
A Genetic Algorithm-Based Solver for Very Large Jigsaw Puzzles

Dror Sholomon
dror.sholomon@gmail.com

Omid David
mail@omiddavid.com

Nathan S. Netanyahu∗

nathan@cs.biu.ac.il

Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel

Abstract

In this paper we propose the first effective automated, ge-
netic algorithm (GA)-based jigsaw puzzle solver. We intro-
duce a novel procedure of merging two ”parent” solutions
to an improved ”child” solution by detecting, extracting,
and combining correctly assembled puzzle segments. The
solver proposed exhibits state-of-the-art performance solv-
ing previously attempted puzzles faster and far more ac-
curately, and also puzzles of size never before attempted.
Other contributions include the creation of a benchmark of
large images, previously unavailable. We share the data
sets and all of our results for future testing and compara-
tive evaluation of jigsaw puzzle solvers.

1. Introduction
The problem domain of jigsaw puzzles is widely known

to almost every human being from childhood. Given n dif-
ferent non-overlapping pieces of an image, the player has
to reconstruct the original image, taking advantage of both
the shape and chromatic information of each piece. Al-
though this popular game was proven to be an NP-complete
problem [1] [7], it has been played successfully by chil-
dren worldwide. Solutions to this problem might benefit
the fields of biology [14], chemistry [21], literature [16],
speech descrambling [23], archeology [2] [13], image edit-
ing [5] and the recovery of shredded documents or pho-
tographs [3] [15] [12] [6]. Besides, as Goldberg et al. [10]
have noted, the jigsaw puzzle problem may and should be
researched for the sole reason that it stirs pure interest.

Jigsaw puzzles were first produced around 1760 by John
Spilsbury, a Londonian engraver and mapmaker. Neverthe-
less, the first attempt by the scientific community to com-
putationally solve the problem is attributed to Freeman and
Garder [8] who in 1964 introduced a solver which could
handle up to nine-piece problems. Ever since then, the re-
search focus regarding the problem has shifted from shape-

∗Nathan Netanyahu is also affiliated with the Center for Automation
Research, University of Maryland, College Park, MD 20742 (e-mail:
nathan@cfar.umd.edu).

(a) (b)

(c) (d)

Figure 1: Jigsaw puzzles before and after reassembly us-
ing our genetic algorithm-based solver. We believe these
puzzles, of 10,375 (a-b) and 22,834 pieces (c-d), to be the
largest automatically solved to date.

based to merely color-based solvers of square-tile puzzles.
In 2010 Cho et al. [4] presented a probabilistic puzzle solver
that could handle up to 432 pieces, given some a priori
knowledge of the puzzle. Their results were improved a
year later by Yang et al. [22] who presented a particle filter-
based solver. Furthermore, Pomeranz et al. [17] introduced
that year, for the first time, a fully automated square jig-
saw puzzle solver that could handle puzzles of up to 3,000
pieces. Gallagher [9] has advanced this even further by con-
sidering a more general variant of the problem, where nei-
ther piece orientation nor puzzle dimensions are known.

In its most basic form, every puzzle solver requires an es-
timation function to evaluate the compatibility of adjacent
pieces and a strategy for placing the pieces (as accurately as
possible). Although much effort has been invested in per-
fecting the compatibility functions, recent strategies tend to
be greedy, which is known to be problematic when encoun-
tering local optima. Thus, despite achieving very good (if
not perfect) solutions for some puzzles, supplementary ma-
terials provided by Pomeranz et al. [18] indicate that there is
much room for improvement for many other puzzles. Com-

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.231

1765

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.231

1765

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.231

1767

parative studies conducted by Gallagher ([9], Table 4), re-
garding the benchmark set of 432-piece images, reveal only
a slight improvement in accuracy relatively to Pomeranz
et al. (95.1% vs. 95.0%). To the best of our knowledge,
no additional benchmark runs have been reported by Gal-
lagher. We thus assume that his method’s performance on
other benchmarks is comparable to that reported by Pomer-
anz et al. Interestingly, despite the availability of puzzle
solvers for 3,000- and 9,000-piece puzzles, there exists no
image set, for the purpose of benchmark testing, containing
puzzles with more then 805 pieces. Current state-of-the-art
solvers were only run on very few large images. Further-
more, these images were admittedly considered ”easier” for
solving [9], containing an extreme variety of textures and
colors. We assume that similarly to the case of the smaller
images, the accuracy of current solvers on some large puz-
zles could be greatly increased by using more sophisticated
algorithms.

In this paper we harness the powerful technique of ge-
netic algorithms (GAs) [11] as a strategy for piece place-
ment. The design of a GA-based solver has been attempted
by Toyama et al. [20], but its successful performance was
limited to 64-piece puzzles. We offer three major contribu-
tions. First and foremost, we present a significantly more
accurate solver of the original jigsaw variant with known
piece orientation and puzzle dimensions. Our solver com-
promises neither speed nor size as it outperforms state-of-
the-art solvers, successfully tackling up to 22,834-piece size
puzzles (more than twice the number of pieces ever at-
tempted/reported) within a reasonable time frame. (See Fig-
ure 1.) Secondly, we assemble a new benchmark, consisting
of sets of larger images (with varying degrees of difficulty),
which we make public to the community [19]. Also, we
share all of our results (on this benchmark and other public
datasets) for future testing and comparative evaluation of
jigsaw puzzle solvers. Finally, we provide for the first time
an effective GA-based puzzle solver, which should bene-
fit research regarding the area of evolutionary computation
(EC), in general, and the jigsaw puzzle problem, in particu-
lar. From an EC perspective, our novel techniques could be
used for solving additional problems with similar proper-
ties. As to the jigsaw puzzle problem, our proposed frame-
work could prove useful for solving more advanced vari-
ants, such as puzzles with missing pieces, unknown piece
orientation, and more.

2. Genetic algorithms

A GA is a search procedure inside a problem’s solution
domain. Since examining all possible solutions of a spe-
cific problem is usually considered infeasible, GAs offer an
optimization heuristic inspired by the theory of natural se-
lection.

First, an initial population of candidate solutions, also
called chromosomes, is randomly generated. Every chro-
mosome is a complete solution to the problem, e.g. a sug-

gested arrangement of the puzzle’s pieces. Next, various
biologically inspired operators such as selection, reproduc-
tion and mutation are applied. These operators gradually
improve the solutions in the population, eventually reach-
ing the optimum solution (i.e. the correct image).

In order to imitate natural selection, a chromosome’s re-
production rate, i.e. the number of times it is selected to
reproduce and hence the number of its offsprings, is set
directly proportionate to its fitness. The fitness is a score
obtained by a fitness function and it represents the quality
of a given solution. Thus, ”good” solutions will have rela-
tively more offsprings than other solutions. Moreover, good
chromosomes are more likely to reproduce with other good
chromosomes. The reproduction operator, called crossover,
should allow the better traits from both parents to be passed
on and be combined into the child solution, potentially cre-
ating an improved solution.

The success of a GA is mainly dependent on choosing
an appropriate chromosome representation, crossover oper-
ator, and fitness function. The chromosome representation
and crossover operator must allow the merge of two good
solutions to an even better solution. The fitness function
must correctly detect chromosomes containing promising
solution parts to be passed on to the next generations.

3. GA-based puzzle solver
A basic GA framework for solving the jigsaw puzzle

problem is given by the pseudocode of Algorithm 1. As
previously noted, the GA contains a population of chro-
mosomes, each of which represents a possible solution to
the problem at hand. In our case, a chromosome is an ar-
rangement, or placement, of all the jigsaw puzzle pieces.
Specifically, our GA starts with 1,000 random placements.
In every generation the entire population is evaluated using
a fitness function (described below), and a new population
is (re)produced by the selection of and crossover application
to chromosome pairs. The selection method, called roulette
wheel selection, is very common. The probability of select-
ing a certain chromosome by the method is directly propor-
tionate to the value of its fitness function, as required.

Having provided a framework overview, we now de-
scribe in greater detail the various critical components of
the GA proposed, e.g. the chromosome representation, fit-
ness function, and crossover operator.

3.1. The fitness function

The fitness function (described below) is evaluated for all
chromosomes for the purpose of selection. In our GA, each
chromosome represents a complete solution to the jigsaw
puzzle problem (see Subsection 3.2), i.e. a suggested place-
ment of all pieces. The problem variant at hand assumes no
knowledge whatsoever of the original image and thus, the
correctness of the absolute location of puzzle pieces cannot
be estimated in a simple manner. Instead, the pairwise com-
patibility (defined below) of every pair of adjacent pieces is

176617661768

Algorithm 1 Pseudocode of GA framework

1: population← generate 1000 random chromosomes
2: for generation number = 1→ 100 do
3: evaluate all chromosomes using the fitness function
4: new population← NULL
5: copy 4 best chromosomes to new population
6: while size(new population) ≤ 1000 do
7: parent1← select chromosome
8: parent2← select chromosome
9: child← crossover(parent1, parent2)

10: add child to new population
11: end while
12: population← new population
13: end for

computed.
We refer to a measure which predicts the likelihood of

two pieces to be adjacent in the original image as compati-
bility. Let C denote this measure. Given two puzzle pieces
xi, xj and a spatial relation between them R ∈ {l, r, u, d},
C(xi, xj , R) denotes the compatibility of piece xj when
placed to the left, right, up or down side of piece xi, re-
spectively.

Cho et al. [4] explored five possible compatibility mea-
sures, of which the dissimilarity measure of Eq. (1) was
shown to be the most discriminative. Pomeranz et al. [17]
further investigated this issue and chose a similar dissim-
ilarity measure with some slight optimizations. The dis-
similarity measure relies on the premise that adjacent jig-
saw pieces in the original image tend to share similar colors
along their abutting edges, and thus, the sum (over all neigh-
boring pixels) of squared color differences (over all color
bands) should be minimal. Assuming pieces xi, xj are rep-
resented in normalized L*a*b* space by a K ×K × 3 ma-
trix, where K is the height/width of a piece (in pixels), their
dissimilarity where xj is to the right of xi, for example, is

D(xi, xj , r) =

√√√√ K∑
k=1

3∑
b=1

(xi(k,K, b)− xj(k, 1, b))2.

(1)
It is important to note that dissimilarity is not a metric as
almost always D(xi, xj , R) �=D(xj , xi, R). Obviously, to
maximize the compatibility of two pieces, their dissimilar-
ity should be minimized.

Another important consideration in choosing a fitness
function is that of run-time cost. Since every chromosome
in every generation must be evaluated, a fitness function
must be relatively computationally-inexpensive. We chose
using the standard dissimilarity, as it meets this criterion
and also seems to be sufficiently discriminative. To speed
up further the computation of the fitness function we added
a lookup table of size 2 · (N · M)2 containing all of the
pairwise compatibilities for all pieces (we only had to keep
compatibilities of the right and up directions since left and

down can be easily deduced).
Finally, the fitness function of a given chromosome is the

sum of pairwise dissimilarities over all neighboring pieces
(whose configuration is represented by the chromosome).
Representing a chromosome by an (N ×M) matrix, where
a matrix entry xi,j(i = 1..N, j = 1..M) corresponds to a
single puzzle piece, we define its fitness as

N∑
i=1

M−1∑
j=1

(D(xi,j , xi,j+1, r))+
N−1∑
i=1

M∑
j=1

(D(xi,j , xi+1,j , d))

(2)
where r and d stand for ”right” and ”down”, respectively.

3.2. Representation and crossover
3.2.1 Problem definition

As noted above, given a puzzle (image) of (N ×M) pieces,
a chromosome may be represented by an (N × M) ma-
trix, each entry of which corresponds to a piece number.
(A piece is assigned a number according to its initial loca-
tion in the given puzzle.) This representation is straightfor-
ward and lends itself easily to the evaluation of the fitness
function described above. The main issue stemming from
this representation is the design of an appropriate crossover
operator. As previously noted, this operator receives two
parent chromosomes and creates a child chromosome. It
should allow for ”good traits” from the parents to pass on
to the child, thereby creating possibly a better solution. A
naive crossover operator with respect to the given represen-
tation will create a new child chromosome at random, such
that each entry of the resulting matrix is the correspond-
ing cell of the first or second parent. This approach yields
usually a child chromosome with duplicate and/or missing
puzzle pieces, which makes of course an invalid solution to
the problem. It seems that the inherent difficulty surround-
ing the crossover issue may have played a critical role in
delaying thus far the development of a state-of-the-art GA
solution to the problem.

Once the validity issue is rectified, one still needs to
consider very carefully the crossover operator. Recall,
crossover is applied to two chromosomes selected due to
their high fitness values, where the fitness function used is
an overall pairwise compatibility measure of adjacent puz-
zle pieces. At best, the function rewards a correct placement
of neighboring pieces next to each other, but it has no way
of identifying the correct absolute location of a piece. Since
the population starts out from a random piece placement
and then gradually improves, it is reasonable to assume that
over the generations some correctly assembled puzzle seg-
ments will emerge. Taking into account the fitness func-
tion’s inability to reward a correct position, we expect such
segments to appear most likely at incorrect absolute loca-
tions. Discovering a correct segment is not trivial; it should
be regarded a good trait that needs to be exploited by pass-
ing it on to the child chromosome. The crossover opera-
tor must allow for position independence, i.e. the ability of

176717671769

(a) Parent1 (b) Parent2 (c) 10 Pieces (d) 70 Pieces

(e) 180 Pieces (f) 258 Pieces (g) 304 Pieces (h) Child

Figure 2: Illustration of crossover operation: Given (a) Parent1 and (b) Parent2, (c) – (g) depict how a kernel of pieces is
gradually grown until (h) a complete child. Note the detection of parts of the tower in both parents, which are then shifted
and merged to the complete tower; shifting of images during kernel growing is due to piece position independence.

shifting correct segments, so as to place them correctly (i.e.
in their correct absolute location) in the child.

Finally, once the position-independence issue is settled,
one should address the issue of detecting these aforemen-
tioned, possibly misplaced, correct segments. What seg-
ment should the crossover operator pass on to an offspring?
A random approach might seem appealing, but in practice
it could be infeasible due to the enormous size of the prob-
lem’s solution domain. Some heuristics may be applied to
distinguish correct segments from incorrect ones.

3.2.2 Our proposed solution

Given two parent chromosomes, i.e. two complete (differ-
ent) arrangements of all puzzle pieces, the crossover op-
erator constructs a child chromosome in a kernel-growing
fashion, using both parents as ”consultants”. The operator
starts with a single piece and gradually joins other pieces at
available boundaries. New pieces may be joined only ad-
jacently to existing pieces, so that the emerging image is
always contiguous. The operator keeps adding pieces from
a bank of available pieces until there are no more pieces left.
Hence, every piece will appear exactly once in the resulting
image. Since the image size is known in advance, the oper-
ator can ensure no boundary violation. Thus, by using every
piece exactly once inside of a frame of the correct size, the
operator is guaranteed of achieving a valid image. Figure 2
illustrates the above kernel-growing process.

A key trait of the kernel-growing technique is the fact
that the final absolute location of every piece is determined
only once the kernel reaches its final size and the child
chromosome is complete. Until that point, all pieces might
be shifted, depending the kernel’s growth vector. The first
piece, for example, might eventually be located at the lower-

left corner of the image, should the kernel grow only to the
up and to the right, after this piece was assigned. Instead,
the same first piece might ultimately be located at the center
of the image, upper-right corner, or any other location. This
change in the absolute location of each piece is illustrated
in Figure 2, especially between phase (f) and phase (g) of
the kernel-growing process, as all pieces are shifted to the
right due to insertion of new pieces on the left. It is this
important trait which enables the position independence of
image segments.

Now remains the question of which piece to select from
the available pieces bank and where to locate it in the child.
Given a kernel, i.e. a partial image, we can mark all the
boundaries where a new piece might be placed. A piece
boundary is denoted by a pair (xi, R), consisting of the
piece number and a spatial relation. The operator invokes a
three-phase procedure. First, given all existing boundaries,
the operator checks whether there exists a piece boundary
for which both parents agree on a piece xj (meaning, both
contain this piece in the spatial direction R of xi). If such
a piece exists, then it is placed in the correct location. If
the parents agree on two or more boundaries, one of them
is chosen at random and the respective piece is assigned.
Obviously, an already used piece cannot be (re)assigned, so
any such piece is ignored as if the parents did not agree on
that particular boundary. If there is no agreement between
the parents on any piece at any boundary, the second phase
begins. To understand this phase, we briefly review the con-
cept of a best-buddy piece, first introduced by Pomeranz et
al. [17]; two pieces are said to be best-buddies if each piece
considers the other as its most compatible piece. The pieces

176817681770

xi and xj are said to best-buddies if

∀xk ∈ Pieces, C(xi, xj , R1) ≥ C(xi, xk, R1)

and (3)

∀xp ∈ Pieces, C(xj , xi, R2) ≥ C(xj , xp, R2)

where Pieces is the set of all given image pieces and R1

and R2 are ”complementary” spatial relations (e.g. if R1 =
right, then R2 = left and vice versa). In the second phase the
operator checks whether one of the parents contains a piece
xj in spatial relation R of xi which is also a best-buddy of
xi in that relation. If so, the piece is chosen and assigned.
As before, if multiple best-buddy pieces are available, one
is chosen at random. If a best-buddy piece is found but was
already assigned, it is ignored and the search continues for
other best-buddy pieces. Finally, if no best-buddy piece ex-
ists, the operator randomly selects a boundary and assigns
it the most compatible piece available. To introduce muta-
tion – in the first and last phase the operator places, with
low probability, an available piece at random, instead of the
most compatible relevant piece available.

In summary, the operator uses repeatedly a three-phase
procedure of piece selection and assignment, placing first
agreed pieces, followed by best-buddy pieces and finally
by the most compatible piece available (i.e. not already
assigned). An assignment is only considered at relevant
boundaries to maintain the contiguity of the kernel-growing
image. The procedure returns to the first phase after ev-
ery piece assignment due to the prospective creation of new
boundaries. A simplified description of the crossover oper-
ator (without mutation) can be found in Algorithm 2.

Algorithm 2 Crossover operator simplified

1: If any available boundary meets the criterion of Phase
1 (both parents agree on a piece), place the piece there
and goto (1); otherwise continue.

2: If any available boundary meets the criterion of Phase
2 (one parent contains a best-buddy piece), place the
piece there and goto (1); otherwise continue.

3: Randomly choose a boundary, place the most compati-
ble available piece there and goto (1).

3.2.3 Rationale

In a GA framework, good traits should be passed on to the
child. Here, since position independence of pieces is en-
couraged, the trait of interest is captured by a piece’s set
of neighbors. Correct puzzle segments correspond to a cor-
rect placement of pieces next to each other. The notion that
piece xi is in spatial relation R to piece xj is key to solv-
ing the jigsaw problem. Nevertheless, every chromosome
accounts for a complete placement of all the pieces. Taking
into account the random nature of the first generation, the
procedure must actively seek the better traits of piece rela-
tions. In our work, we assume that a trait common to both

parents has propagated through the generations and com-
prises the reason for their survival and selection. In other
words, if both parents agree on a relation, we regard it as
true with high probability. Note that not all agreed relations
are copied immediately to the child. Since a kernel-growing
algorithm is used, some agreed pieces might ”prematurely”
serve as most compatible pieces at another boundary and
be subsequently disqualified for later use. Thus, random
agreements in early generations are likely to be nullified.

As for the second stage, where the parents agree on no
piece, one might be inclined to randomly pick a parent and
follow its lead. Another option might be to just choose
the most compatible piece in a greedy manner, or check if
a best-buddy piece is available. Since piece placement in
parents might be random and since even best-buddy pieces
might not capture the correct match, we combine the two.
The fact that two pieces are both best-buddies and are ad-
jacent at a parent is a good indication for the validity of
this match. A different perspective is to consider that every
chromosome contains some correct segments. The pass-
ing of correct segments from parents to children is at the
heart of the GA. Moreover, if each parent contains a correct
segment and these segments partially overlap, the overlap-
ping (agreed upon) part will be copied to the child in the
first phase and be completed from both parents at the sec-
ond stage, thus combining the segments into a larger correct
segment, creating a better child solution, and advancing the
pursuit of the entire correct image.

As for the more greedy third step, we may conclude
that the GA concurrently tries many different greedy place-
ments, and only those that seem correct propagate through
the generations. This exemplifies the principle of propa-
gation of good traits in the spirit of the theory of natural
selection.

4. Experimental results

Cho et al. [4] introduced three measures to evaluate the
correctness of an assembled puzzle, two of which were re-
peatedly used in previous works: The direct comparison
which measures the fraction of pieces located in their cor-
rect absolute location, and the neighbor comparison, which
measures the fraction of correct neighbors. The direct
method has been repeatedly denounced [17] as being both
less accurate and less meaningful due to its inability to cope
with slightly shifted puzzle solutions. Figure 3 illustrates
the drawbacks of the direct comparison and the superiority
of the neighbor comparison. Note that a piece arrangement
scoring 100% according to one of the methods is, by defi-
nition, the full reconstruction of the original image and will
also achieve a score of 100% when measured by the other
method. Thus, unless stated otherwise, all results are under
neighbor comparison. For the sake of completeness, our
results under direct comparison are reported in Table 5.

In all experiments, we used the same GA parameters de-
scribed in Algorithm 1. The population consists of 1000

176917691771

(a) (b) (c) (d)

Figure 3: Shifted puzzle solutions. All images are solutions created by our GA. The accuracy for each solution is 0%
according to the direct comparison, but over 95% according to the (more reasonable) neighbor comparison. Amazingly, the
dissimilarity of each solution is smaller than that of its original image counterpart.

chromosomes. In each generation we retain the best 4 chro-
mosomes (a measure called elitism). The rest of the popula-
tion is generated by the crossover operator described earlier
with a mutation rate of 5%. Parent chromosomes are chosen
by the roulette wheel selection, producing a single offspring
in each crossover. The GA always runs for exactly 100 gen-
erations.

We ran the proposed GA on the set of images supplied by
Cho et al. [4] and all sets supplied by Pomeranz et al. [17],
testing puzzles of 28 × 28-pixel patches according to the
traditional convention. The image data experimented with
contains 20-image sets of 432-, 504-, and 805-piece puzzles
and 3-image sets of 2,360- and 3,360-piece puzzles. We ran
the GA 10 times on each image, each time with a differ-
ent random seed, and recorded – over these 10 runs – the
best, worst, and average accuracy (as well as the standard
deviation). Table 1 lists the results achieved by our GA on
each set. Interestingly, despite the expected random nature
of GAs, the results of different runs were almost identical,
attesting to the robustness of the GA. Table 2 compares – for
each image set – our average best results to those of Pomer-
anz et al., which can be easily derived from their detailed
documented results [18]. As can be seen, our GA results
are far more accurate than the state-of-the-art. Nevertheless,
as noted in the beginning of this paper, previous solvers do
well on some images and not as well on others. The supe-
rior performance of our solver is best conveyed in Table 3,
where we only relate to the 3 least accurately solved images
in every set. Our solver gains a significant improvement of
up to 21% (for the 540-piece puzzle set); for some puzzles,
the improvement was even 30%. Detailed results of the ex-
act accuracy of every run on every image can be found in
our supplementary material [19].

Next, we have augmented the current benchmark by
compiling three additional 20-image sets for this work and
future studies. These image sets contain 5,015-, 10,375-,
and 22,834-piece puzzles. (Note that the latter two puzzle
sizes have never been solved before.) The results for the
additional three sets are shown in Table 4. As before, we
ran the GA 10 times on each image and recorded the best,
worst, and average accuracy (as well as the standard devi-
ation). Having observed little difference between the best

Avg. Avg. Avg. Avg.
of Pieces Best Worst Avg. Std. Dev.

432 96.16% 95.21% 95.70% 0.34%

540 95.96% 94.65% 95.38% 0.40%

805 96.26% 95.35% 95.85% 0.31%

2,360 88.86% 87.52% 88.00% 0.38%

3,300 92.76% 91.91% 92.37% 0.27%

Table 1: Accuracy results using our GA; set averages are
given for each image set of best, worst, and average scores
(as well as standard deviation) over 10 runs for each image.

of Pieces Pomeranz et al. GA Diff

432 94.25% 96.16% 1.91%
540 90.90% 95.96% 5.06%
805 89.70% 96.26% 6.56%

2,360 84.67% 88.86% 4.19%
3,300 85.00% 92.76% 7.76%

Table 2: Comparison of our accuracy results to those of
Pomeranz et al. (derived from their supplementary mate-
rial); averages are given for each image set of best scores
over 10 runs for each image.

of Pieces Pomeranz et al. GA Diff

432 76.00% 81.06% 5.06%
540 58.33% 79.32% 20.99%
805 67.33% 86.30% 18.97%

2,360 84.67% 88.86% 4.19%
3,300 85.00% 92.76% 7.76%

Table 3: Comparison of our accuracy results to those of
Pomeranz et al., relating only to the 3 least accurately
solved images in every set.

and worst runs for puzzles with less than 22,834 pieces, and
since this difference seemed to decrease for larger puzzles,
we ran the GA only twice on each 22,834-piece puzzle.
Even when challenged with an image size that has never
been attempted, the GA functions well, achieving (almost)
perfect results.

177017701772

(a) 5,015 pieces (b) Generation 1 (c) Generation 2 (d) Final

(e) 10,375 pieces (f) Generation 1 (g) Generation 2 (h) Final

(i) 22,834 pieces (j) Generation 1 (k) Generation 2 (l) Final

Figure 4: Selected results of our GA-based solver for large puzzles. The first row shows: (a) 5,015-piece puzzle and the best
chromosome achieved by the GA in the (b) first, (c) second, and (d) last generation. Similarly, the second and third rows
show the best chromosomes in the same generations for 10,375- and 22,834-piece puzzles, respectively. The accuracy of all
puzzle solutions shown is 100%.

An interesting phenomenon observed is depicted in Fig-
ure 3. For some puzzles, the GA managed to reach a ”better-
then-perfect” score, i.e. a placement such that the dissimi-
larity is smaller than that of the original (correct) image.
These placements were reproduced even when using more
sophisticated metrics such as the one offered in [17]. More-
over, in some cases, the correct solution was reached and
then changed to the ”better” one. As far as we know, obser-
vations of this kind were not documented before. Although
undesirable, this manifestation is a proof of the GA’s ability
of reaching unprecedented accuracy levels. Obviously, re-
visiting the fitness function (i.e. compatibility metric) would
be required for these cases.

Finally, Table 6 depicts the average run time of the GA
per image set; all experiments were conducted on a modern
PC. When running on the smaller sets of 432, 540, and 805
pieces, the GA terminated after 48.73, 64.06, and 116.18
seconds, on average, respectively. These results are com-
parable to the times measured by Pomeranz et al. [17] of
1.2 minutes, 1.9 minutes, and 5.1 minutes, on the same sets.
Experimenting with the largest benchmark of 22,834-piece
puzzles, the GA terminated, on average, after only 13.19
hours. In comparison, Gallagher [9] reported a run time of
23.5 hours for solving a 9,600-pieces puzzle, although he al-
lows also for piece rotation. In summary, when facing both
smaller and larger images, the GA’s performance seems to
surpass previously reported performances achieved by other

Avg. Avg. Avg. Avg.
of Pieces Best Worst Avg. Std. Dev.

5,015 95.25% 94.87% 95.06% 0.11%

10,375 98.47% 98.20% 98.36% 0.08%

22,834 96.28% 96.17% 96.22% 0.05%

Table 4: Accuracy results using our GA on larger images;
set averages are given for each image set of best, worst, and
average scores (as well as standard deviation) over 10 runs
for each image (and 2 runs for each 22,834-piece puzzle).

greedy algorithms.

5. Discussion and future work
In this paper we presented an automatic jigsaw puzzle

solver, far more accurate than any existing solver and capa-
ble of reconstructing puzzles of up to 22,834 pieces (more
than twice the number of pieces ever achieved). We also
created new sets of large images to be used for benchmark
testing for this and other solvers, and supplied both the
image sets and our results for the benefit of the commu-
nity [19].

We have achieved the first effective genetic algorithm-
based solver, which appears to challenge state-of-the-art
performance of other jigsaw puzzle solvers. By introduc-
ing a novel crossover technique, we were able to arrive at

177117711773

Avg. Avg. Avg. Avg.
of Pieces Best Worst Avg. Std. Dev.

432 86.19% 80.56% 82.94% 2.62%

540 92.75% 90.57% 91.65% 0.65%

805 94.67% 92.79% 93.63% 0.62%

2,360 85.73% 82.73% 84.62% 0.86%

3,300 89.92% 65.42% 86.62% 7.19%

5,015 94.78% 90.76% 92.04% 1.74%

10,375 97.69% 96.08% 97.12% 0.45%

22,834 92.02% 91.46% 91.74% 0.28%

Table 5: Results of running the GA 10 times on every image
in every set under direct comparison; the best, worst, and
average scores were recorded for every image.

of Pieces Run Time

432 48.73 [sec]

540 64.06 [sec]

805 116.18 [sec]

2,360 17.60 [min]

3,300 30.24 [min]

5,015 61.06 [min]

10,375 3.21 [hr]

22,834 13.19 [hr]

Table 6: Average run times of the GA on an image in every
set.

an effective solver. Our approach could prove useful in fu-
ture utilization of GAs for solving more difficult variations
of the jigsaw problem (including unknown piece orienta-
tion, missing and excessive puzzle pieces, unknown puzzle
dimensions, and three-dimensional puzzles), and could also
assist in the design of GAs in other problem domains.

References
[1] T. Altman. Solving the jigsaw puzzle problem in linear

time. Applied Artificial Intelligence an International Jour-
nal, 3(4):453–462, 1989. 1

[2] B. Brown, C. Toler-Franklin, D. Nehab, M. Burns,
D. Dobkin, A. Vlachopoulos, C. Doumas, S. Rusinkiewicz,
and T. Weyrich. A system for high-volume acquisition and
matching of fresco fragments: Reassembling theran wall
paintings. ACM Transactions on Graphics, 27(3):84, 2008.
1

[3] S. Cao, H. Liu, and S. Yan. Automated assembly of shredded
pieces from multiple photos. In IEEE Int. Conf. on Multime-
dia and Expo, pages 358–363, 2010. 1

[4] T. Cho, S. Avidan, and W. Freeman. A probabilistic image
jigsaw puzzle solver. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 183–190, 2010. 1, 3, 5,
6

[5] T. Cho, M. Butman, S. Avidan, and W. Freeman. The patch
transform and its applications to image editing. In IEEE Con-

ference on Computer Vision and Pattern Recognition, pages
1–8, 2008. 1

[6] A. Deever and A. Gallagher. Semi-automatic assembly of
real cross-cut shredded documents. In ICIP, pages 233–236,
2012. 1

[7] E. Demaine and M. Demaine. Jigsaw puzzles, edge match-
ing, and polyomino packing: Connections and complexity.
Graphs and Combinatorics, 23:195–208, 2007. 1

[8] H. Freeman and L. Garder. Apictorial jigsaw puzzles: The
computer solution of a problem in pattern recognition. IEEE
Transactions on Electronic Computers, EC-13(2):118–127,
1964. 1

[9] A. Gallagher. Jigsaw puzzles with pieces of unknown orien-
tation. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 382–389, 2012. 1, 2, 7

[10] D. Goldberg, C. Malon, and M. Bern. A global approach to
automatic solution of jigsaw puzzles. Computational Geom-
etry: Theory and Applications, 28(2-3):165–174, 2004. 1

[11] J. Holland. Adaptation in natural and artificial systems, uni-
versity of michigan press. Ann Arbor, MI, 1(97):5, 1975. 2

[12] E. Justino, L. Oliveira, and C. Freitas. Reconstructing shred-
ded documents through feature matching. Forensic science
international, 160(2):140–147, 2006. 1

[13] D. Koller and M. Levoy. Computer-aided reconstruction and
new matches in the forma urbis romae. Bullettino Della
Commissione Archeologica Comunale di Roma, pages 103–
125, 2006. 1

[14] W. Marande and G. Burger. Mitochondrial DNA as a ge-
nomic jigsaw puzzle. Science, 318(5849):415–415, 2007. 1

[15] M. Marques and C. Freitas. Reconstructing strip-shredded
documents using color as feature matching. In ACM sympo-
sium on Applied Computing, pages 893–894, 2009. 1

[16] A. Q. Morton and M. Levison. The computer in literary stud-
ies. In IFIP Congress, pages 1072–1081, 1968. 1

[17] D. Pomeranz, M. Shemesh, and O. Ben-Shahar. A fully au-
tomated greedy square jigsaw puzzle solver. In IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
9–16, 2011. 1, 3, 4, 5, 6, 7

[18] D. Pomeranz, M. Shemesh, and O. Ben-
Shahar. A fully automated greedy square jig-
saw puzzle solver MATLAB code and images.
https://sites.google.com/site/greedyjigsawsolver/home,
2011. 1, 6

[19] D. Sholomon, O. David, and N. Netanyahu. Datasets of
larger images and GA-based solver’s results on these and
other sets. http://www.cs.biu.ac.il/∼nathan/Jigsaw. 2, 6, 7

[20] F. Toyama, Y. Fujiki, K. Shoji, and J. Miyamichi. Assembly
of puzzles using a genetic algorithm. In IEEE Int. Conf. on
Pattern Recognition, volume 4, pages 389–392, 2002. 2

[21] C.-S. E. Wang. Determining molecular conformation from
distance or density data. PhD thesis, Massachusetts Institute
of Technology, Dept. of Electrical Engineering and Com-
puter Science, 2000. 1

[22] X. Yang, N. Adluru, and L. J. Latecki. Particle filter with
state permutations for solving image jigsaw puzzles. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2873–2880. IEEE, 2011. 1

[23] Y. Zhao, M. Su, Z. Chou, and J. Lee. A puzzle solver
and its application in speech descrambling. In WSEAS Int.
Conf. Computer Engineering and Applications, pages 171–
176, 2007. 1

177217721774

