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Abstract

During recent years remarkable progress has been made
in visual saliency modeling. Our interest is in video
saliency. Since videos are fundamentally different from still
images, they are viewed differently by human observers. For
example, the time each video frame is observed is a frac-
tion of a second, while a still image can be viewed leisurely.
Therefore, video saliency estimation methods should differ
substantially from image saliency methods. In this paper we
propose a novel method for video saliency estimation, which
is inspired by the way people watch videos. We explicitly
model the continuity of the video by predicting the saliency
map of a given frame, conditioned on the map from the pre-
vious frame. Furthermore, accuracy and computation speed
are improved by restricting the salient locations to a care-
fully selected candidate set. We validate our method using
two gaze-tracked video datasets and show we outperform
the state-of-the-art.

1. Introduction
Predicting where people look in video is relevant in

many applications. For example, in advertising, it may

be important for the producer to know if the key concept

catches the viewer’s eye [29]. Furthermore, if one knows

where people are likely to look in a video, relevant con-

tent can be placed there. Another application that might

take advantage of human gaze prediction is video edit-

ing [1]: knowing where the viewer looks could help to cre-

ate smoother shot transitions. Moreover, we hypothesize

that reliable gaze prediction may drive gaze-aware video

compression or key-frame selection [15].

Image saliency is well explored in the computer vision

community. It is known that color, high contrast and hu-

man subjects draw our attention [18]. When viewing an

image over several seconds, a human observer can leisurely

scan multiple areas of interest over time, and different view-

ers may observe various paths through the image content.

In contrast, observers watching a video with dynamic con-

(a) (b)

Figure 1. Image vs. video saliency. The same image was dis-

played to human observers twice: once static for 3 seconds (a),

and once embedded within a video (b). The saliency maps over-

layed on the images show that video saliency is tighter and more

concentrated on a single object, while image saliency covers sev-

eral interesting locations.

tent have only a fraction of a second to observe each frame.

Hence they typically focus on the single most salient point

of each frame [24]. The difference between human fixa-

tions when viewing a static image versus a video frame is

exemplified in Figure 1. As can be seen, people watching

the image for 3 seconds attended several faces, while people

watching the same image as a frame within a video, focused

on a single face, that of the speaker.

In this work we propose a method that predicts saliency

by explicitly accounting for gaze transitions over time.

Rather than trying to model where people look in each

frame independently, we predict the gaze location given the

previous frame’s fixation map. In this way, we handle inter-

frame dynamics of the gaze transitions, along with within-

frame salient locations. To this end we learn a model that

predicts a saliency map for a frame given the fixation map

from a recent preceding moment and test it on a large set of

realistic videos.

A key contribution of this work is the observation that

saliency in video is typically very sparse and computing it

at each and every pixel is redundant. Instead, we select a

set of candidate gaze locations, and compute saliency only

at these locations. The candidates are extracted using static,

dynamic and semantic cues. We verify experimentally that

our candidate-based approach outperforms the pixel based

approach, and is significantly better than an image saliency
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based approach.

Another contribution of this work is an approach for

learning conditional saliency. Since a video is a stream of

frames, the human gaze in each frame depends on the pre-

vious gaze locations. This is different from images, where

each image is assumed to be viewed independently. In

this paper we suggest a method for learning the conditional

probabilities across consecutive frames.

The rest of the paper is organized as follows. Section 2

reviews the previous work in psychology, image and video

saliency. Section 3 provides a high-level overview of the

proposed method. Section 4 explains candidate selection,

and Section 5 focuses on learning the conditional proba-

bility. Experimental validation, together with comparison

against the pixel-wise calculation, is presented in Section 6

and conclusions are drawn in Section 7.

2. Related work
Scientists have studied human visual attention for

decades. In early works a separation between voluntary and

involuntary attention is proposed [6]. Henderson [13] focus

on understanding the image data, while Mital et al. [24] and

Goldstein et al. [10] focus on videos. Others tried to un-

derstand the temporal effect of eye motion in videos. Some

concentrate on the edit points, e.g., scene cuts, that have a

large influence on the fixations in video [28]. Others try to

understand the behavior within the shot and build a high-

level theory [27].

Already in 1980, Treisman and Gelade [30] proposed

a feature-integration theory, which aggregates several fea-

ture types. Later, Koch and Ullman [20] proposed a feed-

forward model for the integration, along with the concept

of a saliency map – a measure of visual attraction of every

point in the scene. This idea was first implemented and veri-

fied by Itti et al. [16], who proposed one of the first complete

models of human attention in images.

Since then much progress in image saliency has been

made. Some of the models use only low-level informa-

tion [12], while others use high level object detection [18]

or context [9]. The reader is referred to a recent survey on

the subject for more details [2].

Much less work has been done on video saliency. Gou et

al. [11] adopt an efficient method based on spectral analysis

of the frequencies in the video. Kim et al. [19] extend the

center-surround approach for images to video by adding an-

other dimension. A somewhat similar approach is proposed

by Mahadevan and Vasconcelos [23] – they model video

patches as dynamic textures to handle complicated back-

grounds and moving camera. Seo and Milanfar [26] pro-

pose using self-resemblance in both static and space-time

saliency detection. Cui et al. [8] take a different approach:

they concentrate on motion saliency only and detect it by us-

ing temporal spectral analysis. Finally, Hou and Zhang [14]

proposed using incremental coding length to measure the

rarity of features. This method can find salient regions both

in images and in videos.

Our work differs from previous video saliency meth-

ods by narrowing the focus to a small number of candi-

date gaze locations, and learning conditional gaze transi-

tions over time.

3. Motivation and overview
Most previous saliency modeling methods calculate a

saliency value for every pixel. In our work we propose

to calculate saliency at a small set of candidate locations,

instead of at every pixel. We motivate this based on two

observations about patterns of human gaze.

First, we observe that image saliency studies concentrate

on a single image stimulus, without any prior. This is usu-

ally achieved by “resetting” the participants’ gaze – present-

ing a black screen or a single target in the center. In video

this is not a possible initial condition for real-world view-

ing. Here, the gaze varies little between frames, and when it

does change significantly it is highly constrained to local re-

gions. Therefore, our solution considers only a small num-

ber of plausible candidate regions, and treats the regions in

aggregate, rather than per-pixel.

Our second observation is that when watching dynamic

scenes people usually follow the action and the characters

by shifting their gaze to a new interesting location in the

scene. Focusing on a sparse candidate set of salient loca-

tions allows us to model and learn these transitions explic-

itly with a relatively small computational effort.

To accommodate these observations our system consists

of three phases: identifying candidate gaze locations at each

frame (Section 4), extracting features for those locations

(Section 5.1) and learning or predicting gaze probabilities

for each candidate (Section 5.3). Learning and inference

follow the same three stages.

4. Candidate extraction
We start by presenting a method for detecting candidate

regions. We consider three types of candidates. Static can-
didates indicate the locations that capture attention due to

local contrast or uniqueness, irrespective of motion. Mo-
tion candidates reflect the areas that are attractive due to

the motion between frames. Last, semantic candidates are

those that arise from higher-level human visual processing.

The static and semantic candidate locations are gener-

ated separately for every video frame. The motion candi-

dates are computed using optical flow between neighboring

pairs of frames, and therefore implicitly account for the dy-

namics in the video. Each candidate location is represented

by a Gaussian blob, characterized by the spatial coordinates

of its mean and by its covariance matrix.
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4.1. Static candidates

Since a video is composed of individual frames we

start with candidates that attract peoples’ attention due to

static cues. For a given frame of interest we calculate the

graph-based visual saliency (GBVS), proposed by Harel et

al. [12]. We preferred GBVS over other image saliency

methods for two main reasons: (i) it has been shown that

GBVS accurately predicts human fixations in static im-

ages [3], and (ii) it is fast to calculate compared to more

accurate methods [18]. We hypothesize that other image

saliency detection methods may be used instead.

Given the image saliency map we wish to find the most

attractive candidate regions within it. We treat the normal-

ized saliency map as a distribution and use it to sample a

large number of random points. These points are clustered

using mean-shift [7]. The centers of the clusters are the

locations of our candidates. Finally, we estimate the covari-

ance matrix of each candidate by fitting a Gaussian to the

saliency map in the neighborhood of the candidate location.

The neighborhood size is set to 1/5 of the frame height, to

avoid interference with other candidates. We intentionally

do not use Gaussian mixture model, since we prefer captur-

ing the peaks over the broader contours of the distribution.

An example of our static candidates is provided in Fig-

ure 2,(a). Candidates were created around the most salient

regions of the image, such as the face and the label on the

back. Their size reflects the size of the region. Furthermore,

some candidates capture less salient regions, such as the two

bars.

4.2. Motion candidates

Modeling the saliency in independent frames is insuffi-

cient for videos since it ignores the dynamics. It is well

known that motion attracts human attention [17]. Thus, next

we incorporate motion cues into our salient candidate set.

To produce motion candidates we first calculate the op-

tical flow between consecutive frames [22]. We keep only

the optical flow magnitude and filter out pixels with weak

flow as unreliable. Since we are interested in local motion

contrast we apply Difference-of-Gaussians (DoG) filtering

to the optical flow magnitude. The motion candidates are

created from the DoG map in the same way as the static

candidates are created from the image saliency map (i.e.,

mean-shift clustering and Gaussian fitting).

An example of the resulting motion candidates is illus-

trated in Figure 2,(b). In this frame of the video the man

bends his arm and moves a brush to paint the wall. Ac-

cordingly, motion candidates were detected at the brush and

elbow.

4.3. Semantic candidates

Finally we wish to add semantic candidates to our set.

These candidates represent regions that attract human at-

(a) (b)
Figure 2. Static (a) and motion (b) candidates. The original

frame is shown in gray (for visualization) It is overlaid with: (a)

the GBVS saliency map and (b) optical flow magnitude. The can-

didates are indicated by black ellipses, that mark a radius σ of the

corresponding Gaussian.

Figure 3. Semantic candidates. The center candidate is red, green

ellipses are faces, and blue are human body candidates. Since the

body is large it is represented by four candidates. These candidates

cover most of the semantically salient regions in the frame.

tention due to higher level visual processing or other priors.

We consider three types of semantic candidates.

First, it has been shown that humans watching a video

are biased towards the center of the screen [31]. Therefore,

we create a constant size center candidate at the center of

the frame.

People are also known to fixate on faces (when they are

large) and on the torso (in more distant shots) [18]. To de-

tect these we run a face detector [4] and a poselet detec-

tor [5] on the frame of interest. These provide the location

and the size of the faces and the bodies. Additionally, we

run a mean shift non-maximal suppression of the detected

bounding boxes to prevent overlapping duplicate detections.

Since the detectors find faces and bodies at different

scales we treat large and small detections differently. First,

detections with very small bounding boxes (less than 15%

of the frame height) are rejected as noisy. For the remaining

small detections we create a single candidate at their cen-

ter. For large detections we create several candidates: four

for body detections (head, shoulders and torso) and three

for faces (eyes and nose with mouth). The placement of the

candidates is fixed inside the detected bounding box and the

covariance is proportional to the size of the bounding box.

All three types of candidates – center, face, and body –

are illustrated in Figure 3.
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5. Modeling gaze dynamics
Having extracted a set of candidates we next wish to se-

lect the most salient one. We accomplish this by learning

transition probability – the probability to shift from one

gaze location in a source frame to a new one in a desti-

nation frame. This transition is different from a saccade –

we are dealing with a shift of the entire distribution, while a

saccade is a rapid movement of a gaze point. Note that the

source frame is not necessarily the immediately preceding

frame, but can be several frames earlier in time. This allows

us to model the gaze dynamics in the video and predict the

saliency more accurately.

5.1. Features

To model changes in focus of attention we associate a

feature vector with pairs of source and destination candi-

dates in a given pair of frames. In the following we de-

scribe the creation of a feature vector for every ordered pair

of (source, destination) candidate locations.

The features can be categorized into two sets: destination

frame features and inter-frame features. We experimented

with the use of source frame features as well, but found

these features led to overfitting in the learning process, as

they are only slightly different from the destination frame

features. We use static, motion and semantic features, as

described next.

As a low level spatial cue we use the local contrast of

the neighborhood around the candidate location. The local

contrast is computed as:

Cl =
Imax
n − Imin

n

(Imax
n + Imin

n ) · Cg
, (1)

where Imin
n , Imax

n are the minimum and the maximum in-

tensity in the local neighborhood. Cg is a global contrast

scale calculated as:

Cg =
Imax − Imin

Imax + Imin
, (2)

where Imin, Imax are the minimum and the maximum in-

tensity of the frame. Additionally, we compute the mean

GBVS of the candidate neighborhood and add it to the set

of features.

To represent local motion we first compute the

Difference-of-Gaussians (DoG) of the vertical and horizon-

tal components of the optical flow as well as for its magni-

tude. We then add to the feature vector the mean value of

every DoG map in the local neighborhood of the destination

candidate.

Finally, we add a set of semantic features. First, we

add face and person detection scores (as described in Ap-

pendix A). We further add discrete candidate labels: mo-

tion, saliency, face, body, center, and the size of the corre-

sponding region. To account for the center bias we use the

Euclidean distance from the candidate location to the center

of the frame. It is important to note that all types of features

are computed for all the destination candidates regardless of

the type of the candidate.

5.2. Gaze transitions for training

We pose the learning problem as classification: whether

a gaze transition occurs from a given source candidate to a

given target candidate. To train such a classifier based on

the features described in the previous section we need (i)

to choose relevant pairs of frames, and (ii) to label positive

and negative gaze transitions between these frames.

To choose a set of relevant frames we use the most ob-

vious places for attention shifts – scene cuts. We find all

the cuts in the training set using a scene cut detector [32]

and set the source frame to be the last frame immediately

preceding the cut. Since it takes 5 to 10 frames for humans

to fixate on a new object of interest we set the destination

frame 15 frames after the cut [13]. This ensures that we will

not learn from incomplete or partial gaze transitions. For

negative samples we choose pairs of frames from the mid-

dle of every scene. For consistency we set the gap between

the source and destination to be 15 frames.

Next, we need to obtain examples of positive and neg-

ative gaze transitions. We start by aggregating the ground

truth human fixations into clusters (for both source and des-

tinations frames). This is done by smoothing the fixation

maps and thresholding them to keep only the top 3%. This

provides a set of distinct regions of attention. We consider

the centers of these regions as foci of attention. The foci

of the source frame are taken as source locations. We take

all pairs of source locations and destination candidates for

our training set. Pairs with a destination candidate near a

focus of the destination frame are labeled as positive. All

other pairs are labeled negative. We illustrate the labeling

in Figure 4.

5.3. Learning transition probability

The last stage of our system learns the classifier for

whether a transition occurs or not, i.e., the probability of

each pair of source-destination transition. We first calculate

the mean of each feature and its standard deviation across

the training set. Each feature is normalized to have zero

mean and unit standard deviation. The normalization pa-

rameters are stored together with the trained classifier.

We train a standard random forest classifier [21] using

the normalized feature vectors and their labeling. At the

inference stage the trained model classifies every transition

between source and destination candidates and provides a

confidence value. We use the normalized confidence as the

transition probability P (d|si) – the transition probability

from the source si to the current destination candidate d.

By aggregating all the transitions together we get the final
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Figure 4. Positive and negative examples of gaze shifts. The

green (positive) and red (negative) lines mark pairs of possible

source-destination transitions. The transition pairs are overlayed

on the source (top) and destination (bottom) frames, together with

source (magenta) and destination (yellow) gaze maps.

probability of the candidate as:

P (d) =
∑

i∈S

P (d|si) · P (si) (3)

where

P (si) =
Sal(si)∑
i∈S Sal(si)

(4)

and Sal(si) is the source candidate saliency and S is the set

of all the sources. Finally, we produce the saliency map in a

similar fashion to how Gaussian mixture models are used to

create a continuous distribution: we replace each candidate

with a Gaussian of corresponding covariance and sum them

up using the candidate saliency as weight.

6. Experimental validation

In this section we experimentally validate the proposed

video saliency detection method. For our experiments

we use the DIEM (Dynamic Images and Eye Movements)

dataset [24], which includes 84 high-definition videos from

different styles, such as movie trailers, ads, sport events,

etc. Most of the videos are professionally produced and the

image quality is excellent. The dataset is provided together

with gaze tracks of about 50 participants per video.

Figure 5. Our candidates cover most human fixations. (a) Cu-

mulative histogram of per-frame hit-rate of fixation points inside

the candidates. It can be seen that most of the fixations are cap-

tured well by the candidates. (b), (c) Example frames, together

with human fixation points (green) and our extracted candidates

(yellow). Our candidates cover most of the fixation points.

6.1. Verification of the candidates

First, we wish to demonstrate that human fixations can

be modeled well by our limited candidate set. To do so

we count the number of candidate locations that are “close

enough” to a fixation point. If a fixation point falls inside

the ellipse defined by the candidate’s covariance matrix, we

call it a hit. To define the ellipse we threshold the corre-

sponding Gaussian at a radius of σ. Otherwise, it is a miss.

The histogram of the hit rate over all the frames in DIEM

is shown in Figure 5 (a). The average hit rate over all the

frames is 81%, and the median is 88%. This means that

on most of the frames most of the fixations can be modeled

well by our candidate set. Additionally, Figures 5 (b),(c)

show a visual comparison between the human fixations and

our candidates.

6.2. Performance evaluation

To evaluate the accuracy of the proposed method we fol-

low the train / test scheme proposed by Borji et al. [3]. The

test set includes all frames of 20 representative videos. The

model is trained on the remaining 64 videos. Since our

method computes the probability to shift from a location

in a source frame to a location in a destination frame, we

calculate the video saliency in a sequential order. For the

first frame of the video we use as source a single location at

the center. For every following frame we compute transition
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probability to its candidate set using the predicted saliency

map from the previous frame as the source. This method

does not drift over time, since the transitions are largely in-

dependent of the source frame properties (recall that fea-

tures of the source frame were excluded and the destination

candidates are computed independently for each frame).

6.2.1 Evaluation procedure

We use two different metrics to quantitatively evaluate

performance. The first metric is the area-under-curve

(AUC), which utilizes the receiver-operator curve to com-

pute the similarity between human fixations and the pre-

dicted saliency map. We use its shuffled variation which

accounts for central bias [25]. The higher the AUC, the bet-

ter the result is.

Since the AUC considers the saliency results only at the

locations of the ground truth fixation points, it cannot distin-

guish well between a peaky saliency map and a smooth one.

In other words, the AUC considers each fixation separately

rather than viewing the fixations as samples of a distribu-

tion. Thus we propose an additional metric for performance

evaluation, the well-known χ2 distance between two distri-

butions. The χ2 distance will prefer a peaky saliency map

over a broad one, when comparing them to the tight distri-

bution of the ground truth. For χ2 a lower value implies a

better result.

We convert the sparse ground truth fixation map,

recorded by the gaze tracker, to a dense probability map

by convolving it with a constant size Gaussian kernel. The

size of the kernel is set experimentally to maximize the self-

explanation of the points over all video frames. This means

that we set the kernel size (11 pixels) so that the “humans”

measure described below is minimized under the χ2 metric.

We compare the proposed saliency prediction approach

with five different methods. The first, referred to as humans,

serves as an upper bound for the saliency prediction and

measures how much the fixation map explains itself. To

calculate it we randomly split the ground truth fixations of a

frame into two halves and compare the distributions created

from each half using χ2. The distributions are created by

convolving with the mentioned Gaussian kernel. We repeat

this 10 times and average the result.

The second method we compare to is a Gaussian placed

in the center of the frame. This method is used by Judd

et al [18] and we follow the parameters from there. We

further compare our results to the image saliency approach

of GBVS [12], and two video saliency methods PQFT [11]

and the method of Hou and Zhang [14] (annotated in figures

and tables as Hou for brevity). Both methods are among

the highest rated video saliency algorithms according to the

recent benchmark of Borji et al.[3].

(a) (b)
Figure 6. Our algorithm outperforms all others on DIEM. The

plots compare overall performance on DIEM dataset. We show

both χ2 distance (a), in which the lower the result the better, and

the AUC (b), for which the higher the better. The red lines show

the median and the blue boxes represent the 90-th percentile.

6.2.2 Results

First, we evaluate the performance of our approach without

the proposed candidate selection. That is, we applied the

entire procedure while considering all the pixels as candi-

dates, rather than using our selected set of candidates. Using

dense computation is orders of magnitude slower, rendering

it impractical. Furthermore, dense estimation resulted in

lower accuracy than the candidate based approach. Using

χ2 measure we get 0.347 median distance over our testing

set, compared to 0.313 when using candidate selection (re-

call that for χ2 lower scores mean better results). Since our

candidate-based approach is both more accurate and more

efficient, we use it for all our following experiments.

A comparison of our candidate-based approach with the

aforementioned other algorithms is presented in Figure 6. In

this plot the median result over all the frames is marked by a

red line, and the blue boxes represent the 90-th percentile of

the similarity. Our method outperforms all other algorithms

in both AUC and χ2 measures. Using χ2 further emphasizes

the benefits of our approach: we produce a tight distribution

that is more similar to the original gaze map.

To evaluate the contribution of each type of cue we per-

form leave-one-cue-out experiments. We train and test the

same system while excluding one of the four cue types:

static, motion, semantic and inter-frame. We use the same

DIEM dataset as in the previous experiment and the same

splitting. Table 1 presented the median results of the χ2

measure relative to the proposed complete measure that in-

clude all cues (the lower the better). As can be seen, drop-

ping any cue type decreases the performance. The most

significant cues for the system are static and semantic cues.

Furthermore, if all semantic cues are removed from the

learning procedure our proposed approach still outperforms

the nearest competitor (that does not use semantic informa-

tion).

We further visually compare our saliency maps to those

of other methods. Figure 7 demonstrates several exam-

ples (the complete video results can be found in the sup-

plementary). As can be seen, the saliency maps produced
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Table 1. Per-cue analysis of our algorithm on DIEM. As one

can see dropping static or semantic cues considerably decreases

the performance.

No No No No

All motion inter-frame semantic static

cues cues cues cues cues

χ2 0.313 0.322 0.326 0.347 0.385

Table 2. Our algorithm outperforms all others on CRCNS. As

can be seen, our method provides lowest χ2 distance to the ground

truth, rendering it the best performing approach.

Humans Ours Center GBVS PQFT Hou

χ2 0.42 0.43 0.53 0.51 0.61 0.63

by the proposed method are more visually consistent with

the shape, size, and location of the ground truth gaze map

than the maps of the other methods.

In addition we also experimented on the CRCNS

dataset [15]. It includes 50 low quality videos of VGA reso-

lution. The ground truth fixation data for the set is collected

from 8 participants. As for DIEM, we choose a testing set

of 12 videos and put the others in the training. The testing

videos are chosen to represent different video categories.

As shown in Table 2, our method outperforms all other al-

gorithms on this dataset as well.

7. Conclusions
In this paper we proposed a novel method for video

saliency prediction. The method is substantially different

from existing methods and uses a sparse candidate set to

model the saliency map. It is shown experimentally that

using candidates boosts the accuracy of the saliency pre-

diction and speeds up the algorithm. Furthermore, the pro-

posed method accounts for the temporal dimension of the

video by learning the probability to shift between saliency

locations.

A. Implementation details
Here we present some implementation details of our ap-

proach. We use the same settings in all our experiments.

We downsample all videos to 144 rows using bilinear

interpolation while preserving the aspect ratio. When de-

termining the motion candidates we filter out all regions

with optical flow magnitude lower that 2 pixels. For the

Difference-of-Gaussians filtering we use σ = 10 and σ =
20 pixels. For the center candidate we set σ = 1/8 ·
FrameHeight = 18 pixels. In the face and body can-

didates the size depends on the height of the detection. If

the detection is smaller than 0.4 · FrameHeight it is con-

sidered a small target and modeled using a single candi-

date with σ = 1/3 · DetectionHeight. Larger detections

of body create three candidates (torso and shoulders) with

σ = 1/12 · DetectionHeight and one candidate for the

head with σ = 1/6 ·DetectionHeight (their layout is de-

picted in Fig. 3). Larger detections of faces are modeled by

three candidates with σ = 1/4 · DetectionHeight (eyes

and mouth).

When calculating static and motion features in the neigh-

borhood of a candidate we use three different neighbor-

hoods, sized 5×5, 9×9 and 17×17 pixels. As we calculate

the semantic features we aggregate the face and human de-

tections together. This is accomplished by replacing each

detection with a Gaussian with σ corresponding to the de-

tection size. After summing all the Gaussians together we

sample the maps at candidate locations to create this feature.

Acknowledgments
We are grateful to Adobe for a wide support of this

research. We thank the DIEM database for making the

gaze tracking results publicly available. This research was

funded (in part) by the Intel Collaborative Research Insti-

tute for Computational Intelligence (ICRI-CI), the Ollen-

dorf foundation and by the Israel Ministry of Science.

References
[1] B. Block. The visual story: seeing the structure of

film, TV, and new media. Focal Press, 2001.

[2] A. Borji and L. Itti. State-of-the-art in visual attention

modeling. PAMI, 2012.

[3] A. Borji, D. Sihite, and L. Itti. Quantitative analysis of

human-model agreement in visual saliency modeling:

A comparative study. IEEE Transactions on Image
Processing, 2012.

[4] L. Bourdev and J. Brandt. Robust object detection via

soft cascade. In CVPR, pages 236–243, 2005.

[5] L. Bourdev and J. Malik. Poselets: Body part detectors

trained using 3d human pose annotations. In ICCV,

pages 1365–1372, 2009.

[6] G. Buswell. How people look at pictures: a study of

the psychology and perception in art. 1935.

[7] Y. Cheng. Mean shift, mode seeking, and clustering.

PAMI, 17(8):790–799, 1995.

[8] X. Cui, Q. Liu, and D. Metaxas. Temporal spectral

residual: fast motion saliency detection. In Proceed-
ings of the ACM international Conference on Multi-
media, 2009.

[9] S. Goferman, L. Zelnik-Manor, and A. Tal. Context-

aware saliency detection. PAMI, 34(10):1915–1926,

2012.

[10] R. Goldstein, R. Woods, and E. Peli. Where people

look when watching movies: Do all viewers look at

the same place? Computers in biology and medicine,

37(7):957–964, 2007.

11511151115111531153



Humans Ours Center GBVS PQFT Hou

Figure 7. Our saliency maps resemble the ground truth. Examples of saliency detection results using different methods show that the

saliency predicted by the proposed method better approximates the human gaze map.

[11] C. Guo, Q. Ma, and L. Zhang. Spatio-temporal

saliency detection using phase spectrum of quaternion

fourier transform. In CVPR, pages 1–8, 2008.

[12] J. Harel, C. Koch, and P. Perona. Graph-based visual

saliency. NIPS, 19:545, 2007.

[13] J. Henderson. Human gaze control during real-

world scene perception. Trends in cognitive sciences,

7(11):498–504, 2003.

[14] X. Hou and L. Zhang. Dynamic visual atten-

tion: Searching for coding length increments. NIPS,

21:681–688, 2008.

[15] L. Itti. Automatic foveation for video compres-

sion using a neurobiological model of visual at-

tention. IEEE Transactions on Image Processing,

13(10):1304–1318, 2004.

[16] L. Itti, C. Koch, and E. Niebur. A model of saliency-

based visual attention for rapid scene analysis. PAMI,
20(11):1254–1259, 1998.

[17] G. Johansson. Visual perception of biological motion

and a model for its analysis. Perceiving events and
objects, 1973.

[18] T. Judd, K. Ehinger, F. Durand, and A. Torralba.

Learning to predict where humans look. In ICCV,

pages 2106–2113, 2009.

[19] W. Kim, C. Jung, and C. Kim. Spatiotemporal saliency

detection and its applications in static and dynamic

scenes. IEEE Transactions on Circuits and Systems
for Video Technology, 21(4):446–456, 2011.

[20] C. Koch and S. Ullman. Shifts in selective visual atten-

tion: towards the underlying neural circuitry. Human
Neurobiology, 4(4):219–27, 1985.

[21] A. Liaw and M. Wiener. Classification and regression

by randomforest. R news, 2(3):18–22, 2002.

[22] C. Liu. Beyond pixels: exploring new representa-
tions and applications for motion analysis. PhD thesis,

Massachusetts Institute of Technology, 2009.

[23] V. Mahadevan and N. Vasconcelos. Spatiotemporal

saliency in dynamic scenes. PAMI, 32(1):171–177,

2010.

[24] P. Mital, T. Smith, R. Hill, and J. Henderson. Cluster-

ing of gaze during dynamic scene viewing is predicted

by motion. Cognitive Computation, 3(1):5–24, 2011.

[25] B. Schauerte and R. Stiefelhagen. Predicting human

gaze using quaternion dct image signature saliency

and face detection. In IEEE Workshop on Applications
of Computer Vision (WACV), pages 137–144. IEEE,

2012.

[26] H. Seo and P. Milanfar. Static and space-time visual

saliency detection by self-resemblance. Journal of Vi-
sion, 9(7), 2009.

[27] T. Smith. Attentional theory of cinematic continu-

ity. Projections: The Journal for Movies and Mind,

6(1):1–27, 2012.

[28] T. Smith and J. Henderson. Edit blindness: The re-

lationship between attention and global change blind-

ness in dynamic scenes. Journal of Eye Movement
Research, 2(2):6, 2008.

[29] Tobii. Advertising research and eye

tracking. http://www.tobii.com/
eye-tracking-research/global/
research/advertising-research/.

[30] A. Treisman and G. Gelade. A feature-integration the-

ory of attention. Cognitive psychology, 12(1):97–136,

1980.

[31] P. Tseng, R. Carmi, I. Cameron, D. Munoz, and L. Itti.

Quantifying center bias of observers in free viewing of

dynamic natural scenes. Journal of Vision, 9(7), 2009.

[32] S. Zanetti, L. Zelnik-Manor, and P. Perona. A walk

through the webs video clips. In CVPRW, pages 1–8.

IEEE, 2008.

11521152115211541154


