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Abstract

We propose a multimodal, decomposable model for ar-
ticulated human pose estimation in monocular images. A
typical approach to this problem is to use a linear struc-
tured model, which struggles to capture the wide range of
appearance present in realistic, unconstrained images. In
this paper, we instead propose a model of human pose that
explicitly captures a variety of pose modes. Unlike other
multimodal models, our approach includes both global and
local pose cues and uses a convex objective and joint train-
ing for mode selection and pose estimation. We also employ
a cascaded mode selection step which controls the trade-off
between speed and accuracy, yielding a 5x speedup in in-
ference and learning. Our model outperforms state-of-the-
art approaches across the accuracy-speed trade-off curve
for several pose datasets. This includes our newly-collected
dataset of people in movies, FLIC, which contains an or-
der of magnitude more labeled data for training and testing
than existing datasets. The new dataset and code are avail-
able online. 1

1. Introduction

Human pose estimation from 2D images holds great po-

tential to assist in a wide range of applications—for exam-

ple, semantic indexing of images and videos, action recog-

nition, activity analysis, and human computer interaction.

However, human pose estimation “in the wild” is an ex-

tremely challenging problem. It shares all of the difficulties

of object detection, such as confounding background clut-

ter, lighting, viewpoint, and scale, in addition to significant

difficulties unique to human poses.

In this work, we focus explicitly on the multimodal na-

ture of the 2D pose estimation problem. There are enor-

mous appearance variations in images of humans, due to

foreground and background color, texture, viewpoint, and

body pose. The shape of body parts is further varied by

clothing, relative scale variations, and articulation (causing

1This research was conducted at the University of Pennsylvania.

foreshortening, self-occlusion and physically different body

contours).

Most models developed to estimate human pose in these

varied settings extend the basic linear pictorial structures

model (PS) [9, 14, 4, 1, 19, 15]. In such models, part detec-

tors are learned invariant to pose and appearance—e.g., one

forearm detector for all body types, clothing types, poses

and foreshortenings. The focus has instead been directed

towards improving features in hopes to better discriminate

correct poses from incorrect ones. However, this comes at

a price of considerable feature computation cost—[15], for

example, requires computation of Pb contour detection and

Normalized Cuts each of which takes minutes.

Recently there has been an explosion of successful work

focused on increasing the number of modes in human pose

models. The models in this line of work in general can be

described as instantiations of a family of compositional, hi-

erarchical pose models. Part modes at any level of granular-

ity can capture different poses (e.g., elbow crooked, lower

arm sideways) and appearance (e.g., thin arm, baggy pants).

Also of crucial importance are details such as how models

are trained, the computational demands of inference, and

how modes are defined or discovered. Importantly, increas-

ing the number of modes leads to a computational complex-

ity at least linear and at worst exponential in the number

of modes and parts. A key omission in recent multimodal

models is efficient and joint inference and training.

In this paper, we present MODEC, a multimodal decom-

posable model with a focus on simplicity, speed and ac-

curacy. We capture multimodality at the large granularity

of half- and full-bodies as shown in Figure 1. We define

modes via clustering human body joint configurations in

a normalized image-coordinate space, but mode definitions

could easily be extended to be a function of image appear-

ance as well. Each mode is corresponds to a discriminative

structured linear model. Thanks to the rich, multimodal na-

ture of the model, we see performance improvements even

with only computationally-cheap image gradient features.

As a testament to the richness of our set of modes, learn-

ing a flat SVM classifier on HOG features and predicting

the mean pose of the predicted mode at test time performs
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s(x, z)

∑

c

sc(x, yc, zc)

Figure 1. Left: Most pictorial structures researchers have put effort into better and larger feature spaces, in which they fit one linear

model. The feature computation is expensive, and still fails at capturing the many appearance modes in real data. Right: We take a

different approach. Rather than introduce an increasing number of features in hopes of high-dimensional linear separability, we model the

non-linearities in simpler, lower dimensional feature spaces, using a collection of locally linear models.

competitively to state-of-the-art methods on public datasets.

Our MODEC model features explicit mode selection

variables which are jointly inferred along with the best lay-

out of body parts in the image. Unlike some previous work,

our method is also trained jointly (thus avoiding difficul-

ties calibrating different submodel outputs) and includes

both large-scope and local part-level cues (thus allowing

it to effectively predict which mode to use). Finally, we

employ an initial structured cascade mode selection step

which cheaply discards unlikely modes up front, yielding

a 5× speedup in inference and learning over considering all

modes for every example. This makes our model slightly

faster than state-of-the-art approaches (on average, 1.31

seconds vs. 1.76 seconds for [24]), while being significantly

more accurate. It also suggests a way to scale up to even

more modes as larger datasets become available.

2. Related work
As can be seen in Table 1, compositional, hierarchical

modeling of pose has enjoyed a lot of attention recently.

In general, works either consider only global modes, local

modes, or several multimodal levels of parts.

Global modes but only local cues. Some approaches use

tens of disjoint pose-mode models [11, 25, 20], which they

enumerate at test time and take the highest scoring as a pre-

dictor. One characteristic of all such models in this cat-

egory is that they only employ local part cues (e.g. wrist

patch or lower arm patch), making it difficult to adequately

represent and predict the best global mode. A second is-

sue is that some sort of model calibration is required, so

that scores of the different models are comparable. Meth-

ods such as [11, 13] calibrate the models post-hoc using

cross-validation data.

Local modes. A second approach is to focus on modeling

modes only at the part level, e.g. [24]. If n parts each use

k modes, this effectively gives up to kn different instanti-

ations of modes for the complete model through mixing-

# part # global # part training

Model levels modes modes obj.

Basic PS 1 1 1 n/a

Wang & Mori [20] 1 3 1 greedy

Johns. & Evering. [11] 1 16 4* indep.

Wang et al. [21] 4 1 5 to 20 approx.

Zhu & Ramanan [25] 1 18 1 indep.†
Duan et al. [3] 4 9 4 to 6 approx.

Tian et al. [18] 3 5 5 to 15 indep.

Sun & Savarese [17] 4 1 4 joint

Yang & Ramanan [24] 1 1 4 to 6 joint

MODEC (ours) 3 32 1 joint
* Part modes are not explicitly part of the state, but instead are maxed over

to form a single detection.

† A variety of parameter sharing across global models is explored, thus

there is some cross-mode sharing and learning.

Table 1. In the past few years, there have been many instantiations

of the family of multimodal models. The models listed here and

their attributes are described in the text.

and-matching part modes. Although combinatorially rich,

this approach lacks the ability to reason about pose struc-

ture larger than a pair of parts at a time. This is due to the

lack of global image cues and the inability of the representa-

tion to reason about larger structures. A second issue is that

inference must consider a quadratic number of local mode

combinations—e.g. for each of k wrist types, k elbow types

must be considered, resulting in inference message passing

that is k2 larger than unimodal inference.

Additional part levels. A third category of models con-

sider both global, local and intermediate part-granularity

level modes [21, 17, 3, 18]. All levels use image cues, al-

lowing models to effectively represent mode appearance at

different granularities. The biggest downside to these richer

models are their computational demands: First, quadratic

mode inference is necessary, as with any local mode mod-

eling. Second, inference grows linearly with the number

of additional parts, and becomes intractable when part rela-
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Figure 2. A general example of a MODEC model in factor graph

form. Cliques zc in s(x, z) are associated with groups yc. Each

submodel sc(x, yc, zc) can be a typical graphical model over yc
for a fixed instantiation of zc.

tions are cyclic, as in [21, 3].

Contrast with our model. In contrast to the above, our

model supports multimodal reasoning at the global level, as

in [11, 25, 20]. Unlike those, we explicitly reason about,

represent cues for, and jointly learn to predict the correct

global mode as well as location of parts. Unlike local mode

models such as [24], we do not require quadratic part-mode

inference and can reason about larger structures. Finally,

unlike models with additional part levels, MODEC supports

efficient, tractable, exact inference, detailed in Section 3.

Furthermore, we can learn and apply a mode filtering step to

reduce the number of modes considered for each test image,

speeding up learning and inference by a factor of 5.

Other local modeling methods: In the machine learning

literature, there is a vast array of multimodal methods for

prediction. Unlike ours, some require parameter estimation

at test time, e.g. local regression. Locally-learned distance

function methods are more similar in spirit to our work:

[10, 13] both learn distance functions per example. [12]

proposes learning a blend of linear classifiers at each exem-

plar.

3. MODEC: Multimodal decomposable model
We first describe our general multimodal decomposable

(MODEC) structured model, and then an effective special

case for 2D human pose estimation. We consider prob-

lems modeling both input data x (e.g., image pixels), out-

put variables y = [y1, . . . , yP ] (e.g., the placement of P
body parts in image coordinates), and special mode vari-

ables z = [z1, . . . , zK ], zi ∈ [1,M ] which capture different

modes of the input and output (e.g., z corresponds to hu-

man joint configurations which might semantically be inter-

preted as modes such as arm-folded, arm-raised, arm-down
as in Figure 1). The general MODEC model is expressed as

a sum of two terms:

s(x, y, z) = s(x, z) +
∑

c∈C
sc(x, yc, zc). (1)

This scores a choice of output variables y and mode vari-

ables z in example x. The yc denote subsets of y that are in-

dexed by a single clique of z, denoted zc. Each sc(x, yc, zc)
can be thought of as a typical unimodal model over yc,

one model for each value of zc. Hence, we refer to these

terms as mode-specific submodels. The benefits of such a

model over a non-multimodal one s(x, y) is that different

modeling behaviors can be captured by the different mode

submodels. This introduces beneficial flexibility, especially

when the underlying submodels are linear and the problem

is inherently multimodal. The first term in Equation 1 can

capture structured relationships between the mode variables

and the observed data. We refer to this term as the mode
scoring term.

Given such a scoring function, the goal is to determine

the highest scoring value to output variables y and mode

variables z given a test example x:

z�, y� = argmax
z,y

s(x, y, z) (2)

In order to make MODEC inference tractable, we need a

few assumptions about our model: (1) It is efficient to com-

pute maxy
∑

c∈C sc(x, yc, zc). This is the case in common

structured scoring functions in which variable interactions

form a tree, notably pictorial structures models for human

parsing, and star or tree models for object detection, e.g.

[8]. (2) It is efficient to compute maxz s(x, z), the first

term of Equation 1. This is possible when the network of

interactions in s(x, z) has low treewidth. (3) There is a one-

to-many relationship from cliques zc to each variable in y:

zc can be used to index multiple yi in different subsets yc,

but each yi can only participate in factors with one zc. This

ensures during inference that the messages passed from the

submodel terms to the mode-scoring term will maintain the

decomposable structure of s(x, z). A general, small exam-

ple of a MODEC model can be seen in Figure 2.

When these conditions hold, we can solve Equation 2

efficiently, and even in parallel over possibilities of zc, al-

though the overall graph structure may be cyclic (as in

Figure 1). The full inference involves computing δ(z) =
maxy

∑
c∈C sc(x, yc, zc) independently (i.e., in parallel)

for each zc possibility, then computing the optimal z� =
argmaxz s(x, z) + δ(z), then backtracking to retrieve the

maximizing y�.

3.1. MODEC model for human pose estimation

We tailor MODEC for human pose estimation as follows

(model structure is shown in Figure 1). We employ two

mode variables, one for the left side of the body, one for
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Figure 3. An illustration of the inference process. For simplicity, only a left-sided model is shown. First, modes are cheaply filtered via a

cascaded prediction step. Then each remaining local submodel can be run in parallel on a test image, and the argmax prediction is taken as

a guess. Thanks to joint inference and training objectives, all submodels are well calibrated with each other.

the right: z� and zr. Each takes on one of M = 32 possi-

ble modes, which are defined in a data-driven way around

clusters of human joint configurations (see Section 4). The

left and right side models are standard linear pairwise CRFs

indexed by mode:

s�(x, y�, z�) =
∑

i∈V�

wz�
i · fi(x, yi, z�) +

∑

(i,j)∈E�

wz�
ij · fij(yi, yj , z�). (3)

The right side model sr(·, zr) is analogous. Here each vari-

able yi denotes the pixel coordinates (row, column) of part i
in image x. For “parts” we choose to model joints and their

midpoints (e.g., left wrist, left forearm, left elbow) which

allows us fine-grained encoding of foreshortening and rota-

tion, as is done in [24, 16]. The first terms in Equation 3

depend only on each part and the mode, and can be viewed

as mode-specific part detectors—a separate set of parame-

ters wz�
i is learned for each mode for each part. The sec-

ond terms measure geometric compatibility between a pair

of parts connected in the graph. Again, this is indexed by

the mode and is thus mode-specific, imposed because dif-

ferent pose modes have different geometric characteristics.

Details of the features are in Section 5. The graph over

variable interactions (V�, E�) forms a tree, making exact in-

ference possible via max-sum message passing.

We employ the following form for our mode scoring

term s(x, z):

s(x, z) = w�,r · f(z�, zr) +w� · f(x, z�) +wr · f(x, zr) (4)

The first term represents a (z�, zr) mode compatibility

score that encodes how likely each of the M modes on one

side of the body are to co-occur with each of the M modes

on the other side—expressing an affinity for common poses

such as arms folded, arms down together, and dislike of un-

common left-right pose combinations. The other two terms

can be viewed as mode classifiers: each attempts to predict

the correct left/right mode based on image features.

Putting together Equation 3 and Equation 4, the full

MODEC model is

s(x, y, z) = s�(x, y�, z�) + sr(x, yr, zr)

+w�,r · f(z�, zr) +w� · f(x, z�) +wr · f(x, zr) (5)

The inference procedure is linear in M . In the next

section we show a speedup using cascaded prediction to

achieve inference sublinear in M .

3.2. Cascaded mode filtering

The use of structured prediction cascades has been a suc-

cessful tool for drastically reducing state spaces in struc-

tured problems [15, 23]. Here we employ a simple multi-

class cascade step to reduce the number of modes consid-

ered in MODEC. Quickly rejecting modes has very appeal-
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ing properties: (1) it gives us an easy way to tradeoff ac-

curacy versus speed, allowing us to achieve very fast state-

of-the-art parsing. (2) It also makes training much cheaper,

allowing us to develop and cross-validate our joint learning

objective (Equation 10) effectively.

We use an unstructured cascade model where we filter

each mode variable z� and zr independently. We employ a

linear cascade model of the form

κ(x, z) = θz · φ(x, z) (6)

whose purpose is to score the mode z in image x, in order to
filter unlikely mode candidates. The features of the model
are φ(x, z) which capture the pose mode as a whole instead
of individual local parts, and the parameters of the model
are a linear set of weights for each mode, θz . Following the
cascade framework, we retain a set of mode possibilities
M̄ ⊆ [1,M ] after applying the cascade model:

M̄ = {z | κ(x, z) ≥ α max
z∈[1,M ]

κ(x, z) +
1− α

M

∑
z∈[1,M ]

κ(x, z)}

The metaparameter α ∈ [0, 1) is set via cross-validation

and dictates how aggressively to prune—between pruning

everything but the max-scoring mode to pruning everything

below the mean score. For full details of structured predic-

tion cascades, see [22].

Applying this cascade before running MODEC results

in the inference task z�, y� = argmaxz∈M̄, y∈Y s(x, y, z)

where |M̄ | is considerably smaller than M . In practice it is

on average 5 times smaller at no appreciable loss in accu-

racy, giving us a 5× speedup.

4. Learning
During training, we have access to a training set of im-

ages with labeled poses D = {(xt, yt)}Tt=1. From this, we

first derive mode labels zt and then learn parameters of our

model s(x, y, z).
Mode definitions. Modes are obtained from the data by
finding centers {μi}Mi=1 and example-mode membership

sets S = {Si}Mi=1 in pose space that minimize reconstruc-
tion error under squared Euclidean distance:

S� = argmin
S

M∑
i=1

∑
t∈Si

||yt − μi||2 (7)

where μi is the Euclidean mean joint locations of the ex-

amples in mode cluster Si. We approximately minimize

this objective via k-means with 100 random restarts. We

take the cluster membership as our supervised definition of

mode membership in each training example, so that we aug-

ment the training set to be D = {(xt, yt, zt)}.

The mode memberships are shown as average images in

Figure 1. Note that some of the modes are extremely diffi-

cult to describe at a local part level, such as arms severely

foreshortened or crossed.

Learning formulation. We seek to learn to correctly iden-

tify the correct mode and location of parts in each example.

Intuitively, for each example this gives us hard constraints

of the form

s(xt, yt, zt)− s(xt, y′, zt) ≥ 1, ∀y′ �= yt (8)

s(xt, yt, zt)− s(xt, y, z′) ≥ 1, ∀z′ �= zt, ∀y (9)

In words, Equation 8 states that the score of the true joint

configuration for submodel zt must be higher than zt’s
score for any other (wrong) joint configuration in example

t—the standard max-margin parsing constraint for a single

structured model. Equation 9 states that the score of the true

configuration for zt must also be higher than all scores an

incorrect submodel z′ has on example t.
We consider all constraints from Equation 8 and Equa-

tion 9, and add slack variables to handle non-separability.

Combined with regularization on the parameters, we get a

convex, large-margin structured learning objective jointly

over all M local models

min
{wz},{ξt}

1

2

M∑

z=1

||wz||22 +
C

T

T∑

t=1

ξt (10)

subject to:
s(xt, yt, zt)− s(xt, y′, zt) ≥ 1− ξt ∀y′ �= yt

s(xt, yt, zt)− s(xt, y, z′) ≥ 1− ξt ∀z′ �= zt ∈ M̄ t, ∀y

Note the use of M̄ t, the subset of modes unfiltered by our

mode prediction cascade for each example. This is consid-

erably faster than considering all M modes in each training

example.

The number of constraints listed here is prohibitively

large: in even a single image, the number of possible out-

puts is exponential in the number of parts. We use a cutting

plane technique where we find the most violated constraint

in every training example via structured inference (which

can be done in one parallel step over all training exam-

ples). We then solve Equation 10 under the active set of con-

straints using the fast off-the-shelf QP solver liblinear [7].

Finally, we share all parameters between the left and right

side, and at test time simply flip the image horizontally to

compute local part and mode scores for the other side.

5. Features
Due to the flexibility of MODEC, we can get rich mod-

eling power even from simple features and linear scoring

terms.

Appearance. We employ only histogram of gradients

(HOG) descriptors, using the implementation from [8]. For

local part cues fi(x, yi, z) we use a 5×5 grid of HOG cells,

with a cell size of 8×8 pixels. For left/right-side mode cues
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f(x, z) we capture larger structure with a 9 × 9 grid and a

cell size of 16 × 16 pixels. The cascade mode predictor

uses the same features for φ(x, z) but with an aspect ratio

dictated by the extent of detected upper bodies: a 17 × 15
grid of 8 × 8 cells. The linearity of our model allows us to

evaluate all appearance terms densely in an efficient manner

via convolution.

Pairwise part geometry. We use quadratic deformation

cost features similar to those in [9], allowing us to use dis-

tance transforms for message passing:

fij(yi, yj , z) = [(yi(r)− yj(r)− μz
ij(r))

2; (11)

(yi(c)− yj(c)− μz
ij(c))

2]

where (yi(r), yi(c)) denote the pixel row and column rep-

resented by state yi, and μz
ij is the mean displacement be-

tween parts i and j in mode z, estimated on training data.

In order to make the deformation cue a convex, unimodal

penalty (and thus computable with distance transforms),

we need to ensure that the corresponding parameters on

these features wz
ij are positive. We enforce this by adding

additional positivity constraints in our learning objective:

wz
ij ≥ ε, for small ε strictly positive2.

6. Experiments
We report results on standard upper body datasets Buffy

and Pascal Stickmen [4], as well as a new dataset FLIC

which is an order of magnitude larger, which we collected

ourselves. Our code and the FLIC dataset are available at

http://www.vision.grasp.upenn.edu/video.

6.1. Frames Labeled in Cinema (FLIC) dataset

Large datasets are crucial when we want to learn rich

models of realistic pose3. The Buffy and Pascal Stick-

men datasets contain only hundreds of examples for train-

ing pose estimation models. Other datasets exist with a

few thousand images, but are lacking in certain ways. The

H3D [2] and PASCAL VOC [6] datasets have thousands of

images of people, but most are of insufficient resolution,

significantly non-frontal or occluded. The UIUC Sports

dataset [21] has 1299 images but consists of a skewed dis-

tribution of canonical sports poses, e.g. croquet, bike riding,

badminton.

Due to these shortcomings, we collected a 5003 im-

age dataset automatically from popular Hollywood movies,

which we dub FLIC. The images were obtained by running

a state-of-the-art person detector [2] on every tenth frame of

2It may still be the case that the constraints are not respected (due

to slack variables), but this is rare. In the unlikely event that this oc-

curs, we project the deformation parameters onto the feasible set: wz
ij ←

max(ε,wz
ij).

3Increasing training set size from 500 to 4000 examples improves test

accuracy from 32% to 42% wrist and elbow localization accuracy.

30 movies. People detected with high confidence (roughly

20K candidates) were then sent to the crowdsourcing mar-

ketplace Amazon Mechanical Turk to obtain groundtruth la-

beling. Each image was annotated by five Turkers for $0.01
each to label 10 upperbody joints. The median-of-five la-

beling was taken in each image to be robust to outlier anno-

tation. Finally, images were rejected manually by us if the

person was occluded or severely non-frontal. We set aside

20% (1016 images) of the data for testing.

6.2. Evaluation measure
There has been discrepancy regarding the widely re-

ported Percentage of Correct Parts (PCP) test evaluation
measure; see [5] for details. We use a measure of accu-
racy that looks at a whole range of matching criteria, sim-
ilar to [24]: for any particular joint localization precision
radius (measured in Euclidean pixel distance scaled so that
the groundtruth torso is 100 pixels tall), we report the per-
centage of joints in the test set correct within the radius. For
a test set of size N , radius r and particular joint i this is:

acci(r) =
100

N

N∑
t=1

1

(
100 · ||yt�

i − yt
i ||2

||yt
lhip − yt

rsho||2
≤ r

)

where yt�i is our model’s predicted ith joint location on

test example t. We report acci(r) for a range of r resulting

in a curve that spans both the very precise and very loose

regimes of part localization.

We compare against several state-of-the-art models

which provide publicly available code. The model of

Yang & Ramanan [24] is multimodal at the level of local

parts, and has no larger mode structure. We retrained their

method on our larger FLIC training set which improved

their model’s performance across all three datasets. The

model of Eichner et al. [4] is a basic unimodal PS model

which iteratively reparses using color information. It has no

training protocol, and was not retrained on FLIC. Finally,

Sapp et al.’s CPS model [15] is also unimodal but terms are

non-linear functions of a powerful set of features, some of

which requiring significant computation time (Ncuts, gPb,

color). This method is too costly (in terms of both memory

and time) to retrain on the 10× larger FLIC training dataset.

7. Results
The performance of all models are shown on FLIC,

Buffy and Pascal datasets in Figure 4. MODEC outper-

forms the rest across the three datasets. We ascribe its suc-

cess over [24] to (1) the flexibility of 32 global modes (2)

large-granularity mode appearance terms and (3) the ability

to train all mode models jointly. [5] and [15] are uniformly

worse than the other models, most likely due to the lack of

discriminative training and/or unimodal modeling.

We also compare to two simple prior pose baselines that

perform surprisingly well. The “mean pose” baseline sim-
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Figure 4. Test results. We show results for the most challenging parts: elbows and wrists. See text for discussion. Best viewed in color.

ply guesses the average training pose, and can be thought

of as measuring how unvaried a dataset is. The “mean clus-

ter prediction” involves predicting the mean pose defined

by the most likely pose, where the most likely pose is de-

termined directly from a 32-way SVM classifier using the

same HOG features as our complete model. This baseline

actually outperforms or is close to CPS and [5] on the three

datasets, at very low computational cost—0.0145 seconds

per image. This surprising result indicates the importance

of multimodal modeling in even the simplest form.

Speed vs. Accuracy. In Figure 5 we examine the tradeoff

between speed and accuracy. On the left, we compare dif-

ferent methods with a log time scale. The upper left corner

is the most desirable operating point. MODEC is strictly

better than other methods in the speed-accuracy space. On

the right, we zoom in to investigate our cascaded MODEC

approach. By tuning the aggressiveness (α) of the cascade,

we can get a curve of test time speed-accuracy points. Note

that “full training”—considering all modes in every training

example—rather than “cascaded training”—just the ones

selected by the cascade step—leads to roughly a 1.5% per-

formance increase (at the cost of 5× slower training, but

equal test-time speed).
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Figure 5. Test time speed versus accuracy. Accuracy is measured

as area under the pixel error threshold curve (AUC), evaluated on

the FLIC testset. Speed is in seconds on an AMD Opteron 4284

CPU @ 3.00 GHz with 16 cores. See text for details.

Qualitative results. Example output of our system on the

FLIC test set is shown in Figure 6.

8. Conclusion
We have presented the MODEC model, which provides

a way to maintain the efficiency of simple, tractable mod-

els while gaining the rich modeling power of many global

modes. This allows us to perform joint training and infer-

ence to manage the competition between modes in a princi-

pled way. The results are compelling: we dominate across

the accuracy-speed curve on public and new datasets, and

demonstrate the importance of multimodality and efficient

models that exploit it.
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