This CVPR2013 paper is the Open Access version, provided by the Computer Vision Foundation.

The authoritative version of this paper is available in IEEE Xplore.

Segment-Tree based Cost Aggregation for Stereo Matching

Xing Mei', Xun Sun?, Weiming Dong', Haitao Wang?, Xiaopeng Zhang'
INLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China
2China Lab, Samsung Advanced Institute of Technology, Beijing, China

{xmei, wmdong, xpzhang}enlpr.ia.ac.cn, {xunshine.sun,ht.wang}@samsung.com

Abstract

This paper presents a novel tree-based cost aggregation
method for dense stereo matching. Instead of employing
the minimum spanning tree (MST) and its variants, a new
tree structure, ”Segment-Tree”, is proposed for non-local
matching cost aggregation. Conceptually, the segment-tree
is constructed in a three-step process: first, the pixels are
grouped into a set of segments with the reference color or
intensity image; second, a tree graph is created for each
segment; and in the final step, these independent segmen-
t graphs are linked to form the segment-tree structure. In
practice, this tree can be efficiently built in time nearly lin-
ear to the number of the image pixels. Compared to MST
where the graph connectivity is determined with local edge
weights, our method introduces some 'non-local’ decision
rules: the pixels in one perceptually consistent segment are
more likely to share similar disparities, and therefore their
connectivity within the segment should be first enforced in
the tree construction process. The matching costs are then
aggregated over the tree within two passes. Performance
evaluation on 19 Middlebury data sets shows that the pro-
posed method is comparable to previous state-of-the-art
aggregation methods in disparity accuracy and processing
speed. Furthermore, the tree structure can be refined with
the estimated disparities, which leads to consistent scene
segmentation and significantly better aggregation results.

1. Introduction

Dense two-frame stereo matching is one of the most ex-
tensively studied areas in computer vision. A stereo algo-
rithm usually takes four steps [15]: matching cost computa-
tion, cost aggregation, disparity computation and disparity
refinement. In step 1, the matching costs are initialized for
each pixel at all possible disparity levels; in step 2, the cost-
s are aggregated over each pixel’s support region; in step
3, the disparities are computed with a local or global opti-
mizer; and finally in step 4, the disparity results are refined
with various post-processing techniques. We mainly focus

313

on cost aggregation (step 2), which has great impact on the
speed and accuracy of a stereo system. This step is required
by all the local methods [14, 25], and it also turns out to be
an important building block for many top-performing glob-
al algorithms [11, 24].

Most aggregation methods work by defining a local sup-
port window for each pixel and averaging the costs over the
region, which are therefore closely related to image filter-
ing techniques. While simple box/gaussian smoothing tech-
niques can be adopted due to their high efficiency, they pro-
duce low-quality results with blurred depth boundaries [15].
Yoon and Kweon first proposed to filter the cost volume
with a joint bilateral filter, which effectively preserves depth
boundaries [25]. Since then, various edge-aware filtering
techniques have been explored for cost aggregation, such
as geodesic weight [7] and segment support [20]. He et al.
presented a guided image filter with running time indepen-
dent of kernel size [6]. This filter shows leading speed and
accuracy performance in two recent stereo methods [3, 14].

Recently, Yang first proposed a non-local cost aggrega-
tion method [23]. Different from previous methods that rely
on pixelwise support regions, Yang’s method performs non-
local cost aggregation over the image with a tree structure.
The reference image is treated as a 4-connected, undirected
planar graph: the nodes are image pixels, and the edges are
all the edges between neighboring pixels. The tree is then
constructed as a minimum spanning tree (MST) over this
graph. By traversing the tree in two sequential passes (one
from leaf to root, another one from root to leaf), each pix-
el receives proper contributions from all the other pixels in
the image. Evaluation on the standard Middlebury bench-
mark [16] shows that this non-local method outperforms the
guided image filter in aggregation accuracy. And it is com-
putationally very efficient, with running time comparable to
uniform box filtering.

Besides aggregation, MST and its variants have also
been used as graphical models for many global stereo meth-
ods such as tree-based dynamic programming [10, 21] and
graph cut on sparse graph [18]. MST is built by greedily
choosing edges with small weights from the image graph.

The edge weights are determined with color differences,
which are therefore sensitive to highly textured regions, im-
age sampling and local noise. Edges with equal weights
also lead to non unique tree structures [21].

In this paper, we propose a novel tree structure, Segment-
Tree (ST), for non-local cost aggregation. We first divide
the image graph into a set of coherent segments, then con-
struct a sub-tree for each segment, and finally connect these
sub-trees to build the ST structure.

Although MST has shown good performance in cost ag-
gregation and other stereo work [21, 23], we believe ST is
competitive for two reasons. First, MST is constructed with
local edge weights. ST instead selects edges with both lo-
cal edge weights and "non-local’ segment properties, which
yields a more robust tree structure. Second and more impor-
tantly, ST incorporates the segmentation information into
the cost aggregation step in a "soft” way. On the one hand, it
conforms to the assumption that the pixels in the same seg-
ment are more likely to share similar disparities. By enforc-
ing tight connections for the pixels inside each segment, im-
proved aggregation results and better depth boundaries can
be expected. On the other hand, the aggregation weight be-
tween any two pixels in the same segment is determined by
their geodesic distance over a sub-tree structure, which still
allows large disparity variation inside the segment without
a hard constraint. This is fundamentally different from pre-
vious region-based methods that employ the segmented re-
gions as the basic matching units [8, 10, 22]. Ren proposed
a similar idea for optical flow computation, which deter-
mines the weight between the pixels with pairwise affinities
and avoids early pixel grouping [13].

We quantitatively evaluate the aggregation accuracy with
ST, MST and guided image filter on 19 Middlebury data set-
s, including the standard benchmark. Experimental results
show that ST is comparable to the guided filter in accuracy,
and outperforms MST on most data sets. And even better
results can be achieved if the tree structure is further updat-
ed with a color-depth joint segmentation.

A challenging problem with ST is that the construction
process might be computationally expensive due to the seg-
mentation operation. We show that, by extending a classic
graph-based segmentation method [4], ST can be built in
time nearly linear to the number of the image pixels. For
the Middlebury data sets, ST-based aggregation method is
about 11x faster than the guided image filter [14].

In summary, the contributions of this paper are:

e A novel tree structure for matching cost aggregation.
e An efficient graph-based tree construction algorithm.
e An effective tree structure refinement method.

e Quantitative evaluation of several recent aggregation
methods on a number of stereo data sets.

314

2. Non-Local Cost Aggregation

In this section, we briefly review the non-local cost ag-
gregation method. More details can be found in [23]. Our
algorithm follows the same work flow, except that we em-
ploy a different tree structure.

In this problem, the reference color/intensity image I is
represented as a connected, undirected graph G = (V, E),
where each node in V' corresponds to a pixel in /, and each
edge in E connects a pair of neighboring pixels. For an edge
e connecting pixel s and r, its weight is decided as follows:

we = w(s,r) = |I(s) — I(r)] ()

A tree T can then be constructed by selecting a subset of
edges from F. Yang proposed to construct 7" as a minimum
spanning tree (MST). The intuition behind this choice is that
edges with small weights are less likely to cross the depth
borders. For accurate aggregation, such edges should be
selected during the tree construction process, which leads
to a MST with the minimum sum of the edge weights. For
any two pixels p and ¢, there is only one path connecting
them in 7, and their distance D(p, q) is determined by the
sum of the edge weights along the path.

Let Cy(p) denote the matching cost for pixel p at dispari-
ty level d, the non-local aggregated cost C’f (p) is computed
as a weighted sum of Cy:

Ci(p) =Y S(p,9)Calq)

qel

2

where ¢ covers every pixel in image I. This is different
from traditional aggregation methods, where ¢ is limited in
a local region around p. S(p,q) is a weighting function,
which denotes the contribution of pixel ¢ to p in the sum.
With the tree structure 7', S(p, ¢) is defined as follows:

D(p,q
S(p.a) = eap(~2L:D) ®
where ¢ is a user-specified parameter for distance adjust-
ment. o is set to 0.1 in all our experiments. The pixels that

are closer to p in 7" contribute more to the aggregated costs.

Aggregation needs to be performed for all the pixels at
all disparity levels. A brute force implementation would be
prohibitive for practical applications. Yang showed that the
aggregated costs for all the pixels can be efficiently com-
puted by traversing the tree structure 7' in two sequential
passes. The aggregation process is illustrated in Figure 1.
In the first pass (Figure 1 (a)), the tree is traced from the
leaf nodes to the root node. For a pixel p, its cost values are
not updated until all its children have been visited:

Ccip)=Calp)+ > S.a)-CiM(q)
qeCh(p)

“4)

/\ /\
/\ /\ /\ /\
@@;;@@;;

(a) 1st pass: from leaf to root (b) 2nd pass: from root to leaf

Figure 1. Two-pass cost aggregation on a tree structure.

where C:;m denotes the the intermediate aggregated costs,
and the set C'h(p) contains the children of pixel p. After
the first pass, the root node (node V7 in Figure 1(a)) re-
ceives the weighted costs from all the other nodes, while
the rest receive the costs from their subtrees. Then in the
second pass (Figure 1(b)), the tree is traversed from top to
bottom. Starting from the root node, the aggregated costs
are passed to the subtrees. For a pixel p, its final aggre-
gated costs C'(p) are determined with its parent Pr(p) as
follows:

CiH(p) =S(Pr(p),p) - C4(Pr(p))
+ (1 8%(Pr(p),p)) - C(p)

The aggregation algorithm runs in very low computation-
al complexity O(n - 1), where n is the number of the image
pixels, and [denotes the number of the disparity levels. Dis-
parity results can then be computed with the aggregated cost
volume C* and a simple Winner-Take-All (WTA) strategy.
A post-processing technique based on the same tree struc-
ture was also proposed in the original work [23].

S

3. Segment-Tree Construction

In this section we first propose a graph-based ST con-
struction algorithm, then we present a simple but effective
method to further enhance the tree structure, and lastly we
discuss the computational complexity of the algorithm.

3.1. Graph-based Tree Construction

Conceptually, ST can be constructed with the reference
image in a three-step process:

1. Image pixels are grouped into a set of segments.
2. A subtree is built for each segment.
3. All the subtrees are linked to produce the final tree.

Step 1 is a typical image segmentation problem, while step
2 and 3 enforce the connectivity inside and around each seg-
ment respectively. Technically, any robust segmentation al-
gorithm can be employed in step 1, such as mean-shift clus-
tering [1] and normalized cuts [17]. We instead focus on

315

Algorithm 1 Graph-based Segment-Tree Construction
Input:
Graph G = (V, E), with n vertices and m edges. Each
edge e € F has an associated weight w..
Output:
Tree T = (V,E'), with E' C E.

1: Sort £/ such that we, < we, < ... < we,,.
2: Initialize E’ «+ 0.
3: for each node v; € V do
4 Initialize a tree T; = (V;, E;): T; < {v;}, By < 0
5: end for
6: for eachedge e; € E' do
7: Check the nodes v, and v, connected by e;.
8: if T}, # T, and e; satisfies Equation (6) then
9: Merge T}, T, into a new tree T, g = (Vp,q, Epq):
Vg < Vp U Vg, Ep g <= Ep U Eq U {e;}
10: Update E': E' < E' U {e;}
11: endif
12: end for
13: Update £: £+ FE — F'
14: for each edge e¢; € E do
15: Check the nodes v, and v, connected by e;.
16: if T, # T then
17: Merge T,,, T, into anew tree T}, ; = (V.q, Ep ¢):
Vpgq — Vo UVy, Ep g < E, UE; U {e;}
18: Update E": E' < E' U {e,;}
19: endif
20: Break the for loop if |E'| = [V| — 1.
21: end for
22: return T = (V, E')

the graph-based segmentation method proposed by Felzen-
szwalb and Huttenlocher [4]. We show that this method can
be extended to handle the three steps in a unified framework.

Our tree construction algorithm is listed in Algorithm 1.
As described in Section 2, the reference image is treated
as a graph G = (V, E), and a subset of edges ' C F is
selected for the segment-tree T = (V, E’). The algorithm
proceeds in three stages:

o Initialization (Line 1-5): The edges in E are sorted
in a non-decreasing order according to the weights de-
fined in Equation (1), and a subtree is created for each
node in V. E’ contains no edges.

Grouping (Line 6-13): The subtrees are merged into
bigger groups with a full scan of the edge set E. Let
v, and v, denote the nodes connected by edge e; €
E. If v, and v, belong to different subtrees, and the
edge weight we, satisfies a criterion proposed in [4],
the subtrees T}, Ty, are merged into a new subtree T, ;.
At the same time, e; is included in E’. The criterion,
which considers the relative dissimilarity of the two

subtrees, is expressed as follows:

k

we, < min(Int(Ty) + T
q

Int(Ty) + =) (6)

k
[
where Int(T),) denotes the maximum edge weight in

T}, and k is a constant parameter. k is set to 1200 in all
our experiments. After visiting each edge in F, each
subtree corresponds to a visually consistent segment.
The edges of these subtrees (already collected in E”)
are then removed from E.

Linking (Line 14-21): Some more edges are selected
from E to link the subtrees. We greedily search for
these edges in another scan of E. If an edge connects
two different subtrees, we merge the subtrees and in-
clude the edge in E’. The search stops when all the
trees are finally merged into one component.

All three steps of the construction process are unified in one
framework. The Grouping stage covers step 1 and 2, and
generates a set of segments and their subtrees simultaneous-
ly. Furthermore, it can be proved that each subtree is a MST
of the corresponding segment [4]. The Linking stage cov-
ers step 3, and selects edges with small weights to connect
neighboring subtrees. In fact, if each segment is treated as
a basic graph node, the Linking stage builds a MST for this
segment graph [2]. Therefore, our method can be seen as
a hierarchical algorithm: it creates a MST for the segment
graph, and also maintains a MST over each segment. The
quality of the segments is controlled by the merging crite-
rion (Equation (6)). Detailed analysis on how Equation (6)
helps to capture perceptually consistent, reasonably large
o pl

regions can be found in [4].
Jepl P2 M‘ u u
‘ m a‘) E E

(a) Reference Image (b) Close -up (c) ST (d) MST

Figure 2. Support weights computed with ST and MST. Higher
contributions are mapped to brighter intensity values. (a) Refer-
ence image and two selected pixels p1 and p2 (b) Close-up of p1’s
and p»>’s neighborhood (c) Support weights computed with ST (d)
Support weights computed with MST. Details are best viewed in
the electronic version. Parameter settings: o = 0.1, k = 1200.

The advantages of the segment-tree are illustrated with
an example image (from the Midd1 data set), as shown in
Figure 2. We select two pixels p1, ps from the reference im-
age (marked as red dots), and calculate the support weight-
s of the neighboring pixels with ST and MST respective-
ly. Pixel p; belongs to the background, but lies closely

316

to a foreground object which shares similar colors with the
background in some local regions. Pixel ps lies on a highly
textured object with fuzzy borders. For both cases, MST
assigns wrong weights to some regions (indicated by green
triangles), while ST successfully captures the object bound-
aries with a proper scene segmentation.

3.2. Enhancement with Color-Depth Segmentation

We further propose to enhance the tree structure with
a second segmentation process, which employs both col-
or and the estimated depth information. Our observation
is that neighboring regions with different color distribu-
tions might still have similar disparities, and such regions
should be merged for robust cost aggregation. Besides, it
has been shown that improved scene segmentation result-
s can be achieved when both cues are exploited as feature
vectors [9, 12].

For joint segmentation, a rough disparity map D is com-
puted with ST and non-local aggregation, as described in
Section 2. Then all the edge weights are updated. For an
edge e connecting pixel s and r, its weight is updated as
follows:

_\H(s) = I(r)]
we—/\T

|D(s) = D(r)]

=N

(N
where A and A p are two constants which normalize I and
D to the range [0, 1], and X € [0, 1] is a parameter for bal-
ancing the relative contributions of color and disparity. A is
set to 0.4 for all our experiments, with a little bias toward the
estimated depth D. By re-running Algorithm 1 on the up-
dated image graph, an enhanced segment-tree is constructed
and serves as the final structure for cost aggregation and dis-
parity estimation. Note that both the segmentation parame-
ter k and the aggregation parameter o are closely related to
the edge weights. For enhanced ST, we employ a new set of
parameters for all the data sets: k1 = 1200, 07 = 0.08.

The benefits of the joint segmentation are illustrated in
Figure 3. For this reference image, segmentation with on-
ly color information produces a number of small fragments
and incorrectly connected regions (Figure 3(b)). By includ-
ing an initial disparity map (Figure 3(d)), more consistent
scene segmentation results can be achieved (Figure 3(d)),
which in turn lead to much improved disparity estimation,
especially around depth borders (Figure 3(e)).

3.3. Computational Complexity

Let n be the number of the image pixels, m be the num-
ber of the edges (m = O(n)), the computational complex-
ity of Algorithm 1 is analyzed stage by stage. The Initial-
ization stage requires a sorting step for the edge set. S-
ince the edge weights are encoded with integers, this step
can be done in O(m) using counting sort. The Group-
ing stage and the Linking stage share similar computation

e L

(d) Initial disparity Results

H

(a) Reference image (b) Color segmentation (c) Joint segmentation (e) Final disparity results

Figure 3. Comparison of color segmentation and color-depth joint segmentation on the Baby2 data set. (a) Reference Image (b) Color
segmentation results (c) Color-depth joint segmentation results (d) Initial disparity results computed with ST (e) Final disparity results

computed with the enhanced ST. Parameter settings for (b) and (d): ¢ = 0.1,k = 1200. Parameter settings for (b) and (d): o1
0.08, k1 = 1200. For (d) and (e), pixels with erroneous disparities are marked in red. Details are best viewed in the electronic version.

costs: they both perform a full scan of the edge set, and Data GF [14] MST [23] ST-1 ST-2
for each edge, find and union operations between differen- Tsukuba 2.284 1.714 1.893 1.845
t trees are required. These operations can be implement- Venus 0.914 0.645 0.763 0.274
ed using a disjoint-set forest with union by rank and path Teddy 8.304 7.145 7.553 6.95¢
compression techniques [2]. Both stages takes O(ma(m)) Cones 2.90, 3.89, 3.645 3.505
amortized running time, where «(m) can be approximat- Aloe 5.02,4 4.464 4.15, 3.654
ed as a small constant for practical applications. To sum Art 9.215 10.54,4 10.51; 8.58;
up, Algorithm 1 runs in amortized time nearly linear to n. Baby]1 3.71, .89, 7.373 4.43,
Compared to the aggregation process (O(n 1)), the ST con- Baby2 4.44, 13.534 11.283 10.059
struction process usually takes a very small part of the total Baby3 4.92, 6.37, 5.365 5.19,
running time, as shown in the experiments. Books 8.27, 10.10, 9.055 8.40,
. Cloth2 2.645 3.614 3.153 2.014

4. Experimental Results Cloth3 182, 1.5, 158, 1.43,
In this section, four cost aggregation methods are eval- Dolls 4.75; 5.704 5.393 4.42,
uated with various stereo data sets: aggregation with ST Flowerpots | 13.19; 19.214 15.733 13.31,
(denoted as ST-1), aggregation with enhanced ST (denoted Lampshadel | 13.874 11.413 11.14, 9.304
as ST-2), aggregation with MST (denoted as MST) [23] and Laundry 14.944 12.92, 12.70, 13.693
aggregation with guided image filter (denoted as GF) [14]. Middl 42.114 30.99 24.92; 31.57;
MST and GF have been reported with leading accuracy and Moebius 8.924 7.92; 8.163 7.864
efficiency on the standard Middlebury benchmark [16], and Woodl 4.13¢ 10.134 9.513 5.815
their source codes have been made available by the paper ’ Avg. Error ‘ 8.233 9.01, 8.104 7.59,
authors. An AD-Gradient measure defined in [14] is used ’ Avg. Rank ‘ 2.53, 3.214 2.633 1.731

as the matching cost term for the four methods. The pa-
rameters for ST-1 and ST-2 are kept constant for all the data
sets: 0 = 0.1,k = 1200, A = 0.4,07 = 0.08, k1 = 1200.
For MST and GF, their parameters follow the settings of the
corresponding papers. Our test platform is a PC equipped
with Core2 Quad 2.83GHz CPU and 2GB memories.

We first quantitatively evaluate the aggregation accuracy
of the four methods. For each method, the disparity results
are computed with the aggregated cost volume and a W-
TA local strategy. And no post-processing technique is em-
ployed. The disparity error rates in non-occlusion regions
(non-occlusion errors) are used to evaluate the aggregation
accuracy. Different from most previous methods which test
the results only with four standard Middlebury data sets (T-
sukuba, Venus, Teddy, Cones) [19, 14, 23], we include 15
more data sets for more reliable evaluation.

The quantitative evaluation results are presented in Ta-

317

Table 1. Quantitative evaluation of four aggregation methods
(GF [14], MST [23], ST-1, ST-2) on 19 Middlebury data sets with
error threshold 1. The percentages of the erroneous pixels in non-
occlusion regions are used to evaluate the aggregation accuracy
of the methods. The subscripts represent the relative rank of the
methods on the data sets. ST-1 and ST-2 show competitive perfor-
mance. ST-1 outperforms MST/GF on 15/9 data sets respectively.
ST-2 outperforms all the other methods with lowest average er-
ror rate and the highest average ranking. ST-2 produces the most
accurate results for 9 data sets.

ble 1, which reveal some important characteristics about the
performance of the four methods. First, MST does perform
better than GF on the standard data sets, but it is less accu-
rate than GF when more data sets are included in the eval-
uation. GF outperforms MST on 11 data sets, with a much

a

(a) GF

(b) MST (c) ST-1 (d) ST-2
Figure 4. The WTA disparity results of Baby1 and Flowerpots data sets. Erroneous pixels in the non-occlusion regions are marked in red.
(a) disparity results computed with GF (b) disparity results computed with MST (c) disparity results computed with ST-1 (d) disparity

results computed with ST-2. Details are best viewed in the electronic version.

Aleorith Avg. | Avg. Tsukuba Venus Teddy Cones
gorithm Rank | Error | nonocc all disc nonocc all disc nonocc all disc nonocc all disc
ST-2 32.0 5.35 1.25 1.68 6.69 0.20 0.30 1.77 6.00 11.9 15.0 2.77 8.82 7.81
ST-1 41.9 5.49 1.47 1.88 6.71 0.24 0.50 2.94 6.08 11.8 14.7 2.76 8.91 7.83
GF [14] 42.7 5.73 1.60 2.14 7.56 0.10 0.40 1.28 6.96 12.6 16.8 2.66 8.89 7.67
MST [23] 47.8 5.68 1.57 1.92 8.38 0.29 0.45 3.05 6.11 11.6 14.6 3.03 8.60 8.51

Table 2. Quantitative evaluation of four methods (GF [14], MST [23], ST-1, ST-2) on the standard Middlebury benchmark [16] with error
threshold 1. The disparity results are refined with the same post-processing technique. The percentages of the erroneous pixels in non-
occ./all/disc. regions are used to evaluate the performance of the method. ST-1 is slightly better than GF, while ST-2 outperforms the other

methods with the best overall accuracy.

lower average error rate and a higher average ranking. Sec-
ond, ST-1 is comparable to GF, with a better error rate but
a slightly lower average ranking. ST-1 is consistently bet-
ter than MST, outperforming MST on 15 data sets. Finally,
ST-2 outperforms the other methods with the lowest error
rate and the highest average ranking. It achieves the most
accurate results for 9 data sets. The quantitative results of
ST-1 and ST-2 show that the non-local aggregation method
benefits greatly from the segmentation information.

For visual comparison, we present the WTA disparity
results (without post-processing) of Babyl and Flowerpots
data sets in Figure 4. Compared to MST, ST-1 and ST-2 im-
prove the results with the segmentation information, espe-
cially in large textureless regions and around depth bound-
aries. The complete disparity results can be found in the
supplementary material.

We further evaluate the final disparity results of the four
methods with the standard Middlebury benchmark [16]. For
these data sets, more detailed evaluation on various regions
can be performed. An efficient tree-based post-processing

318

technique from [23] is applied to the four methods. The
quantitative results are summarized in Table 2. With post-
processing, GF performs better than MST, which is con-
sistent with the report in [23]. ST-1 is slightly better than
GF, while ST-2 outperforms the other methods with the best
overall accuracy. The disparity results of the four method-
s are presented in Figure 5. Currently (April 2013), ST-2
ranks 15¢h on the Middlebury benchmark.

For the standard Middlebury data sets, the average run-
ning time of ST-1, ST-2, MST and GF (re-implemented in
C++) are 0.35 seconds, 0.8 seconds, 0.31 seconds and 3.8
seconds respectively. ST-1 runs as efficiently as MST, and
itis about 11 x faster than GF. ST-2 is about 2x slower than
ST-1, since it requires a rough estimation of the depth map
and a second segmentation process. The average tree con-
struction time for MST and ST are 21 milliseconds and 34
milliseconds respectively, which take less than 10% of the
total running time.

Finally, we test G, MST and ST-2 on two publicly avail-
able, real-world stereo video data sets: a Book Arrival se-

e

T

-

(b) MST

(a) GF

(d) ST-2

(c) ST-1

Figure 5. Final disparity results on the standard Middlebury benchmark [16]. Pixels with erroneous disparities are marked in red. (a)
disparity results computed with GF (b) disparity results computed with MST (c) disparity results computed with ST-1 (d) disparity results
computed with ST-2. Details are best viewed in the electronic version.

quence from FhG-HHI database and an /lkay sequence from
Microsoft i2i database. The snapshots for the two video se-
quences are presented in Figure 6. For both examples, ST-2
performs better than MST and GF with more accurate depth
borders and less noise. See the supplementary material for
better visual comparison of all the examples.

5. Conclusion

In this paper, we have presented a novel cost aggrega-
tion for stereo matching. Our approach is based on a new
tree structure, which successfully integrates the segmenta-
tion information in a recently proposed non-local aggrega-
tion framework [23]. We have also proposed a fast tree con-
struction algorithm and an effective method to update the
tree structure. Preliminary results show that this method is
very promising: it shows leading aggregation accuracy and

319

speed performance for a number of Middlebury data set-
s. In the future, we hope to work on several issues. First,
we would like to test our method with more challenging
outdoor stereo data sets, such as the KITTI Vision Bench-
mark [5]. Second, we would like to test with various seg-
mentation methods, since the performance of the algorithm
is closely related to the segmentation results. Finally, we
would like to extend this method to perform more general
edge-preserving image processing tasks.

Acknowledgement

This work is funded by National Natural Science Foun-
dation of China (Grant No. 61271430, 61172104, 61201402
and 61202324).

(b) GF

(a) Reference Image

(c) MST (d) ST-2

Figure 6. Snapshots of the Book Arrival and Ilkay stereo video sequences. (a) the reference frame (b) disparity results computed by GF
(c) disparity results computed by MST (d) disparity results computed by ST-2. For both examples, ST-2 produces more accurate disparity
results than MST and GF near depth borders.

References

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

D. Comaniciu and P. Meer. Mean shift: a robust approach
toward feature space analysis. PAMI, 24(5):603-619, 2002.
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to algorithms, 3rd Edition. MIT Press, 2009.
L. De-Maeztu, S. Mattoccia, A. Villanueva, and R. Cabeza.
Linear stereo matching. In /CCV, pages 1708-1715, 2011.
P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-
based image segmentation. [JCV, 59(2):167-181, 2004.

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
tonomous driving? the Kkitti vision benchmark suite. In
CVPR, pages 3354-3361, 2012.

K. He, J. Sun, and X. Tang. Guided image filtering. In ECCV,
pages 1-14, 2010.

A. Hosni, M. Bleyer, M. Gelautz, and C. Rhemann. Local
stereo matching using geodesic support weights. In ICIP,
pages 2093-2096, 2009.

A. Klaus, M. Sormann, and K. Karner. Segment-based stere-
o matching using belief propagation and a self-adapting dis-
similarity measure. In /CPR, pages 15-18, 2006.

V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and
C. Rother. Bi-layer segmentation of binocular stereo video.
In CVPR, pages 407-414, 2005.

C. Lei, J. M. Selzer, and Y.-H. Yang. Region-tree based stere-
o using dynamic programming optimization. In CVPR, pages
2378-2385, 2006.

X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, and X. Zhang.
On building an accurate stereo matching system on graphics
hardware. In ICCV Workshops, pages 467-474, 2011.

C. D. Mutto, P. Zanuttigh, and G. M. Cortelazzo. Fusion
of geometry and color information for scene segmentation.
IJSTSP, 6(5):505-521, 2012.

X. Ren. Local grouping for optical flow. In CVPR, pages
1-8, 2008.

[14]

[15]

[16]
[17]

(18]

[19]

(20]

[21]

(22]

(23]

(24]

(25]

320

C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and
M. Gelautz. Fast cost-volume filtering for visual correspon-
dence and beyond. In CVPR, pages 3017-3024, 2011.

D. Scharstein and R. Szeliski. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. IJ/CV,
47(1-3):7-42, 2002.

D. Scharstein and R. Szeliski. Middlebury stereo evaluation,
2012. http://vision.middlebury.edu/stereo/eval/.

J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. PAMI, 22(8):888-905, 2000.

B. M. Smith, L. Zhang, and H. Jin. Stereo matching with
nonparametric smoothness priors in feature space. In CVPR,
pages 485-492, 2009.

F. Tombari, S. Mattoccia, L. Stefano, and E. Addimanda.
Classification and evaluation of cost aggregation methods for
stereo correspondence. In CVPR, pages 1-8, 2008.

F. Tombari, S. Mattoccia, and L. D. Stefano. Segmentation-
based adaptive support for accurate stereo correspondence.
In PSIVT, pages 427-438, 2007.

O. Veksler. Stereo correspondence by dynamic programming
on a tree. In CVPR, pages 384-390, 2005.

Z. Wang and Z. Zheng. A region based stereo matching algo-
rithm using cooperative optimization. In CVPR, pages 1-8,
2008.

Q. Yang. A non-local cost aggregation method for stereo
matching. In CVPR, pages 1402-1409, 2012.

Q. Yang, L. Wang, R. Yang, H. Stewénius, and D. Nistér.
Stereo matching with color-weighted correlation, hierar-
chical belief propagation and occlusion handling. PAMI,
31(3):492-504, 2009.

K. J. Yoon and I. S. Kweon. Adaptive support-weight ap-
proach for correspondence search. PAMI, 28(4):650-656,
2006.

