (6)

over the camera pose matrix H . An overview of the method

is given in Fig. 2.

3.1. Energy function

We define our energy function as follows

E(H) =
∑
i∈I

ρ

(
min

m∈Mi

‖m−Hxi‖2
)

=
∑
i∈I

ei(H) ,

(7)

where: i ∈ I is a pixel index; ρ is a robust error function;

Mi =M(pi) represents the set of modes (3D locations in

the scene’s world space) predicted by the trees in the forest

at pixel pi; and xi are the 3D coordinates in camera space

corresponding to pixel pi, obtained by back-projecting the

depth image pixels. We use a top-hat error function ρ with

a width of 0.1m. Pixels for which ρ evaluates to 0 are con-

sidered inliers, and pixels for which ρ evaluates to 1 are

considered outliers. The energy function above thus counts

the number of outliers for a given camera hypothesis H .

Note that computing this energy does not require an ex-

plicit 3D model of the scene: the model is implicitly en-

coded in the regression forest. Because the forest has been

trained to work at any image pixel, we can randomly sam-

ple pixels at test time. This sampling avoids both the need

to compute interest points and the expense of densely eval-

uating the forest. The summation in (7) is thus computed

over a subset I of all possible image pixels; the larger the

size of this subset, the more useful the energy E can be at

ranking pose hypotheses. The minimization over predic-

tions m ∈ Mi means that at each pixel, the mode that is

closest to the transformed observed pixel will be chosen.

A consequence of this is that the minimization will infer at

each pixel which tree in the forest gave the best prediction

under a given hypothesis.

3.2. Optimization

To optimize this energy, we use an adapted version of

preemptive RANSAC [24] (see Algorithm 1). The algo-

rithm starts by sampling a set of Kinit initial hypotheses. It

then randomly samples a new batch of B pixels, evaluates

the forest at these pixels, and updates the energies for each

hypothesis based on the forest predictions. The hypotheses

are re-ranked by energy, and the highest energy half of the

hypotheses is discarded (‘preempted’). Each remaining hy-

pothesis is then refined [5] based on the set of inliers com-

puted as a by-product of evaluating the energy at Line 9 of

Algorithm 1. The while loop terminates when only a single

hypothesis remains.

The iteration could instead be stopped earlier, either for

efficiency, or if desired to obtain the top K hypotheses. The

algorithm as presented evaluates the forest on-the-fly; al-

ternatively the forest could be evaluated at the B log2 Kinit

required pixels in advance, though this would require extra

storage. Other RANSAC schedules (e.g. no preemption) are

possible, though not investigated here.

Initial hypothesis sampling. Each initial pose hypothesis

is sampled as follows. The forest is evaluated at three pixels

(the minimal number required), and at each of those pixels

a random mode m ∈ Mi is sampled. These putative cor-

respondences are passed to the Kabsch algorithm [16] (also

known as orthogonal Procrustes alignment) which uses a

singular value decomposition (SVD) to solve for the cam-

era pose hypothesis with least squared error.

Pose refinement. Experimentally we found a pose re-

finement step [5] to be crucial to achieving accurate local-

ization. We simply re-run the Kabsch algorithm on the en-

larged set of inliers. For efficiency, we only store and update
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Algorithm 1 Pseudocode for RANSAC optimization

1: K ← Kinit

2: sample initial hypotheses {Hk}Kk=1

3: initialize energies Ek ← 0 for k = 1, . . . ,K
4: while K > 1 do
5: sample random set of B test pixels I
6: for all i ∈ I do
7: evaluate forest to obtainMi

8: for all k ∈ {1, . . . ,K} do
9: Ek ← Ek + ei(Hk)

10: sort hypotheses (Hk, Ek) by Ek

11: K ← �K
2
�

12: refine hypotheses Hk for k = 1, . . . ,K
13: return best pose H1 and energy E1

the means and covariance matrices used by the SVD. Note

that the refinement step means the final pose can be much

more accurate than the individual forest pixel predictions of

the inliers.

4. Evaluation

4.1. Dataset

We introduce a new RGB-D dataset, ‘7 Scenes’, to eval-

uate our technique and compare with other approaches. We

will release this dataset to facilitate future research and

comparison with our approach. All scenes were recorded

from a handheld Kinect RGB-D camera at 640×480 reso-

lution. We use an implementation of the KinectFusion sys-

tem [15, 21] to obtain the ‘ground truth’ camera tracks, and

a dense 3D model (used only for visualization and the ICP

experiments below). Several sequences were recorded per

scene by different users, and split into distinct training and

testing sequence sets. An overview of the scenes and cam-

era tracks are shown in Fig. 3, and more details are given

in Table 1. Both RGB and depth images exhibit ambigui-

ties (e.g. repeated steps in Stairs), specularities (e.g. reflec-

tive cupboards in RedKitchen), motion-blur, lighting condi-

tions, flat surfaces, and sensor noise. The varying difficul-

ties of the scenes are reflected in the error metrics, consis-

tently across all approaches.

4.2. Metrics

As our main test metric we report the percentage of test

frames for which the inferred camera pose is essentially

‘correct’. We employ a fairly strict definition of correct: the

pose must be within 5cm translational error and 5◦ angular

error of the ground truth (for comparison, our scenes have

size up to 6m3). The belief is that correctly localizing the

pose under this metric might already be sufficient for some

augmented reality applications, and should certainly be suf-

ficient to restart any good model-based tracking system.

4.3. Baselines

We compare our approach against two complementary

baseline methods: the ‘sparse’ baseline exploits matches

between extracted features and a sparse 3D point cloud

model, while the ‘tiny-image’ baseline matches down-

sampled whole images to hypothesize putative camera

poses.

Sparse baseline. This baseline uses state of the art feature-

matching techniques. The approach employs the fast ORB

descriptor [27] for feature detection and description. We

build a (sparse) 3D point cloud with attached ORB descrip-

tors using the RGB-D training images. At test time (using

only RGB), features are matched to the 3D point cloud by

hashing 14-bit descriptor substrings. We consider a 2D-3D

correspondence a putative match if the Hamming distance

between descriptor bit-strings is at most 50. The set of po-

tential inliers is geometrically verified using RANSAC and

the perspective 3-point method. The final camera pose is

refined using a gold-standard method computed on all inlier

2D-3D correspondences.

Tiny-image baseline. This baseline represents state of the

art whole-image matching approaches [11, 17]. All training

images are stored with their camera poses, after downsam-

pling to 40 × 30 pixels and applying a Gaussian blur of

σ=2.5 pixels [17]. At test time, to achieve the best possi-

ble accuracy for this baseline (at the expense of speed), we

use brute-force matching against the entire training set, us-

ing the normalized Euclidean distance of [11]. The camera

pose is finally computed as a weighted average of the poses

of the 100 closest matches [11]. We compare below with

RGB, depth, and RGB-D variants of this approach.

4.4. Main results

We present our main results and comparisons in Table 1.

Our approach considerably outperforms both baselines on

all but one of the scenes. The tiny-image baseline fails al-

most completely under our strict metric: the poses of the

images in the training set are simply too far from the poses

in the test set, and this approach cannot generalize well.2

The sparse baseline does a reasonable job, though struggles

when too few features are detected. This can happen under

motion blur, when viewing textureless surfaces, and when

noise levels are high. While our approach is also sparse,

the SCoRe Forests can be evaluated at any pixel in the im-

age, and so we are not dependent on feature detection. We

present some qualitative results in Fig. 7, showing both suc-

cesses and failures of our algorithm and the sparse baseline.

Of the three forest feature modalities we test, depth-only

always performs worst. This is to be expected given the

large amount of noise (especially holes) in the depth im-

2The tiny-image baseline does however provide a sensible rough local-

ization, good enough for model-based pose refinement (Sec. 4.7).
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Chess
Fire Heads Pumpkin

RedKitchen Stairs

Figure 3. The 7 Scenes dataset. These renderings show the scene coordinate representations for each scene as RGB colors. The green and

red camera tracks show the positions of the cameras in the training and test sequences. The Office scene is shown in Fig. 1.

Spatial # Frames Baselines Our Results Frame-to-Frame
Scene Extent Train Test Tiny-image RGB-D Sparse RGB Depth DA-RGB DA-RGB + D Tracking
Chess 3m3 4k 2k 0.0% 70.7% 82.7% 92.6% 91.5% 95.5%

Fire 4m3 2k 2k 0.5% 49.9% 44.7% 82.9% 74.7% 86.2%

Heads 2m3 1k 1k 0.0% 67.6% 27.0% 49.4% 46.8% 50.7%

Office 5.5m3 6k 4k 0.0% 36.6% 65.5% 74.9% 79.1% 86.8%

Pumpkin 6m3 4k 2k 0.0% 21.3% 58.6% 73.7% 72.7% 76.1%

RedKitchen 6m3 7k 5k 0.0% 29.8% 61.3% 71.8% 72.9% 82.4%

Stairs 5m3 2k 1k 0.0% 9.2% 12.2% 27.8% 24.4% 39.2%

Table 1. Main results. We list: properties of our dataset; the results of the two baselines; the results of our approach using SCoRe Forests

trained with three different feature types; and results from a simple frame-to-frame extension of our approach (Sec. 4.5), here using DA-

RGB features. The percentages are the proportion of ‘correct’ test frames (within 5cm translational and 5◦ angular error). Our approach

outperforms both baselines on all but one scene. The tiny-image baseline gives only imprecise localization and so fails almost completely

under our tight metric (though see also Fig. 6). We tested multiple random restarts of RANSAC; all standard deviations were < 1%.

ages. We also observe that DA-RGB performs better than

DA-RGB + D in 5 out of 7 scenes. This slightly surprising

result may be due to sub-optimal settings of the forest train-

ing parameters (see below), but in any case both modalities

outperform the baseline in all but one scene.

In Fig. 4 we see that our inferred camera poses form a

remarkably smooth track compared to the sparse baseline.

This is likely because our algorithm is able to sample more

putative matches than the sparse feature-based approach. Of

course, if one were building a real tracking system, both

approaches could be smoothed much further.

Failure modes. Our main failure modes are (i) impre-

cise localization, and (ii) failures due to ambiguities. As

an example, if we widen our metric to allow 10cm transla-

tional errors, our DA-RGB forests achieve 100% accuracy

on Chess, 58.8% on Heads, and 49.0% on Stairs. If we fur-

ther use an oracle to pick the most accurate pose from the

top 10 hypotheses, we achieve 68.4% on Stairs, highlight-

ing the inherent ambiguity in this sequence. (See also Fig. 7

bottom right).

Pose refinement. The pose refinement step in Algorithm 1

proved crucial to achieving good results. With this turned

off, our DA-RGB forests achieve only 31% accuracy on

Chess and 9.5% on Office, for example.

Parameter settings. In all the experiments presented, the

following parameters were used: initial number of hypothe-

ses Kinit = 1024; batch size B = 500; T = 5 trees in the

forest, trained to depth Dmax = 16; 500 training images

per tree and 5000 example pixels per training image, both

randomly chosen; feature offsets δ having a maximum of

±130 pixel meters; and |M(l)| = 1, i.e. one mode predic-

tion m per tree. The sparse baseline uses almost identical

RANSAC parameters. The tiny-image baseline uses the pa-

rameters from [11, 17].

We have not optimized the parameters of our approach:

they were chosen by hand once and fixed. Preliminary in-

vestigation suggests considerable insensitivity of the pose

optimization to changes in the training parameters, though

it is reasonable to assume a more thorough optimization of

these parameters would improve our accuracy.

Image resolution. Fig. 5(a) illustrates that our approach

is robust to nearest-neighbor image downsampling.

Timings. Our unoptimized C++ test time implementa-

tion takes approximately 100ms per frame on a single mod-

ern CPU core. Of course, this depends heavily on the

RANSAC parameters, and one could easily trade speed for

accuracy. In comparison, the sparse baseline (also not opti-

mized) takes approximately 250ms per frame, and the (de-

liberately inefficient brute-force) tiny-image baseline takes

500ms-3000ms according to the number of images in the

training database. Training takes around 1-10 minutes per

scene according to parameter settings.

4.5. Frame-to-frame tracking
A simple adaptation to our approach allows a basic form

of frame-to-frame tracking. Here, we initialize one hypoth-

esis (out of the Kinit) with the camera pose inferred at the

previous frame. This can bias the optimization to finding a

good solution when the camera motion is not too great. We

achieved the improvements in pose accuracy shown in the

final column of Table 1. For all scenes there is an improve-
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Figure 4. Camera tracks for the Chess scene. Red: ground truth.

Blue: our result using a DA-RGB forest. Green: sparse baseline.

Our algorithm gives remarkably smooth camera tracks from single

frames at a time.

ment over our standard algorithm, greater than 10 percent-

age points for the Office, RedKitchen, and Stairs results.

We expect an even greater improvement could be obtained

by initializing (possibly multiple) hypotheses from the pre-

vious frame using a motion model.

4.6. Scene recognition
Beyond relocalizing within a particular scene, one might

also want to recognize to which scene a particular camera

view belongs. We built the following simple scene recog-

nition system to investigate this. For a given test frame,

our pose optimization algorithm is run, separately for each

scene’s SCoRe Forest. The scene with the lowest energy

(largest number of inliers) is then taken as the result.

Evaluated on every 20th frame in our entire test set us-

ing the DA-RGB modality, the confusion matrix is given

in Fig. 5(b). We observe very high scene recognition accu-

racy: the mean of the diagonal is 96.6%, with several scenes

achieving perfect recognition. The energy (7) returned by

the RANSAC optimization appears to be an accurate mea-

sure for disambiguating scenes.

An alternative, not investigated here, would be to embed

all the scenes in a shared 3D world so that the coordinate

pixel labels uniquely identify a point in a particular scene.

A single forest could thus encapsulate all scenes, and scene

recognition would simply be a by-product of pose estima-

tion. A downside of this approach would be the need to

retrain everything in order to add new scenes.

4.7. Model-based pose refinement
The results above demonstrate that accurate relocaliza-

tion is achievable without an explicit 3D model. However,

if such a model is available (e.g. from [15, 21]), then it

is possible to refine our inferred camera pose against that

model. To investigate, we ran an experiment which per-

forms an ICP-based pose refinement [3] starting at our in-

ferred pose. In Fig. 6 we compare the pose accuracy after

ICP for our algorithm and the two baselines. We further
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Figure 5. (a) Effect of image resolution on accuracy for DA-RGB

Chess. (b) Scene recognition confusion matrix. For Chess, Heads,

and Pumpkin we achieve correct recognition for all test frames.
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Figure 6. Accuracy after ICP to a 3D model. As expected, all

results improve compared to Table 1.

add a brute-force ‘ICP Residual’ baseline which, for each

test frame, runs ICP starting from each training keyposes

(for tractability, a frame becomes a keypose if it is > 5cm

away from the previous selected keypose), and takes the re-

sulting pose with lowest ICP residual error. Our DA-RGB

and DA-RGB + D forests outperform all baselines on all

scenes, and even give a perfect result for Chess. Note that

the complete failure of the tiny-image baseline in Table 1

is much improved, suggesting that this baseline approach is

only useful when paired with a refinement step.

5. Conclusions
We have demonstrated how scene coordinate regression

forests (SCoRe Forests) can be trained to directly predict

correspondences between image pixels and a scene’s world

space. For known environments, SCoRe Forests thus of-

fer an alternative to the traditional pipeline of sparse fea-

ture detection, description, and matching. Our efficient

RANSAC optimization is able to sparsely sample image

pixels at which to evaluate the forest. The comparison on

the challenging new 7 Scenes dataset with two baselines in-

dicates that our algorithm achieves state of the art camera

relocalization.

As future work we believe that our approach will extend

very naturally to RGB-only test images. We also plan to

investigate sampling additional training data by rendering

new views from 3D scene reconstructions. Finally, we hope

that an optimized implementation could be extended to sup-

port on-line model learning and relocalization.
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Figure 7. Example results. In each test example, we show the RGB and depth images, and a 3D visualization of the underlying scene

with camera frusta overlaid: the ground truth pose (red), our inferred pose using a DA-RGB SCoRe Forest (blue), the sparse baseline result

(green), and the closest pose in the training set (yellow). Observe good generalization across a variety of scenes to views not present during

training. The bottom row shows failure cases, e.g. due to repeated structures in the scene. Best viewed digitally at high zoom.
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