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Abstract

Accurate prostate segmentation in CT images is a signifi-

cant yet challenging task for image guided radiotherapy. In

this paper, a novel semi-automated prostate segmentation

method is presented. Specifically, to segment the prostate in

the current treatment image, the physician first takes a few

seconds to manually specify the first and last slices of the

prostate in the image space. Then, the prostate is segment-

ed automatically by the proposed two steps: (i) The first step

of prostate-likelihood estimation to predict the prostate like-

lihood for each voxel in the current treatment image, aim-

ing to generate the 3-D prostate-likelihood map by the pro-

posed Spatial-COnstrained Transductive LassO (SCOTO);

(ii) The second step of multi-atlases based label fusion to

generate the final segmentation result by using the prostate

shape information obtained from the planning and previous

treatment images. The experimental result shows that the

proposed method outperforms several state-of-the-art meth-

ods on prostate segmentation in a real prostate CT dataset,

consisting of 24 patients with 330 images. Moreover, it is

also clinically feasible since our method just requires the

physician to spend a few seconds on manual specification

of the first and last slices of the prostate.

1. Introduction

According to the data [1] reported from National Cancer

Institute, prostate cancer will possibly cause 241740 new

cases for U.S. male in 2012. It is thus regarded as one of the

most leading reasons for cancer-caused death. Recently, CT

image guided radiotherapy for prostate cancer treatment has

attracted lots of research interest, due to its ability in better

guiding the delivery of radiation to prostate cancer [15].

During the CT image guided radiotherapy, a sequence of

CT scans will be acquired from a patient in the planning

and treatment days. A CT scan acquired in the planning

day is called the planning image, and the scans acquired in

the subsequent treatment days are called the treatment im-

ages. Since the locations of prostate might vary in CT scan-

s, the core problem is to accurately determine the location

of prostate in the images acquired from different treatment

days, which is usually done by the physician with slice-by-

slice manual segmentation. However, manual segmentation

can spend a lot of time for each treatment image, i.e., up to

20 minutes. Most importantly, the segmentation results are

not consistent across different treatment days due to inter-

and intra- operator variability.

The major challenging issues to accurately segmen-

t prostate in the CT images include: (i) the boundary be-

tween prostate and background is usually unclear due to the

low contrast in the CT images, e.g., in Fig.1(a) where the

prostate region is highlighted by the physician using green

contour. (ii) The locations of the prostate regions scanned at

different treatment days are usually different due to the ir-

regular and unpredictable prostate motion, e.g., in Fig.1(b)

where the red and blue contours denote the manual segmen-

tations of the two bone-aligned CT images scanned from t-

wo different treatment days for the same patient. We can ob-

serve the large prostate motion even after bone-based align-

ment of two scans, indicating the possible large motion of

prostate relative to the bones.

(a) (b)

Figure 1. (a) Low contrast in CT image; (b) Large prostate motion relative

to the bones, even after bone-based alignment for the two CT images.

Recently, several prostate segmentation methods for C-

T image guided radiotherapy have been developed, with

the common goal of segmenting the prostate in the cur-

rent treatment image by borrowing the knowledge learned

from the planning and previous treatment images. The

previous methods can be roughly categorized into three

classes: deformable-model-based, registration-based, and

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.289

2225

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.289

2225

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.289

2227



learning-based methods. In deformable-model-based meth-

ods [6][11], the prostate shapes learned from the plan-

ning and previous treatment images are first used to ini-

tialize the deformable model, and then specific optimiza-

tion strategies are developed to guide prostate segmentation.

In registration-based methods [7][9][15], the planning and

previous treatment images are warped onto the current treat-

ment image, and then their respective segmentation images

are similarly warped and further combined (by label fusion)

to obtain the final segmentation of the current treatment im-

age. In learning-based methods [14][21], prostate segmen-

tation is first formulated as a prostate-likelihood estima-

tion problem using visual features (e.g., histogram of ori-

ented gradients (HoG) [8] and auto-context features [24]),

and then on the obtained likelihood map, the segmenta-

tion methods (e.g., level-set segmentation [4]) is adopted

to segment the prostate. Note that, besides segmentation on

CT images, other prostate segmentation methods are also

proposed for segmentation of prostate from other imaging

modalities such as MR [12][13] and ultrasound [25] images.

Our proposed method belongs to the class of learning-based

segmentation methods.
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a 2-D slice from CT image

Figure 2. A typical examples to illustrate that three different local regions

prefer choosing different features. We adopt Lasso as feature selection

method, and our used features include LBP, Haar wavelet, and HoG, which

will be discussed in the following section.

In this paper, we propose a novel prostate segmenta-

tion method for CT image guided radiotherapy. Previ-

ous learning-based methods [14][21] first collect the vox-

els from certain slices, and then conduct both the feature

selection and the subsequent prostate-likelihood estimation

for all voxels in those selected slices jointly. However, dif-

ferent local regions may prefer choosing different features

to better discriminate between their own prostate and non-

prostate voxels, as indicated by a typical example in Fig.2.

In this example, we extracted features for three differen-

t local regions, and then apply Lasso (a supervised feature

selection technique as introduced in [22]) for the respective

feature selections. From the results shown in Fig.2, we can

see that the selected features from three local regions are

completely different, demonstrating the necessity of select-

ing respective features for each local region. In this paper,

we design a novel local learning strategy: partition each 2-

D slice into several non-overlapping local blocks, and then

select the respective local features to predict the prostate-

likelihood for each local block. This will be achieved by

our proposed Spatial-COnstrained Transductive LassO (S-

COTO) and support vector regression (SVR), respectively,

which will be detailed below. The major difference be-

tween the previous learning-based methods and our pro-

posed method can be referred to Fig.3. Note that, before
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Figure 3. The difference between the previous learning-based methods

and our proposed method. Our proposed method adopts a local feature

selection and prostate-likelihood estimation strategy.

segmentation on the current treatment image, the physician

only needs to spend a few seconds to specify just the first

and last slices of prostate in the CT image. By spending this

little manual time, the segmentation results can be signifi-

cantly improved, compared with the fully automatic meth-

ods [14][15]. The contributions of our proposed method can

be summarized into the following two folds:

• A novel semi-automatic prostate segmentation method

in CT images is proposed. For current treatment image, the

information obtained from the planning and previous treat-

ment images of the same patient and also the manual speci-

fication of the first and last slices of prostate helps guide the

accurate segmentation.

• A novel joint feature selection method, called SCOTO,

is proposed. SCOTO can successfully select the discrimi-

native features jointly from different local regions (blocks)

to guide the better prostate-likelihood estimation.

2. Framework, Notation, Image Preprocessing

2.1. Framework

Our proposed method mainly consists of two steps: (i)

prostate-likelihood estimation step and (ii) multi-atlases

based label fusion step.

In the prostate-likelihood estimation step: First, all pre-

vious and current treatment images are rigidly aligned to the

planning image of the same patient based on the pelvic bone

structures, for removing the whole-body patient motion that

is irrelevant to prostate segmentation. Then, we extract the

ROI regions according to the prostate center in the planning

image. Second, for the current treatment image, physician

is required to specify the first and last slices of the prostate

in the CT images. By combining the voxels in the specified

slices with the voxels sampled from the planning and pre-

vious treatment images according to the previous segmen-

tation results, we can extract 2-D low-level features (LBP

[20], HoG [8], and Haar wavelet [18]) for all these voxels
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Figure 4. The flowchart of the proposed prostate segmentation method.

separately from their original CT images. Then, each 2-D s-

lice will be partitioned into several non-overlapping blocks.

The proposed SCOTO is applied for joint feature selection

for all blocks, and SVR is further adopted to predict the 2-

D prostate-likelihood map for all the voxels in the current

slice. Finally, the predicted 2-D prostate-likelihood map

of each individual slice will be merged into a 3-D prostate-

likelihood map according to the order of their original s-

lices.

In multi-atlases based label fusion step, to make full use

of prostate shape information, manually segmented prostate

regions in both the planning and the previous treatment im-

ages of the same patient will be rigidly aligned to the esti-

mated 3-D prostate-likelihood map of the current treatment

image. Then, majority voting will be applied to fuse the la-

bels from different aligned images, and obtain the final seg-

mentation result. The framework of the proposed method is

shown in Fig.4.

2.2. Notation

For each patient, we have one planning image, several

previous treatment images with their respective manually-

refined prostate segmentation results by the physician of-

fline, and also the current treatment image scanned in the

current treatment day, which needs to be segmented by the

proposed method. The planning image and its correspond-

ing manual segmentation result are denoted as Ip and Gp,

respectively. The nth treatment image, which is the current

treatment image, is denoted as In. The previous treatmen-

t images and their corresponding manual segmentation re-

sults are denoted as I1, ..., In−1 and G1, ...,Gn−1, respec-

tively. Also, the final 3-D prostate-likelihood map and its

segmentation result for the current treatment image In by

adopting the proposed method are denoted as Mn and Sn,

respectively.

2.3. Image Preprocessing

Alignment to the Planning Image: In order to elimi-

nate the influence caused by the whole-body rigid motion

which is irrelevant to the prostate motion, we first extract

the pelvic bone structure from each image using threshold-

based segmentation, and then align each treatment image

(I1, ..., In) rigidly to the planning image (Ip) based on their

pelvic bone structures.

ROI Extraction and Simple Manual Interaction: Basi-

cally, the prostates are located only in a small central part

of the CT images. So the ROI extraction, which aims to

extract the central part by excluding the irrelevant and re-

dundant background voxels, is useful to alleviate the com-

putational burden. For each patient, we first calculate the

mass center of the prostate in the planning image Ip, and

then extract a large enough 3-D region centered at the cal-

culated mass center. In this paper, the extracted ROI size is

140× 140× 60.

When asking physician for manual interaction, we only

ask for manual specification of the first and last slices of the

prostate along the z-axis. It is noteworthy that the physi-

cian’s labeling is done after ROI extraction. Therefore, it

will take only less than 10 seconds for this manual step.

In the experiments, we will also show that the segmenta-

tion results can be largely improved by asking physician to

spend such a little interaction time, which is also clinically

feasible.

Patch-Based Feature Representation: Three differen-
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t kinds of features from 2-D slice are extracted, which in-

clude 9 histogram of oriented gradient (HoG) [8], 30 lo-

cal binary pattern (LBP) [20] and 14 multi-resolution Haar

wavelet [18]1. The window size for feature extraction is

empirically set to 21 × 21. For feature representation, we

adopt the patch-based representation method. Specifically,

for each voxel, a small patch centered at that voxel with

k×k size is used to represent that voxel. The feature vector

of the current voxel consists of the features (9+30+14 = 53
features) extracted from all voxels in the small patch. In our

paper, the value k is set to 5, so a 1325 (53× 5× 5) dimen-

sional feature vector is used to represent each voxel.

Training Voxels Sampling: Because the planning and

the previous treatment images with the corresponding man-

ual segmentations are available, voxels with known label-

s (prostate or background) can be sampled as the training

voxels to aid the prostate-likelihood map estimation for the

current treatment image. Since the confusing voxels are

frequently lying on the boundary of the prostate region, it

is reasonable to sample relatively more voxels around the

boundary. That is, the boundary voxels will have higher

probability to be sampled, as illustrated in Fig.5.

Figure 5. The typical examples to illustrate the sampling of the training

voxels, with the red points denoting the prostate voxels and the blue points

denoting the background voxels.

3. Prostate-Likelihood Estimation via SCOTO

3.1. SCOTO: Problem Formulation

For each 2-D slice, our goal is to estimate the prostate-

likelihood for each voxel in the current slice. Since our fea-

ture representation for each voxel is a high dimensional vec-

tor (R1325), the feature selection is significant to avoid the

“curse of dimensionality”. For each slice, we first partition

the slice into non-overlapping Nx ×Ny blocks as shown in

Fig.4. Then for the ith block, we use li ∈ R and ui ∈ R

to denote the number of training voxels2 and testing voxels,

respectively. N ∈ R (N = Nx × Ny) denotes the total

number of blocks in the current slice. yi ∈ R
li+ui and

Fi ∈ R
(li+ui)×d denotes the ground-truth label and feature

1HOG: calculated within 3×3 cell blocks with 9 histogram bins similar

in [8]. LBP: calculated with radius value 2 and neighboring voxel number

8. Haar: calculated by convolving the 14 multi-resolution wavelet basis

functions with the input image similar in [18].
2The training voxels come from the sampled voxels, whose locations

are in the current block within the slices [sc−1, sc+1] of training images,

where sc is the current slice index of testing voxels in z-axis. The reason

is that training voxels in adjacent slices have similar distribution in feature

space, which guarantees enough voxels are sampled, especially on the base

and apex slices of prostate.

matrix for all the training and testing voxels, respectively.

Without loss of generality, all the training voxels are list-

ed before the testing voxels in both yi and Fi. d means the

number of features (i.e., 1325 in the paper). It is noteworthy

that the labels of testing voxels in yi are set to 0. Also in

yi, the labels of training voxels are set to 1 if they belong to

the prostate, and set to 0 if they belong to the background.

Mathematically, the objective function of SCOTO can be

formulated as follows:

min
β1,...,βN

{
N∑
i=1

[
‖Ji(yi − Fiβi)‖

2
2 + λS‖βi‖1+

λL

(li + ui)2
β�i F

�
i LiFiβi

]
+

λE

|H(i)|

N∑
i=1

∑
j∈H(i)

‖βi − βj‖
2
2

}
,

(1)

where β1, ...,βN (βi ∈ R
d) are the parameters to learn,

which indicates the weights of individual features for each

block. λS , λL, λE ∈ R are the parameters to control the

corresponding terms in Eq.(1), and we will introduce the

method for automatic parameter selection in later discus-

sion. Ji ∈ R
(li+ui)×(li+ui), which is used to indicate

the training voxels since the testing voxels have no con-

tribution on the first term, is a diagonal matrix defined as

Ji = diag

[ li︷ ︸︸ ︷
1/li, ..., 1/li,

ui︷ ︸︸ ︷
0, ..., 0

]
. Li ∈ R

(li+ui)×(li+ui)

is the graph Laplacian with the same definition as that in

literature [3]. H(i) denotes the neighbors of the ith block,

and |H(i)| is the cardinality of H(i). We use the 4-neighbor

connection in this paper.

In Eq.(1), the first term with three sub-terms focuses

on each individual block: the 1st sub-term indicates the

reconstruction error, the 2nd sub-term imposes the sparsi-

ty constraint with L1 norm, and the 3rd sub-term is the

graph Laplacian imposing the manifold constraint on both

the training and testing voxels since a large amount of test-

ing voxels can be well used for training. The second term

of Eq.(1) is the smoothness term on the neighboring blocks,

so that the neighboring blocks can choose similar features.

Therefore, Eq.(1) can be considered as the derivation from

Lasso [22] by imposing manifold constraint and spatial s-

moothness over neighboring blocks.

3.2. Optimization

To solve Eq.(1), since the feature weight vectors

β1, ...,βN are jointly convex, the alternating optimization

method [17] can be employed, which sequentially solves βi

with other variables βj (1 ≤ j ≤ N, j �= i) fixed. There-

fore, the optimization for Eq.(1) can be divided into sever-

al alternating sub-problems. Formally, for each βi, when

fixing the other parameters βj , we have the following sub-

222822282230



problem:

min
β

i

{
‖Ji(yi − Fiβi)‖

2
2 + λS‖βi‖1+

λL

(li + ui)2
β�i F

�
i LiFiβi +

λE

|H(i)|

∑
j∈H(i)

‖βi − βj‖
2
2

}
.

(2)

The problem of Eq.(2) is convex but not smooth for the

feature weight vector βi, so the closed-form solution can-

not be reached. For solving Eq.(2), we consider adopting

the iterative projected gradient descent method [2] for opti-

mization, which separates the sub-problem into the smooth

term and the non-smooth term, and solves them iteratively

until convergence. Therefore, the Eq.(2) can be separated

into the smooth term

S(βi) =‖Ji(yi − Fiβi)‖
2
2 +

λL

(li + ui)2
β�i F

�
i LiFiβi

+
λE

|H(i)|

∑
j∈H(i)

‖βi − βj‖
2
2,

and the non-smooth term N (βi) = λS‖βi‖1.

The iterative projected gradient descent method contains

two steps in each iteration. For the kth iteration, in the

first step, we compute α
(k)
i using Newton gradient descent

method as

α
(k)
i = β

(k)
i − γk

[
∂2S(β

(k)
i )

∂β
(k)
i

]−1
∂S(β

(k)
i )

∂β
(k)
i

, (3)

where γk ∈ R is the step size which can be automatically

determined by the back-tracking line search for each itera-

tion.
∂S(β

(k)
i

)

∂β
(k)
i

and
∂2
S(β

(k)
i

)

∂β
(k)
i

denote the 1st and 2nd order

derivatives of S(βi) at β
(k)
i respectively, which can be cal-

culated as follows:

∂S(β
(k)
i )

∂β
(k)
i

= F�i

[
Ĵiyi +Qiβ

(k)
i

]
+

λE

|H(i)|

∑
j∈H(i)

(β
(k)
i − β

(k)
j ) ,

and

∂2S(β
(k)
i )

∂β
(k)
i

= F�i Qi + λEI,

where Ĵi = JiJi ∈ R
(li+ui)×(li+ui). Qi ∈ R

(li+ui)×d is

defined as Qi =
[

λL

(li+ui)2
Li − Ĵi

]
Fi for clear representa-

tion.

In the second step, with the obtained α(k), we update

β
(k)
i to β

(k+1)
i by solving the following L1 regularized re-

gression problem:

β
(k+1)
i = argmin

β
i

‖βi −α
(k)
i ‖22 +N (βi). (4)

The Eq.(4) can be efficiently solved by many existing algo-

rithms, e.g., LARS [10].

The algorithm summary for SCOTO can be referred to

Algorithm 1. The input is the feature matrices and the cor-

responding labels of individual blocks, and the output is the

corresponding feature weights for each block.

Algorithm 1 SCOTO

Input: feature matrices F1,...,FN , and the corresponding

labels y1,...,yN .

Output: feature weights β1,...,βN .

1: for i← 1, ..., N do

2: Li ← calculate the graph Laplacian [3].

3: β
(1)
i ← solution by applying Lasso on Fi and yi.

4: end for

5: k ← 1
6: while not converge do

7: for i← 1, ..., N do

8: α
(k)
i ← solution by Eq.(3).

9: β
(k+1)
i ← solution by Eq.(4).

10: end for

11: end while

After SCOTO for feature selection, for the ith block, the

features, which correspond to the entries in βi that are larg-

er than 0, will be selected. So we can finally obtain the new

feature matrices F′i (i = 1, ..., N) by selecting the columns

in Fi corresponding to the selected features.

3.3. Prostate-Likelihood Estimation

With the obtained new feature matrices F′i (i =
1, ..., N), we can estimate the prostate-likelihood for each

block. For each individual block, we apply SVR, which is

a conventional regression method, to predict the prostate-

likelihood for all the voxels in each block. Specifically,

SVR model is first trained by the training voxels in F′i as

well as available labels in yi, and then preformed over the

ui testing voxels on the ith block for prediction of prostate.

All the predicted likelihood will be finally normalized into

[0, 1]. It is noteworthy that we will first obtain 2-D prostate-

likelihood maps slice by slice, and then merge all the results

to get the final 3-D prostate-likelihood map, which is denot-

ed as Mn.

4. Multi-Atlases based Label Fusion

To make full use of all the shape information from

the planning and previous treatment images for segmen-

tation, we adopt the multi-atlases based label fusion with

the following steps: First, previous binary segmentation re-

sults G1,...,Gn−1 and Gp will be rigidly aligned to esti-

mated prostate-likelihood map Mn by using the mutual-

information based similarity metric with Powell’s optimiza-

tion strategy; Second, we average all the obtained aligned
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results and conduct the voxel-wise majority voting to get

the final segmentation result Sn, which can be referred to

the “multi-atlases based label fusion” step in Fig.4.

5. Experimental Results

5.1. Dataset Description and Experimental Setup

The proposed method is evaluated on a prostate 3-D CT-

image dataset consisting of 24 patients with 330 images,

and each patient has at least 9 images obtained from 1 plan-

ning day and several treatment days. The original resolution

of each image is 512 × 512 × 60, with in-plane voxel size

as 0.98 × 0.98 mm2 and the inter-slice thickness as 3 mm.

All the images of the patients are manually segmented by

experienced physician, which are used as ground-truth for

evaluation in the experiments. For each patient, the first 3
images (i.e., the planning image and the first two treatment

images) are used as training images, from which the train-

ing voxels are sampled, and segmentation ground-truths are

available.

In the experiments, we use three common evaluation

metrics: the Dice ratio, the true positive fraction (TPF),

and the centroid distance (CD). Specifically, the Dice ra-

tio between two binary images A and B can be calculated

as 2|A∩B|/(|A|+|B|). The TPF indicates that the percent-

age of corrected predicted prostate voxels in the manually

segmented prostate regions. The centroid distance mean-

s the Euclidean distance between the central locations of

the manual segmentation result and predicted result. Since

prostate CT-images are 3-D, the CD along 3 directions, in-

cluding the lateral (x-axis), anterior-posterior (y-axis), and

superior-inferior (z-axis) directions, need to be calculated.

Note that, in the superior-inferior (z-axis) direction, the CD

is calculated as 3 times of the obtained value since the inter-

slice voxel size is 3 mm, which is approximately 3 times of

that in the x-axis and y-axis.

5.2. Parameter Selection

For the parameter selection in SCOTO, λS , λL, λE are

automatically selected by grid searching with leave-one-out

cross-validation on three patient-specific training images. It

is noteworthy that the parameters in SVR, which is imple-

mented by LIBSVM toolbox [5], are set to default ones.

The λS , λL, λE with the best results are selected, and we

found λS = 10−6, λL = 10−8, λE = 10−3 to be best.

For the size of blocks, we empirically set to 10 (note that

the slice size after ROI extraction is 140 × 140). Too large

block size will ignore the variations of appearance along the

prostate boundary, while too small block size will increase

the computational burden. However, it is still an open prob-

lem on how to automatically choose block size, which we

will study in our future work.

5.3. Evaluation on the SCOTO

To evaluate the SCOTO on feature selection and also to

validate if the block-level feature selection is better than

the slice-level feature selection, we introduce several relat-

ed feature selection methods for comparison, which include

LassoS and tLassoS (applying Lasso [22] and tLasso [21]

on slice-level feature selection, respectively), LassoB and

tLassoB (applying Lasso and tLasso on block-level feature

selection, respectively), mRMR [19] and fused Lasso [23].

For all these methods, the parameters are experimentally set

using leave-one-out cross-validation. It is noteworthy that

the same multi-atlases based label fusion is adopted for all

the methods.

Table.1 lists the segmentation accuracies obtained by d-

ifferent feature selection schemes, and the best results are

marked by the bold fonts. We found SCOTO can achieve

superior performance over the related methods. Specifical-

ly, we also found that (i) the block-level methods are better

than the slice-level ones, which validates our assumption

that different local regions prefer choosing different fea-

tures; (ii) Manifold constraint is useful for improving the

results (by comparing tLassoS with LassoS , and tLassoB
with LassoB); (iii) Spatial-constraint smoothness term leads

to better results (by comparing SCOTO with tLassoB).

5.4. Comparison with Previous Methods

Table 2. The results of mean Dice ratio and median TPF, compared with

the related methods, with the best results marked by bold font.

PAs IMs methods mean Dice median TPF

Other datasets
3 40 Davis et al.[9] 0.820 N/A

13 185 Chen et al.[6] N/A 0.840

CT dataset 1 24 330

Feng et al.[11] 0.893 N/A

Liao et al.[15] 0.899 N/A

Shi et al.[21] 0.920 0.901

our method 0.941 0.932

CT dataset 2 11 164

Li et al.[14] 0.908 0.900

Shi et al.[21] 0.923 0.911

our method 0.940 0.923

CT dataset 3 10 176

Liao et al.[15] 0.896 N/A

Shi et al.[21] 0.922 0.907

our method 0.936 0.923

To further evaluate the performance of the proposed

method, the results of several state-of-the-art methods are il-

lustrated for comparison, which include deformable-model

based methods [6][11], registration-based methods [9][15],

and learning-based method [14][21]. The best results re-

ported in the corresponding papers are listed. The com-

parisons among different methods are listed in Table 2. E-

valuated metrics include mean Dice ratio and median TPF

(Note that, in [6][14], median TPF are evaluated instead

of mean TPF). Because different CT datasets are used for

experiments in Davis et al.’s work [9] and Chen et al.’s
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Table 1. Comparison of experimental results among different feature selection methods, with the best results marked by bold font.

level methods Dice (mean ± std) TPF (mean ± std) CD (mean ± std) (x/y/z) (mm)

image-level feature selection
LassoS 0.874± 0.083 0.869± 0.107 0.71± 0.56 / 0.80± 0.61 / 0.67± 0.53

tLassoS 0.917± 0.053 0.899± 0.084 0.54± 0.37 / 0.50± 0.38 / 0.40± 0.33

block-level feature selection

mRMR 0.893± 0.033 0.912± 0.047 0.50± 0.34 / 0.72± 0.41 / 0.36± 0.33

LassoB 0.922± 0.039 0.909± 0.042 0.47± 0.39 / 0.47± 0.37 / 0.33± 0.34

tLassoB 0.932± 0.036 0.919± 0.040 0.37± 0.17 / 0.41± 0.35 / 0.32± 0.33

fused Lasso 0.928± 0.047 0.906± 0.043 0.34± 0.37 / 0.42± 0.38 / 0.34± 0.51

SCOTO 0.941± 0.030 0.924± 0.037 0.25± 0.18 /0.30± 0.22 /0.27± 0.29

work [6], the results are listed separately for reference. For

[11][15][21], all the 24 patients are evaluated, which is the

same with ours, so we name the 24 patients CT dataset as

“CT dataset 1”. Also, two different subsets of the 24 pa-

tients are selected in [14] and [15], which are named as “CT

dataset 2” and “CT dataset 3”, respectively. From the results

listed in Table 2, we can find that the proposed method out-

performs the related methods in terms of higher mean Dice

ratio and median TPF. In addition, the mean average sur-

face error of our method is 1.09mm, which is better than

2.37mm (reported in [16]) and 2.47mm (reported in [11]).

Moreover, we report the patient-specific results of Dice

ratio and TPF in Fig.6, and CDs in Fig.7 for each individual

patient. For statistical perspective, quartile-representation

is adopted, in which five horizontal lines (ascending order

in values) mean the min, 25% percentile, median, 75% per-

centile, and the max value, respectively.
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Figure 6. The results of Dice ratio and TPF for 24 patients.

Finally, we also illustrate in Fig.8 several typical seg-

mented examples as well as prostate-likelihood map for the

image 14 of patient 3, the image 10 of patient 11, the image

5 of patient 16, the image 6 of patient 21 and the image 8 of

patient 24, respectively. In Fig.8, the red curves denote the

manual segmentation results by the physician, and the yel-

low curves denote the segmentation results by the proposed

methods. We found that the predicted prostate boundaries

are very close to the boundaries delineated by the physi-

cian. Also the proposed method can accurately separate the

prostate regions and background even in the base and apex

slices as shown in Figs.8(a)8(d), which are usually consid-

ered very difficult to segment.

5.5. Patients with Large Prostate Motion

In our work, it is found that the patients 3, 10 and 15
have larger prostate motions according to the standard devi-

(a) Typical results of the 14th image of patient 3, with Dice ratio of 0.898.

(b) Typical results of the 10th image of patient 11, with Dice ratio of 0.929.

(c) Typical results of the 5th image of patient 16, with Dice ratio of 0.897.

(d) Typical results of the 6th image of patient 21, with Dice ratio of 0.978.

(e) Typical results of the 8th image of patient 24, with Dice ratio of 0.924.

Figure 8. Typical segmentation results and prostate-likelihood maps for

Patients 3, 11, 16, 21, 24. Red curves indicate manual segmentation re-

sults by physician and the yellow curves indicate the segmentation results

by our proposed method.

ation of prostate centers in the planning and treatment im-

ages, which can be found by referring to Fig.9. By apply-

ing the proposed method to patients 3, 10 and 15, the ob-

tained median Dice ratio are 0.909, 0.928, and 0.946, re-

spectively, which are better than the corresponding results

reported in [14][21]. These comparisons are also listed in
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Figure 7. The results of CD along the lateral (x-axis), anterior-posterior (y-axis), and superior-inferior (z-axis) directions, respectively.

Fig.10. These results show the effectiveness of the proposed

method, especially with the initial physician’s manual inter-

action when the large irregular motion occurs in the prostate

regions.
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Figure 9. The standard devia-

tion of prostate centers for each

patients.

[14] [21] ours

PA 3 ∼ 0.87 0.905 0.909

PA 10 ∼ 0.86 0.908 0.928

PA 15 ∼ 0.91 0.918 0.946

Figure 10. The median Dice ratios for Patient

3, 10, 15, with large prostate motion.

6. Conclusion

We have proposed a novel semi-automatic learning

method for prostate segmentation in CT images during the

image-guided radiotherapy. Our proposed SCOTO will first

jointly select the discriminative features for the individu-

al local image regions, for helping generate the prostate-

likelihood map. Then, the multi-atlases based label fusion

method will combine the segmentation results of the plan-

ning and previous treatment images for final segmentation.

A real CT-prostate dataset is used for evaluation, which con-

sists of 24 patients and 330 images, all with the manual de-

lineation results by the experienced physician. Experimen-

tal results show that our proposed method not only obtains

superior segmentation performance (i.e., higher Dice ratio

and TPF, and lower centroid distances) compared with the

state-of-the-art methods, but also demonstrates its capabili-

ty in dealing with large irregular prostate motions.
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