
Real-time Model-based Rigid Object Pose Estimation and Tracking
Combining Dense and Sparse Visual Cues

Karl Pauwels Leonardo Rubio Javier Dı́az Eduardo Ros
University of Granada, Spain

{kpauwels,lrubio,jda,eros}@ugr.es

Abstract

We propose a novel model-based method for estimat-
ing and tracking the six-degrees-of-freedom (6DOF) pose
of rigid objects of arbitrary shapes in real-time. By com-
bining dense motion and stereo cues with sparse keypoint
correspondences, and by feeding back information from the
model to the cue extraction level, the method is both highly
accurate and robust to noise and occlusions. A tight in-
tegration of the graphical and computational capability of
Graphics Processing Units (GPUs) results in pose updates
at framerates exceeding 60 Hz. Since a benchmark dataset
that enables the evaluation of stereo-vision-based pose esti-
mators in complex scenarios is currently missing in the lit-
erature, we have introduced a novel synthetic benchmark
dataset with varying objects, background motion, noise
and occlusions. Using this dataset and a novel evaluation
methodology, we show that the proposed method greatly
outperforms state-of-the-art methods. Finally, we demon-
strate excellent performance on challenging real-world se-
quences involving object manipulation.

1. Introduction

Estimating and tracking the 6DOF (three translation and

three rotation) pose of rigid objects is critical for robotic ap-

plications involving object grasping and manipulation, and

also for activity interpretation. In many situations, models

of the object of interest can be obtained off-line, or on-line

in an exploratory stage. Since it is such an important abil-

ity of robotic systems, a wide variety of methods have been

proposed in the past. We only provide a brief overview of

the major classes of methods here. Many more examples

exist for each class.

The most popular tracking methods match expected to

observed edges by projecting a 3D wireframe model in the

image [6]. Many extensions have been proposed that ex-

ploit also texture information and particle filtering in order

to reduce sensitivity to background clutter and noise [5, 13].

Tracking-by-detection approaches on the other hand can re-

cover the pose without requiring an initial estimate by using

sparse keypoints and descriptors with wide-baseline match-

ing [9, 13]. These are related to techniques for multi-view

object class detection, but the latter typically provide only

coarse viewpoint estimates [10]. A different class of ap-

proaches relies on level-set methods to maximize the dis-

crimination between statistical foreground and background

appearance models [17]. These methods can include ad-

ditional cues such as optical flow and sparse keypoints,

but at a large computational cost [4]. Most of the above-

mentioned approaches can exploit multi-view information,

but dense depth information is rarely used. Recently, due

to the prevalence of cheap depth sensors, depth information

is being applied with great success in various related prob-

lems, such as on-line scene modeling [15], articulated body

pose estimation [18], and texture-less object detection [7].

We show here that incorporating these advances in real-time

object tracking, and extending them with additional cues,

yields great improvements.

The main contributions can be summarized as follows.

First of all, we introduce a novel model-based 6DOF pose

estimation and tracking method that combines dense mo-

tion and stereo measurements with sparse keypoint fea-

tures. It exploits feedback from the model to the cue ex-

traction level and provides an effective measure of reliabil-

ity. Secondly, the method has been designed specifically for

high-performance operation (> 60 Hz) and this is achieved

through the exploitation and tight integration of the graph-

ics and computation pipelines of modern GPUs in both the

low-level cue extraction and pose estimation stages. Finally,

an extensive benchmarking dataset and evaluation method-

ology have been developed and used to show increased per-

formance (in accuracy, robustness, and speed) as compared

to state-of-the-art methods.

2. Proposed Method

A concise overview of the method is shown in Fig. 1.

Different visual cues are extracted from a stereo video

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.304

2345

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.304

2345

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.304

2347

Figure 1. Method overview illustrating the different visual cues

and model components (AR = Augmented Reality, see 2.2.2). The

cues are combined to estimate the object pose and model informa-

tion is fed back to facilitate the cue extraction.

stream and combined with model information (known a pri-

ori) to estimate the 6DOF pose. In turn, model information

is fed back to facilitate the cue extraction itself.

2.1. Model representation

The proposed method supports 3D models of arbitrary

shape and appearance of the object to track. The model’s

surface geometry and appearance are represented by a tri-

angle mesh and color texture respectively. For a given pose,

the color, distance to the camera, and surface normal at

each pixel can be obtained efficiently through OpenGL. In

a training stage, SIFT (Scale-Invariant Feature Transform)

features [12] are extracted from keyframes of rotated ver-

sions of the model (30◦ separation), and mapped to the sur-

face model.

2.2. Visual cues

The dense motion and stereo cues are obtained using

modified coarse-to-fine GPU-accelerated phase-based al-

gorithms [16], and the SIFT features are extracted and

matched using a GPU library [20].

2.2.1 Model-based dense stereo

Coarse-to-fine stereo algorithms, although highly efficient,

support only a limited disparity range and have difficulties

detecting fine structures. To overcome these problems we

feed the object pose estimate obtained in the previous frame

back as a prior in the stereo algorithm. Figure 2A,B show

an example real-world stereo image pair of a box being ma-

nipulated. Using the box’s previous frame pose estimate,

stereo priors are generated for the current frame (Fig. 2C,D)

and introduced at the lowest scale used by the stereo algo-

rithm. The reliable estimates (after left-right consistency

checking) for the current frame obtained with and without

using the priors are shown in panels E and F respectively.

Without the prior, the focus is more on the background than

on the object of interest.

Figure 2. (A) Left and (B) right input images and low-resolution

(C) left and (D) right stereo priors generated using the previous

frame pose estimate of the manipulated box. (E) Stereo obtained

using four scales and initializing with the prior, and (F) stereo ob-

tained using six scales and without using the prior.

2.2.2 Dense motion cues

The optical flow algorithm integrates the temporal phase

gradient across different orientations and also uses a coarse-

to-fine scheme to increase the dynamic range. Unlike [16],

we use only two frames, It and It+1, at times t and t+1. A

simple forward/backward consistency check discards unre-

liable estimates. A prior is not required since displacements

in the motion scenario are much smaller than in the stereo

scenario.

Figure 3C contains the (subsampled and scaled) optical

flow vectors from Fig. 3A to the next image in a complex

real-world scenario with both object and camera motion.

We also extract a second type of motion which we refer to as

Augmented Reality (AR) flow that includes feedback from

the model. The model’s texture is rendered at the current

pose estimate and overlaid on It, resulting in an ‘augmented

image’ Ît. An example is shown in Fig. 3B. The motion is

then computed from Ît to the next real image (It+1), and

shown in Fig. 3D for the example presented here. Because

of the erroneous pose estimate (deliberately large in this

case to better illustrate the concept) this motion is quite dif-

ferent from the optical flow. It allows the tracker to recover

from such errors by effectively countering the drift that re-

sults from tracking based on optical flow alone.

234623462348

left imageA left AR imageB

optical flowC AR flowD

Figure 3. (A) Left image and (B) left image with rendered model

(at incorrect pose) superimposed. (C) Real optical flow from real

image in A to the next real image. (D) AR flow from AR image in

B to the next real image. Both flow fields are subsampled (15×)

and scaled (5×).

2.3. Pose Estimation and Tracking

The proposed method incorporates the differential rigid

motion constraint into a fast variant of the iterative clos-

est point (ICP) algorithm [1] to allow all the dense cues

to simultaneously and robustly minimize the pose error.

A selection procedure (2.3.2) is used to re-initialize the

tracker with an estimate obtained from a sparse tracking-

by-detection approach, if required.

2.3.1 Dense Pose Tracking

Our aim is to recover the rigid rotation and translation that

best explains the dense visual cues and transforms each

model point m = [mx, my, mz]
T at time t into point m′

at time t+ 1:

m′ = Rm+ t , (1)

with R the rotation matrix and t = [tx, ty, tz]
T the trans-

lation vector. The rotation matrix can be simplified using a

small angle approximation:

m′ ≈ (1+ [ω]×)m+ t , (2)

with ω = [ωx, ωy, ωz]
T representing the rotation axis and

angle. Each stereo disparity measurement, d′, at time t+ 1
can be used to reconstruct an approximation, s′, to m′:

s′ =

⎡
⎣ s′x

s′y
s′z

⎤
⎦ =

⎡
⎣ x s′z/f

y s′z/f
−f b/d′

⎤
⎦ , (3)

with x = [x, y]T the pixel coordinates (with nodal point as

origin), f the focal length, and b the baseline of the stereo

rig. To use this reconstruction in (1), the model point m
corresponding to s′ needs to be found. We deliberately

avoid using the motion cues to facilitate this correspon-

dence finding, as done in many ICP extensions, since this

requires both valid stereo and valid motion measurements

at the same pixel. Instead we use the efficient projective

data association algorithm [2] that corresponds stereo mea-

surements to model points that project to the same pixel.

Since these correspondences are less accurate, a point-to-
plane as opposed to a point-to-point distance needs to be

minimized [21], which is obtained by projecting the error

on n = [nx, ny, nz]
T, the model normal vector in m:

e =
[
(Rm+ t− s′) · n

]2
. (4)

This error expresses the distance from the reconstructed

points to the plane tangent to the model. By linearizing this

measure as in (2) and summing over all correspondences

{mi, s
′
i}, we arrive at a strictly shape-based error measure

that is linear in the parameters of interest t and ω:

eS(t,ω) =
∑
i

([
(1+ [ω]×)mi + t− s′i

]
· ni

)2

. (5)

By rearranging (2), we obtain the following:

m′ −m ≈ t+ ω ×m . (6)

Note that this looks very similar to the differential motion

equation from classical kinematics that expresses the 3D

motion of a point, ṁ, in terms of 3D translational and rota-

tional velocity:

ṁ = t+ ω ×m . (7)

We deliberately retain the (t,ω) notation since the displace-

ments in (2) are expressed in the same time unit. This can

now be used with the optical flow to provide additional con-

straints on the rigid motion. Unlike in the stereo case (3),

ṁ cannot be reconstructed from the optical flow and in-

stead (7) needs to be enforced in the image domain. After

projecting the model shape:

x = f

[
mx/mz

my/mz

]
, (8)

the expected pixel motion ẋ = [ẋ, ẏ]T becomes:

ẋ =
δx

δt
=

f

m2
z

[
ṁxmz −mxṁz

ṁymz −myṁz

]
. (9)

Combining (9) with (7) results in the familiar equations

[11]:

ẋ =
(f tx − x tz)

mz
− x y

f
ωx + (f +

x2

f
)ωy − y ωz , (10)

ẏ =
(f ty − y tz)

mz
− (f +

y2

f
)ωx +

x y

f
ωy + xωz , (11)

234723472349

which are linear in t and ω provided the depth of the point

is known. We obtain this depth mz by rendering the model

at the current pose estimate (8). Since we have two sources

of pixel motion, we have two error functions:

eO(t,ω) =
∑
i

‖ẋi − oi‖2 , (12)

eA(t,ω) =
∑
i

‖ẋi − ai‖2 , (13)

with o = [ox, oy]
T and a = [ax, ay]

T the observed optical

and AR flow respectively.

Both the linearized point-to-plane distance in the stereo

case and the differential motion constraint in the optical and

AR flow case now provide linear constraints on the same

rigid motion representation (t,ω) and can thus be mini-

mized jointly using the following error function:

E(t,ω) = eS(t,ω) + eO(t,ω) + eA(t,ω) . (14)

To increase the robustness, an M-estimation scheme is used

to gradually reduce the influence of and remove outliers

from the estimation [14]. In the case of large rotations these

linearized constraints are only crude approximations, and

many of the shape correspondences obtained through pro-

jective data association will be wrong. Therefore, the min-

imization of (14) needs to be iterated a number of times,

at each iteration updating the pose, the shape correspon-

dences, and the unexplained part of the optical and AR flow

measurements.

At iteration k, an incremental pose update is obtained by

minimizing E(Δtk,Δωk), and accumulated into the pose

estimate at the previous iteration k − 1:

Rk = ΔRk Rk−1 , (15)

tk = ΔRk tk−1 +Δtk , (16)

where ΔRk = e[Δωk]× . The model is updated as:

mk = Rk m+ tk , (17)

and used to obtain the new (projective) shape correspon-

dences and the part of the optical and AR flow explained

thus far, Δxk = [Δxk,Δyk]T:

Δxk = f(mk
x/m

k
z −mx/mz) , (18)

Δyk = f(mk
y/m

k
z −my/mz) . (19)

This explained flow is subtracted from the observed optical

and AR flow:

ok = o−Δxk , (20)

ak = a−Δxk . (21)

The next iteration incremental pose updates are then ob-

tained by minimizing E(Δtk+1,Δωk+1), which operates

on ok, ak, mk, and s′. This cycle is repeated a fixed num-

ber of times (we use three internal iterations for the M-

estimation, and three external iterations). Note that even

though the updates in each iteration are estimated from lin-

earized equations, the correct accumulated discrete updates

are used in between iterations (17–19).

2.3.2 Combined Sparse and Dense Pose Estimation

A RANSAC-based monocular perspective-n-point pose es-

timator is used to robustly extract the 6DOF object pose

on the basis of correspondences between image (2D) and

model codebook (3D) SIFT keypoint descriptors [3, 9]. Ex-

haustive matching is used and therefore, unlike the dense

component of the proposed method, this sparse estimator

provides a pose estimate that does not depend on the previ-

ous frame’s estimate.

Due to the nonlinear and multimodal nature of the sparse

and dense components, directly merging them using for in-

stance a Kalman filtering framework is not suitable here.

Instead we select either the sparse or dense estimate based

on the effectiveness of its feedback on cue extraction, as

measured by the proportion of valid AR flow vectors in the

projected object region. A flow vector is considered valid

if it passes a simple forward/backward consistency check

(2.2.2). This measure is used since, unlike dense optical-

flow-based or stereo-based measures, AR flow is affected

by object occlusions. We will show in Section 4 that this

simple measure is adequate both for selecting and determin-

ing the reliability of the pose estimate.

2.4. Processing Times

A breakdown of the time required to process a single

640×480 image frame is provided in Table 1 (using one

core of a Geforce GTX 590). The AR flow is computed

twice, based on the previous frame’s sparse and dense esti-

mate. Consequently, four Gabor pyramids need to be com-

puted (left, right, 2× left AR). A number of rendering steps

are also required to create the stereo priors and AR images.

Note that the low-level component computes dense stereo

and three times optical flow altogether at ±95 Hz. Dense

pose estimation takes 4.8 ms for a configuration with 50,000

data samples, three internal (M-estimation) and three exter-

nal (ICP) iterations. These timings scale very well with

model complexity. The total time spent on rendering is

1.65 ms for the 800 triangle model used in Table 1, 1.78 ms

for a 25,000 triangle model, and 2.6 ms for a 122,000 trian-

gle model. The tracking module requires 16 ms in total and

thus exceeds 60 Hz.

The sparse component runs independently on the sec-

ond GPU core so that it does not affect the tracker’s speed.

Its estimates are employed when available and so its speed

mainly determines the recovery latency in case the dense-

234823482350

Table 1. Processing times dense tracking (in ms)

dense cues (640×480 image size) 10.6

– Gabor pyramid (4×) 3.8

– optical flow 1.5

– AR flow (2×) 3.2

– model-based stereo 1.3

– rendering 0.8

dense pose (50,000 samples) 4.8

– residual flow (18–21) 0.5

– rendering 0.8

– gathering/compaction 1.4

– pose estimate 2.1

error evaluation 0.6

total 16.0

soda soup clown cube edgecandy

Figure 4. Object models used.

based tracker is lost. Our current implementation runs at

20 Hz. This can be increased by reducing the model size

and/or using more efficient keypoints and descriptors, but

at the cost of reduced accuracy.

3. Synthetic Benchmark Dataset
We have constructed an extensive synthetic benchmark

dataset to evaluate pose trackers under a variety of realistic

conditions. Its creation is discussed in detail next, but Fig. 7

already shows some representative examples that illustrate

the large distance range, background and object variability,

and the added noise and occlusions. The complete dataset

is available on-line.1

3.1. Object Models

We have selected four objects from the publicly available

KIT object models database [8]. Snapshots of these models

are shown in Fig. 4 (soda, soup, clown, and candy) and pro-

vide a good sample of the range of shapes and textures avail-

able in the database. We also included two cube-shaped ob-

jects, one richly textured (cube), and the other containing

only edges (edge).

3.2. Object and Background Motion

Using the proposed system, we recorded a realistic and

complex motion trace by manually manipulating an object

1http://www.karlpauwels.com

Figure 5. Ground-truth object motion in synthetic sequences.

Figure 6. Proportion occlusion in the cube sequence.

similar to cube. This, possibly erroneous, motion trace was

then used to generate synthetic sequences and so it is, by

definition, the ground-truth object motion. The trace is

shown in Fig. 5 and covers a high dynamic range, varying

all six degrees of freedom. The realism and complexity of

the sequences is further increased by blending the rendered

objects into a real-world stereo sequence recorded with a

moving camera in a cluttered office environment. Some ex-

amples are shown in Fig. 7 but, to fully appreciate the com-

plexity, we refer to the supplemental material video.

3.3. Noise and Occluder

To further explore the limitations of pose estimation

methods, different sequences are created corrupted either

by noise or an occluding object. For the noisy sequences,

Gaussian noise (σ = 0.1 intensity) is added separately to

each color channel, frame, and stereo image (Fig. 7B).

To obtain realistic occlusion (with meaningful motion and

stereo cues), we added a randomly bouncing 3D teddy bear

object to the sequence (Fig. 7C,D and the supplemental ma-

terial). The occlusion proportion of the cube object over

the sequence is shown in Fig. 6. Although this differs for

the left and right sequences, none of the methods evaluated

here exploit this (e.g. our dense stereo cue is affected by

either left or right occlusions).

3.4. Performance Evaluation

Pose trackers are usually evaluated by comparing the

estimated to the ground-truth or approximate ground-truth

pose across an entire sequence [4, 5, 17]. However, once

a tracker is lost, the subsequent estimates (and their errors)

become irrelevant. For example, if tracking is lost early in

the scene, the average error will typically be very large, but

234923492351

soda - orig - left 339A clown - noisy - left 1B

cube - occl - left 540C cube - occl - right 540D

Figure 7. Indicative samples from the different synthetic sequences

illustrating (A) large distance range, (B) added noise, and (C,D)

different occlusion proportions in the left and right sequences (orig

= noise free ; occl = occluded ; number = frame index).

this doesn’t mean the tracker cannot track the object in the

remainder of the sequence, if re-initialized.

For this reason, we propose to instead measure the pro-
portion of a sequence that can be tracked successfully.

Since we use synthetic sequences, we can continuously

monitor tracking accuracy and automatically reset when

tracking is lost. But how to decide if tracking is lost? Rota-

tions and translations affect an object’s position in very dif-

ferent ways and are therefore hard to summarize into a sin-

gle error. Instead we use the largest distance between corre-

sponding vertices, vj , of the object transformed according

to the ground-truth (R, t) and estimated pose (R̂, t̂):

eP = max
j
‖(R̂vj + t̂)− (Rvj + t)‖ . (22)

When this distance exceeds a threshold (e.g. 10 mm), the

tracker is reset to the ground-truth. The proportion of the

sequence tracked correctly then constitutes a scalar perfor-

mance measure for the entire sequence. To put this measure

in perspective, a static error is also computed for each se-

quence using a ‘naive tracker’. This ‘tracker’ simply never

updates the pose. As a consequence all resets are triggered

by the object motion only and the error provides an indica-

tion of the sequence complexity. For example, in a sequence

with a static object, perfect performance will be achieved.

4. Results
4.1. Stereo and Optical Flow Synergy

Table 2 shows results on the least textured sequences

soda and edge. The static performance is around 50% in

Table 2. Tracking success rate (in %) – stereo and optical flow

soda edge
orig noisy occl orig noisy occl

static 53 53 53 50 50 50

stereo 77 47 42 59 50 32

optical flow 93 81 57 78 81 40

stereo+flow 100 96 63 92 93 52

both which means that, without tracking, a reset is required

approximately every other frame. Due to the low texture,

shape-symmetry (soda) and shape-planarity (edge), stereo-

only performance is quite bad in these sequences and even

below static in the noisy and occluded scenarios. Optical-

flow-only performance is better but, when both are com-

bined, great improvements can be observed. This highlights

the importance of combining multiple cues, particularly in

low-texture situations. The AR flow and sparse cues fur-

ther improve the results, but these are discussed in the next

section (and shown in Table 3).

4.2. State-of-the-art Methods

The Blocks World Robotic Vision Toolbox (BLORT)

[13] provides a number of object learning, recognition, and

tracking components that can be combined to robustly track

object pose in real-time. We only evaluate the particle-filter-

based tracking module here since the recognition module

is very similar to our sparse-only method. Each particle

represents a pose estimate and is used to render an edge

model (combining edges from geometry and texture) that

is matched against edges extracted from the current im-

age. We evaluate BLORT’s tracking module with the de-

fault (real-time) setting with 200 particles and a high pre-

cision variant with 10,000 particles. Due to an inefficient

rendering procedure, the current tracker implementation of

BLORT can not handle models with a high vertex count. We

therefore limited the geometrical complexity of the models

to 800 triangles in all the sequences.

We also evaluate a state-of-the-art real-time-capable

region-based tracker. The PWP3D method [17] uses a 3D

geometry model to maximize the discrimination between

statistical foreground and background appearance models,

by directly operating on the 3D pose parameters. To en-

sure the best possible performance, we used very small

gradient descent step sizes (0.1 degrees for rotation and 1

mm for translation). Together with a large number of it-

erations (100), this ensures stable convergence (although

no longer in real-time). Furthermore, we initialized the

PWP3D method at each frame with the ground-truth color

histogram of the actual (or unoccluded) frame being pro-

cessed so that also inaccuracies here do not affect perfor-

mance.

Table 3 summarizes all the results obtained with a track-

235023502352

Table 3. Tracking success rate (in %) – orig = noise free; occl = occluded

soda soup clown candy cube edge
orig noisy occl orig noisy occl orig noisy occl orig noisy occl orig noisy occl orig noisy occl

sparse-and-dense 99 97 68 98 99 80 100 98 77 100 100 81 100 100 76 98 98 57

dense-only 100 98 67 100 99 74 100 100 70 100 100 75 100 100 71 98 99 57

sparse-only 61 37 44 93 74 77 92 71 74 96 91 80 98 96 79 0 0 0

part. filt. 10,000 76 65 54 77 66 63 88 82 76 77 76 64 93 94 76 72 91 68
region-based 84 84 44 96 96 44 96 89 44 84 84 39 84 74 38 85 84 39

part. filt. 200 58 60 45 47 54 40 56 62 48 46 49 41 53 54 39 63 63 50

static 53 53 53 45 45 45 47 47 47 46 46 46 50 50 50 50 50 50

ing reset threshold equal to 10 mm. The proposed dense-
only tracking method obtains an almost perfect performance

regardless of model shape, texture (see edge), or sequence

noise. In the occluded scenario however, it is frequently

outperformed by the sparse-only and high quality particle
filtering methods. But, when combined with the sparse

method (2.3.2) the synergy of both modules is confirmed.

Sparse-and-dense retains the excellent performance of the

dense-only method with greatly improved robustness to

occlusions, even outperforming sparse-only on most se-

quences. Note that, unlike dense-only, sparse-and-dense
also enables recovery from tracking failures. The parti-
cle filter method performs very well provided a very large

number of particles are used. In the real-time setting (200

particles) the performance is not much better than static.

The sparse-only method performs badly on soda due to the

weak texture, and fails on edge due to the complete absence

of texture. The region-based tracker performs consistently

well on the noise-free and noisy sequences, but fails dramat-

ically in the presence of an occluder. Although it can handle

certain types of occlusions, large failures occur when an en-

tire side of the object contour is occluded [17].

4.3. Real-world Sequences

The proposed method also performs excellently in real-

world scenarios. Some example results with a cluttered

scene, occluders, and camera motion are shown in Fig. 8.

The dense estimate is selected as winner in Fig. 8A,B. This

usually occurs when the object is far away (A) or suffering

from severe motion blur (B). The sparse estimate is usually

selected when only a small part of the object is visible (C).

Figure 8D finally shows some tracking failures that are de-

tected correctly by the reliability measure (proportion AR

flow < 0.15). See the supplemental material video for more

real-world results.

5. Discussion

Although highly robust, the edge-based particle filter

method requires a large number of particles to achieve high

accuracy. Since each particle requires a rendering step,

the performance critically depends on model complexity.

This method is also difficult to extend to the articulated

scenario due to the increased dimensionality of the prob-

lem. The sparse keypoint-based method is highly robust to

occlusions and provides excellent synergy with the dense

methods proposed here. The region-based method does not

require edges or texture and performs very well. It does

have problems with symmetric objects, is slow to converge,

and fails on certain types of occlusions. This requires the

use of multiple cameras or explicit modeling of the occlu-

sions. Note that the proposed method also supports depth

cues other than stereo (e.g. from a Kinect sensor), and con-

versely, enables for the incorporation of motion cues in cur-

rent depth-only applications [15]. Current Kinect versions

however do not provide the high shape detail close to the

camera, nor the high framerates achieved by our model-

based stereo algorithm[19]. Finally, the articulated case

represents a relatively straightforward extension of the pro-

posed methods, and the high-level of detail provided by the

dense cues should be especially powerful in this, and also

the deformable, scenario.

6. Conclusion

We have presented a novel multi-cue approach for the

6DOF model-based pose tracking of rigid objects of ar-

bitrary shapes that exploits dense motion and stereo cues,

sparse keypoint features, and feedback from the model to

the cue extraction. The method is inherently parallel and ef-

ficiently implemented using GPU acceleration. We have in-

troduced an evaluation methodology and benchmark dataset

specifically for this problem. Using this dataset we have

shown improved accuracy, robustness, and speed of the

proposed method as compared to state-of-the-art real-time-

capable methods.

Acknowledgments

This work is supported by grants from the European

Commission (Marie Curie FP7-PEOPLE-2011-IEF-301144

and TOMSY FP7-270436) and CEI BioTIC GENIL (PYR-

2012-9).

235123512353

dense pose winsA dense pose winsB sparse pose winsC detected failureD

Figure 8. Indicative real-world pose estimation results, showing how the dense pose is selected when (A) the object is far and/or (B)

motion-blurred, how the sparse pose is selected in case of (C) strong occlusions, and how (D) failures can be detected correctly.

References
[1] P. Besl and N. McKay. A method for registration of 3D

shapes. IEEE PAMI, 14:239–256, 1992. 3

[2] G. Blais and M. Levine. Registering multiview range data

to create 3D computer objects. IEEE PAMI, 17(8):820–824,

1995. 3

[3] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000. 4

[4] T. Brox, B. Rosenhahn, J. Gall, and D. Cremers. Combined

region and motion-based 3D tracking of rigid and articulated

objects. IEEE PAMI, 32(3):402–415, 2010. 1, 5

[5] C. Choi and H. I. Christensen. Robust 3D visual tracking us-

ing particle filtering on the special euclidean group: A com-

bined approach of keypoint and edge features. Int. J. Robot.
Res., 31(4):498–519, 2012. 1, 5

[6] T. Drummond and R. Cipolla. Real-time visual tracking of

complex structures. IEEE PAMI, 24(7):932–946, 2002. 1

[7] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige,

N. Navab, and V. Lepetit. Multimodal templates for real-time

detection of texture-less objects in heavily cluttered scenes.

In ICCV, pages 858–865, 2011. 1

[8] A. Kasper, Z. Xue, and R. Dillmann. The KIT object mod-

els database: An object model database for object recogni-

tion, localization and manipulation in service robotics. Int.
J. Robot. Res., 31(8):927–934, 2012. 5

[9] V. Lepetit and P. Fua. Monocular model-based 3D track-

ing of rigid objects. Foundations and Trends in Computer
Graphics and Vision, 1:1–89, 2005. 1, 4

[10] J. Liebelt and C. Schmid. Multi-view object class detection

with a 3D geometric model. In CVPR, pages 1688–1695,

2010. 1

[11] H. C. Longuet-Higgins and K. Prazdny. The interpretation of

a moving retinal image. P. Roy. Soc. B-Biol. Sci., 208:385–

397, 1980. 3

[12] D. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004. 2

[13] T. Mörwald, J. Prankl, A. Richtsfeld, M. Zillich, and

M. Vincze. BLORT - The Blocks World Robotic Vision

Toolbox. In ICRA, 2010. 1, 6

[14] F. Mosteller and J. Tukey. Data analysis and regression: A
second course in statistics. Addison-Wesley Reading, Mass.,

1977. 4

[15] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli,

O. Hilliges, J. Shotton, D. Molyneaux, S. Hodges, D. Kim,

and A. Fitzgibbon. KinectFusion: real-time dense surface

mapping and tracking. In IEEE ISMAR, pages 127–136, Oct.

2011. 1, 7

[16] K. Pauwels, M. Tomasi, J. Dı́az, E. Ros, and M. Van Hulle.

A comparison of FPGA and GPU for real-time phase-based

optical flow, stereo, and local image features. IEEE T. Com-
put., 61(7):999–1012, 2012. 2

[17] V. Prisacariu and I. Reid. PWP3D: Real-time segmentation

and tracking of 3D objects. IJCV, 98:335–354, 2012. 1, 5,

6, 7

[18] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,

R. Moore, A. Kipman, and A. Blake. Real-time human pose

recognition in parts from single depth images. In CVPR,

pages 1297–1304, June 2011. 1

[19] Wikipedia. Kinect, 2013. 7

[20] C. Wu. SiftGPU: A GPU implementation of scale invari-

ant feature transform (SIFT). http://cs.unc.edu/

˜ccwu/siftgpu, 2007. 2

[21] C. Yang and G. Medioni. Object modelling by registration

of multiple range images. Image Vision Comput., 10(3):145–

155, 1992. 3

235223522354

