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Abstract

In this work, we present a novel and efficient detector
adaptation method which improves the performance of an
offline trained classifier (baseline classifier) by adapting it
to new test datasets. We address two critical aspects of
adaptation methods: generalizability and computational ef-
ficiency. We propose an adaptation method, which can be
applied to various baseline classifiers and is computation-
ally efficient also. For a given test video, we collect online
samples in an unsupervised manner and train a random fern
adaptive classifier . The adaptive classifier improves pre-
cision of the baseline classifier by validating the obtained
detection responses from baseline classifier as correct de-
tections or false alarms. Experiments demonstrate general-
izability, computational efficiency and effectiveness of our
method, as we compare our method with state of the art
approaches for the problem of human detection and show
good performance with high computational efficiency on
two different baseline classifiers.

1. Introduction
Object detection is a challenging problem because of

variations in different viewpoints, appearance, illumination

etc . Common procedure for object detection is to train an

object detector in an offline manner by using thousands of

training examples. However, when applied on novel test

data, performance of the offline trained classifier (baseline

classifier) may not be high, as the examples in test data may

be very different than the ones used for the training.

Several incremental/online learning based detector adap-

tion methods [7, 24, 11, 15, 26, 17, 19, 23, 21] have been

proposed to address this issue. Most of these approaches

are either boosting based [7, 24, 17] or SVM based [11, 21],

which limits applicability of these approaches to a specific

type of baseline classifier. We propose a detector adapta-

tion method, which is independent of the baseline classifier

used, hence is applicable to various baseline classifiers.

With increasing size of new test video datasets, computa-

Figure 1. Some examples from Mind’s Eye dataset [1]. This is

a challenging dataset, as it has many different human pose varia-

tions.

tional efficiency is another important issue to be addressed.

[21, 11, 24] use manually labeled offline training samples

for adaptation, which can make the adaptation process com-

putationally expensive, because the size of the training data

could be large after combining offline and online samples.

Some approaches [7, 17] have been proposed to address this

issue, as they do not use any offline sample during the train-

ing of the adaptive classifier. However, these approaches

optimize the baseline classifier using gradient descent meth-

ods, which are inherently slow in nature.

Detector adaptation methods need online samples for

training. Supervised [7] and semi-supervised [6, 26] meth-

ods require manual labeling for online sample collection,

which is difficult for new test videos. Hence, unsupervised

sample collection is important for adaptation methods.

Background subtraction based approaches [12, 13, 10,

15] have been used for unsupervised online sample collec-

tion. However background subtraction may not be reliable

for complex backgrounds. Tracking based methods [17, 4]

have also been used. However, existing state of the art track-

ing methods [9, 18, 25] work well for pedestrian category

only. Therefore, these methods may not be applicable for

different kinds of objects with many pose variations and ar-

ticulations (see Figure 1).

We propose a novel generalized and computationally ef-

ficient approach for adapting a baseline classifier for a spe-

cific test video. Our approach is generalized because it is

independent of the type of baseline classifiers used and does

not depend on specific features or kind of training algorithm

used for creating the baseline classifier.
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For a given test video, we apply the baseline classifier

at a high precision setting, and track obtained detection re-

sponses using a simple position, size and appearance based

tracking method. Short tracks are obtained as tracking out-

put, which are sufficient for our method, as we do not seek

long tracks to collect online samples. By using tracks and

detection responses, positive and negative online samples

are collected in an unsupervised manner. Positive online

samples are further divided into different categories for vari-

ations in object poses. Then a computationally efficient

multi-category random fern [14] classifier is trained as the

adaptive classifier using online samples only. The adaptive

classifier improves the precision of baseline classifier by

validating the detection responses obtained from the base-

line classifier as correct detections or false alarms

Rest of this paper is divided as follows: Related work is

presented in section 2. Overview of our approach is pro-

vided in section 3. Our unsupervised detector adaptation

approach is described in section 4. Experiments are shown

in section 5, which is followed by conclusion.

2. Related Work
In recent years, significant work has been published

for detector adaptation methods. Supervised [7] and semi

supervised [6, 26] approaches, which require manual la-

beling, have been proposed for incremental/online learn-

ing but manual labeling is not feasible for the large num-

ber of videos. Background subtraction based methods

[12, 13, 10, 15] have been proposed for unsupervised on-

line sample collection, but these methods are not applicable

for datasets with complex backgrounds. Many approaches

[24, 4, 17, 23] have used detection output from the base-

line classifier or tracking information for unsupervised on-

line sample collection. Unsupervised detector adaptation

methods can be broadly categorized into three different cat-

egories: Boosting based methods, SVM based approaches

and generic adaption methods.

Boosting based: Roth et al. [15] described a detector

adaptation method in which they divide the image into sev-

eral grids and train an adaptive classifier separately for each

grid. Training several classifiers separately, could be com-

putationally expensive. Wu and Nevatia [24] proposed an

online Real Adaboost [16] method. They collect online

samples in an unsupervised manner by applying the com-

bination of different part detectors.

Recently, Sharma et al. [17] proposed an unsupervised

incremental learning approach for Real Adaboost frame-

work by using tracking information to collect the online

samples automatically and extending the Real Adaboost ex-

ponential loss function to handle multiple instances of the

online samples. They collect missed detections and false

alarms as online samples, therefore their method relies on

tracking methods which can interpolate object instances

missed by the baseline classifier. Our proposed approach

uses a simple position, size and appearance based tracking

method in order to collect online samples. This simplistic

tracking method produces short tracks without interpolating

missed detections, which is sufficient for our approach.

SVM based: Kembhavi et al. [11] proposed an incre-

mental learning method for multi kernel SVM. Wang et

al [21] proposed a method for adapting the detector for a

specific scene. They used motion, scene structure and ge-

ometry information to collect the online samples in unsu-

pervised manner and combine all this information in con-

fidence encoded SVM. Their method uses offline training

samples for adaptation, which may increase the computa-

tion time for training the adaptive classifier.

Both boosting and SVM based adaptation methods are

limited to a specific kind of algorithm of baseline classifier,

hence are not applicable for various baseline classifiers.

Generic: In [23], Wang et al. proposed a detector adap-

tation method in which they apply the baseline classifier

at low precision and collect the online samples automati-

cally. Dense features are extracted from collected online

samples to train a vocabulary tree based transfer classifier.

They showed the results on two types of baseline classifiers

for pedestrian category, whereas our proposed method show

the performance with different articulations in human pose

in addition to the pedestrian category.

3. Overview
The objective of our work is to improve the performance

of a baseline classifier by adapting it to a specific test video.

An overview of our approach is shown in Figure 2. Our

approach has the following advantages over the existing de-

tector adaptation methods:

1. Generalizability: Our approach is widely applicable,

as it is not limited to a specific baseline classifier or any

specific features used for the training of the baseline

classifiers.

2. Computationally Efficient: Training of the random

fern based adaptive classifier is computationally effi-

cient. Even with thousands of online samples, adaptive

classifier training takes only couple of seconds .

3. Pose variations: It can handle different pose varia-

tions and articulations in object pose.

For online sample collection, we apply baseline detector

at a high precision (high threshold) setting. Obtained detec-

tion responses, are tracked by applying a simple tracking-

by-detection method, which only considers the association

of detection responses in consecutive frames based on the

size, position and appearance of the object. For each frame,

overlap between bounding boxes of the output tracks and
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Figure 2. Overview of our detector adaptation method

detection responses is computed. Those detection responses

which match with the track responses and have a high de-

tection confidence are collected as positive online samples.

False alarms are collected as negative online samples. Pos-

itive online samples are further divided into different cat-

egories for variations in the poses for the target object and

then a random fern classifier is trained as adaptive classifier.

Testing is done in two stages: First we apply the base-

line classifier at a high recall setting (low threshold). In this

way, baseline classifier produces many correct detection re-

sponses in addition to many false alarms. In the next stage,

these detection responses from baseline classifier are pro-

vided to the learned random fern adaptive classifier, which

classifies the obtained detection responses as the correct

detections or the false alarms. In this way our adaptation

method improves the precision of the baseline classifier.

We demonstrate the performance of our method on two

datasets: CAVIAR [2] and Mind’s Eye [1]. We show the

generalizability of our method by applying it on two differ-

ent baseline classifiers: boosting based [8] and SVM based

[5] classifier. Experiments also show that the method is

highly computationally efficient and outperforms the base-

line classifier and other state of the art adaptation methods.

4. Unsupervised Detector Adaptation
In the following subsections, we describe the two dif-

ferent modules of our detector adaptation method : Online

sample collection and training of the random fern based

adaptive classifier.

4.1. Unsupervised Training Samples Collection

To collect the online samples, we first apply the base-

line classifier at high precision setting for each frame in

the video and obtain the detection responses D = {di}.
These detection responses are then tracked by using a sim-

ple low level association [9] based tracking-by-detection

method. A detection response di is represented as di =
{xi, yi, si, ai, ti, li}. (xi, yi) represents the position of the

detection response, si its size, ai its appearance, ti its frame

index in the video and li the confidence of the detection

response. The link probability between two detection re-

sponses di and dj is defined as :

Pl(dj|di) = Ap(dj|di)As(dj|di)Aa(dj|di) (1)

where Ap is the position affinity, As is size affinity and Aa

is the appearance affinity. If the frame difference between

two detection responses is not equal to 1, the link proba-

bility is zero. In other words, the link probability is only

defined for detection responses in consecutive frames.

di and dj are only associated with each other, if

Pl(dj|di) is high:

Pl(dj|di) > max(Pl(dj|dk), Pl(dl|di)) + λ, ∀ (k �= i, l �= j)

(2)

where λ is an adjustment parameter. Obtained track re-

sponses T = {Ti} are further filtered and tracks of length

1 are removed from T .

4.1.1 Online Samples

For each frame in the video, the overlap between the bound-

ing boxes ofD and T is computed. A detection response di

is considered as positive online sample if:

O(di ∩Tk) > θ1 and li > θ2 (3)

WhereO is the overlap of the bounding boxes of di and Tk.

θ1 and θ2 are the threshold values. Also one track response

can match with one detection response only.

On the other hand, a detection response is considered as

negative online sample if:

O(di ∩Tk) < θ1 ∀k = 1, ....M, and li < θ3 (4)

where M is the total number of track responses in a partic-

ular frame.

High confidence for detection response increases the

likelihood that the obtained response is a positive sample.

Similarly low confidence for detection response, would lead

to high false alarm probability. Some of the collected posi-

tive and negative online samples are shown in Figure 3.
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4.1.2 Pose Categorization

We consider different pose variations in the target object

(e.g. standing, sitting, bending for human) as different cate-

gories, as the appearance of the target object varies consid-

erably with the articulation in the pose. Hence, we divide

the positive online samples into different categories. For

this purpose, we use the poselet [5] detector as the baseline

classifier. A detection response di obtained from the pose-

let detector is represented as di = {xi, yi, si, ai, ti, li, hi},
where hi is the distribution of the poselets. We model this

distribution with 150 bin histogram, each bin depicting one

of the 150 trained poselets.

We train a pose classifier offline, in order to divide the

positive online samples into different categories. We col-

lect the training images for different variations in the human

pose and compute the poselet histograms for these training

images, by applying the poselet detector. The poselet his-

togram set H = {ĥi} is utilized for dividing the samples

into different categories.

For a given test video, collected positive online sam-

ples are represented as, P = {Pi}, where Pi =
{xi, yi, si, ai, hi, li, vi}, vi is the target category, which is

determined as:

vi = argmin
l

( B(hi, ĥl) ) : hi ∈ Pi, ĥl ∈ H (5)

where B is the Bhattacharya distance [20]. In this manner

we divide the positive online samples into different cate-

gories. Each of these categories are considered as a separate

class for adaptive classifier training.

4.2. Adaptive Classifier Training

Ozuysal et al. proposed an efficient random fern [14]

classifier, which uses binary features to classify a test sam-

ple. These binary features are defined as a pair of points

chosen randomly for a given reference window size of the

input training samples and based on the intensity values of

the points in the pair, the feature output is determined. For

a given test sample, let {C1, C2, ...., CK} be the K target

classes and {f1, f2, ...., fN} are N binary features. The tar-

get category c
′
i is determined as:

c
′
i = argmax

ci

P (f1, f2, ...., fN | C = ci) (6)

In order to classify an image with binary features, many

of such features are needed, which makes the computa-

tion of joint distribution of features P (f1, f2, ...., fN ) in-

feasible. On the other hand, if we assume all the features

are independent, it will completely ignore the correlation

among features. Hence, these features are divided into in-

dependent groups, called ferns. If we have total M ferns,

each fern will have N
M features, and conditional probability

Figure 3. Examples of some of the positive (first row) and nega-

tive (second row) online samples collected in unsupervised manner

from Mind’s Eye [1] and CAVIAR [2] datasets.

P (f1, f2, ...., fN | C = ci) can be written as:

P (f1, f2, ...., fN | C = ci) =

M∏
k=1

P (Fk | C = ci) (7)

where Fk is the set of binary features for the kth fern.

During the training, distribution of each category is com-

puted for each fern independently. This distribution is mod-

eled as a histogram, where each category distribution has

L = 2
N
M bins, as the output of the N

M binary features will

have 2
N
M possible values. For a test sample, we compute

P (Fk | C = ci) as:

P (Fk | C = ci) =
nk,i,j∑L

j=1 nk,i,j + β
(8)

where nk,i,j is the value of the jth bin from the distribution

of ith category for kth fern, β is a constant. Learning algo-

rithm of random fern based adaptive classifier is described

in algorithm 1.

For the training of the adaptive classifier, we only use on-

line samples collected in an unsupervised manner, no man-

ually labeled offline samples are used for the training. We

train a multi-class random fern adaptive classifier by consid-

ering different categories of the positive samples as different

target classes, all negative online samples are considered as

a single target class. For a test video, first online samples

are collected from all the frames and then random fern clas-

sifier is trained. Training procedure is performed only once

for a given test video.

5. Experiments
We performed experiments for the problem of human de-

tection and evaluated our method for generalizability, com-

putation time performance and detection performance. We

performed all experiments on a 3.16 GHz, Xeon computer.
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Algorithm 1 Unsupervised Detector Adaptation

• Training:

• Given: D, T, H , Test Video V , with total F frames

• Init: Positive Online Samples, P = {}, Negative online

samples, N = {}
for i = 1 to F do

- Match D with T and collect positive (S+) and nega-

tive (S−) samples for this frame

- P = P ∪ S+, N = N ∪ S−

for i = 1 to |P| do
• Init: vi = −1, dmin = ∞
for j = 1 to |H| do

- γ = B(hi, ĥj)
if γ < dmin then

dmin = γ, vi = j
- Train Random fern classifier using online samples P and

N.

• Test:
for i = 1 to F do

- Apply baseline classifier at low threshold δ to obtain

detection responses Df

for j = 1 to |Df | do
- Apply Random fern classifier to validate the detec-

tion responses as the true detections and false alarms

In this section, we provide the experiment details and show

the performance of our method:

Datasets: Two different datasets are used for experi-

ments: CAVIAR [2] and Mind’s Eye [1]. Two sequences:

OneShopLeave2Enter (CAVIAR1) and WalkByShop1front

(CAVIAR2) are used from CAVIAR dataset. These se-

quences have 1200 and 2360 frames respectively of size 384

X 288. Ground-truth (GT) is available at [2]. CAVIAR1

has 290 GT instances of the human, whereas CAVIAR2 has

1012 GT instances of the human.

Two video clip sequences (ME1 and ME2) are used from

Mind’s Eye dataset. These sequences have 425 and 300

frames respectively, each of size 1280 X 760. We manually

annotated the ground-truth for these sequences. ME1 has

641 GT instances of the human, whereas ME2 has 300 GT

instances of the human. ME1 has two different pose vari-

ations: standing/walking, bending, whereas ME2 has the

pose variations for digging and standing/walking.

Baseline classifiers: To demonstrate the generalizabil-

ity of our approach, we performed experiments with two

different baseline classifiers: For CAVIAR, boosting based

classifier is used as described in [8]. For Mind’s Eye dataset,

we used publicly available trained poselets and Matlab im-

plementation available at [3].

In the following subsections, we present computation

time and detection performance experiments.

5.1. Computation Time Performance

We evaluated computational efficiency of our approach

for the training of the adaptive classifier after collection of

online samples. We performed this experiment for online

samples collected from CAVIAR dataset and trained the

adaptive classifier for two target categories. For the adaptive

classifier training, we only use the online samples collected

in unsupervised manner, no offline samples are used for the

training.

We compare the performance of our method with [17],

which also does not use any of the offline samples for in-

cremental learning. [17] uses bags of instances, instead of

single instance, hence we count all the training samples in

the bag in order to count the total number of samples used

for the training.

In Figure 4, we show the run time performance for dif-

ferent number of ferns and number of binary features. We

can see that random fern based adaptive classifier train-

ing outperforms [17] in run time performance. [17] op-

timizes parameters of baseline detector using gradient de-

scent method, hence training time of incremental detector

is high. Whereas our random fern adaptive classifier is in-

dependent of the parameters of baseline classifier and uses

simple binary features for the training, hence is computa-

tionally efficient.

For CAVIAR dataset, we use 30 random ferns with 10

binary features, which takes only 1.2 seconds for training of

1000 online samples, whereas the method described in [17]

takes approximately 35 seconds, which makes our method

approximately 30 times faster than [17]. Total training time

of random fern classifier for CAVIAR1 sequence takes only

8 seconds for approximately 16000 online samples, whereas

for CAVIAR2 it takes only 19 seconds with approximately

43000 online samples.

5.2. Detection Performance

We evaluated the detection performance for the CAVIAR

and Mind’s Eye datasets. We do not use any prior on the size

and the location of the object for either detection or track-

ing. Tracking parameters are used as described in [9]. β is

set to 0.1 for all the experiments. For detection evaluation,

we used the same criteria as used in [8]. This metric con-

siders a detection output as correct detection only if it has

more than 50% overlap with ground truth.

5.2.1 CAVIAR Dataset

For this dataset, we use Real Adaboost based baseline clas-

sifier [8] and train it for 16 cascade layers for full body of

human. 30 random ferns are trained for 10 binary features,

for two target categories (positive and negative classes).

Division of positive samples into different categories is

not required for this dataset, as all the humans in the se-
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Figure 4. Run time performance of our approach. X-axis repre-

sents the number of online samples used for the classifier training,

Y-axis is shown in log scale and represents runtime in seconds.

RF-I-K : I random ferns with K binary features.

quence belong to the pedestrian category. θ1, θ2 and θ3 were

empirically set to 0.3, 20 and 10 respectively. These param-

eters remain same for all the experiments on this dataset.

We compare the performance of our method with two

state of the art approaches [23, 17]. From Figure 5, we can

see that our method significantly outperforms both HOG-

LBP [22] and [23]. Also from Table 1, we can see that

for CAVIAR1, at a recall of 0.65, Sharma et al’s method

improves the precision over baseline by 14%, whereas our

method improves the precision by 22%. For CAVIAR2, our

method improves the precision over baseline by 59% at re-

call of 0.65, whereas Sharma et al.’s method improves the

precision by 19%.

Both our approach and Sharma et al’s method outper-

forms baseline detector [8], however for CAVIAR2 se-

quence, long tracks are not available for some of the hu-

mans, hence not enough missed detections are collected by

Sharma et al’s approach, due to which its performance is not

as high. Our approach does not require long tracks, hence

gives better performance as compared to [17].

5.2.2 Mind’s Eye Dataset

We use trained poselets available at [3] for experiments on

Mind’s Eye dataset. We train 15 random ferns with 8 binary

features for the adaptive classifier training. Adaptive clas-

sifier is trained for four target categories (standing/walking,

bending, digging and negative). θ1 is set to 0.3, whereas θ2
and θ3 are set to 40 and 20 respectively. These parameter

settings remain same for all the experiments on this dataset.

During online sample collection, not many negative sam-

ples are obtained, hence we add approximately 1100 nega-

tive online samples collected in unsupervised manner from

the CAVIAR dataset in the online negative samples set for

both the ME1 and ME2 sequences. Three training images

Table 1. Precision improvement performance for CAVIAR dataset

at recall 0.65

Sequence Sharma [17] baseline [8] Ours
CAVIAR1 0.56 0.42 0.64
CAVIAR2 0.4 0.21 0.8

are used to learn pose categorization histograms. These im-

ages have standing/walking, bending and digging poses re-

spectively. None of these training images are from either

ME1 or ME2 sequence.

We compare the performance of our approach with the

baseline classifier (poselet detector [5]), and show that by

dividing the positive samples into different categories, we

get better performance as compared to the case where we

do not divide the positive samples into different categories.

Precision-Recall curves for both ME1 and ME2 sequences

are shown in Figure 6.

For both ME1 and ME2 sequences, our method gives

better performance than poselet detector. The best perfor-

mance is obtained when we divide the positive samples into

different categories. From Table 2, we can see that our

method improves the precision for ME1 by 5% at recall

0.96, when we use sample categorization module, whereas

without sample categorization, improvement in precision is

2%. For ME2 sequence, at recall 0.6, we improve the pre-

cision for poselet detector by 12% with sample categoriza-

tion, whereas without sample categorization improvement

is 7%.

Some of the detection results are shown in Figure 7. Our

approach can be utilized as an efficient pre-processing step

to improve the detection results, before applying tracking-

by-detection method on baseline classifiers. Also trained

multi-category adaptive classifier can be used as pose iden-

tification such as standing, bending, digging etc.

6. Conclusion

We proposed a novel detector adaptation approach,

which efficiently adapts a baseline classifier for a test video.

Online samples are collected in an unsupervised manner

and random fern classifier is trained as the adaptive clas-

sifier. Our approach is generalized, hence can easily be ap-

plied with various baseline classifiers. Our approach can

also handle pose variations of the target object. Experiments

demonstrate that our method is computationally efficient as

compared to the other state of the art approaches. We show

the detection performance on two challenging datasets for

the problem of human detection. In future, we plan to apply

our adaptation method on other categories of objects and

other baseline classifiers.
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(a) CAVIAR1 (b) CAVIAR2
Figure 5. Recall-Precision curves for Detection Results on CAVIAR Dataset

(a) ME1 (b) ME2
Figure 6. Recall-Precision curves for Detection Results on Mind’s Eye Dataset.

Table 2. Best precision improvement performance on Mind’s Eye

Dataset. For ME1, precision values are shown at recall 0.97,

whereas for ME2 recall is 0.6. Ours-1: Without sample catego-

rization, Ours-2: With Sample Categorization

Sequence Poselet [5] Ours-1 Ours-2
ME1 0.65 0.67 0.7
ME2 0.72 0.79 0.84
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