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Abstract

In this paper, we propose a novel Weakly-Supervised D-
ual Clustering (WSDC) approach for image semantic seg-
mentation with image-level labels, i.e., collaboratively per-
forming image segmentation and tag alignment with those
regions. The proposed approach is motivated from the ob-
servation that superpixels belonging to an object class usu-
ally exist across multiple images and hence can be gath-
ered via the idea of clustering. In WSDC, spectral clus-
tering is adopted to cluster the superpixels obtained from
a set of over-segmented images. At the same time, a lin-
ear transformation between features and labels as a kind of
discriminative clustering is learned to select the discrimi-
native features among different classes. The both clustering
outputs should be consistent as much as possible. Besides,
weakly-supervised constraints from image-level labels are
imposed to restrict the labeling of superpixels. Finally, the
non-convex and non-smooth objective function are efficient-
ly optimized using an iterative CCCP procedure. Exten-
sive experiments conducted on MSRC and LabelMe dataset-
s demonstrate the encouraging performance of our method
in comparison with some state-of-the-arts.

1. Introduction
Image semantic segmentation is to automatically parse

images into some semantic regions. This is a coherent task

between image segmentation and region-level label assign-

ment. That is, the two issues are inseparable and promote

mutually. Intuitively, exact segmentations can provide rep-

resentative features for pixel labeling. In turn, precise label-

ing results will boost image segmentation since the pixels

with the same label can be deemed as a whole object. From

this view, semantic segmentation is a kind of higher-level

image understanding than any individual case. According-

ly, the solution about the problem is really challenging but

valuable to support fine-grained image analysis, retrieval or

other possible applications.

Recently, image semantic segmentation has become a

popular research topic and some efforts contribute to the

problem [3, 26]. Most works focus on fully or partially

supervised setting which means each or partial pixels are

manually labeled for model training [18, 11, 6, 22]. How-

ever, producing pixel-level labels is time-consuming and

may be inaccurate. Fortunately, lots of image sharing web-

sites provide us plentiful user-contributed images with so-

cial tags, in which the raw correspondences between images

and labels are available. Thus, weakly-supervised method-

s [25, 26, 27] with only image-level labels available have

emerged and attracted more attention.

In this paper, we propose a coherent framework under the

weakly-supervised setting to perform holistic image under-

standing, i.e., obtaining meaningful image regions and si-

multaneously assigning image-level labels to those region-

s. The problem is formulated as a Weakly-Supervised D-

ual Clustering (WSDC) task to cluster superpixels and as-

sign a suitable label to each cluster. The first evidence of

our method is that similar superpixels have high probability

to share the same label. To mine this kind of importan-

t contextual relationship, a spectral clustering term is de-

fined over the superpixels of all images to group the vi-

sually similar ones together. The second evidence is that

there is rich discriminative information among different ob-

ject classes, e.g., not all the features are important and dis-

criminative for a certain class. We define a discriminative

clustering term and require its outputs to be consistent with

the outputs of spectral clustering. Besides, we explicitly

impose weakly-supervised constraints during the dual clus-

tering process which can assign labels to clusters. Incor-

porating these three terms, the problem is formulated as a

non-convex and non-smooth objective function, which is

optimized via an iterative CCCP algorithm [1]. Finally, ex-

tensive experiments on the public datasets, i.e., MSRC and

LabelMe, demonstrate the encouraging performance of our

algorithm. Figure 1 illustrates the flowchart of the proposed

method.

Our main contributions are summarized as follows.

• We propose a coherent framework to jointly solve im-

age segmentation and region-level annotation under
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Figure 1. The flowchart of our method.

the weakly-supervised setting. Furthermore, the out-

put of the model can also be used to semantically seg-

ment any test images with or without labels.

• The proposed method incorporates the spectral cluster-

ing and discriminative clustering to cluster superpixel-

s from all images into different clusters, and imposes

image-level labels as a kind of weak supervision to as-

sign labels to clusters.

• An efficient iterative CCCP solution is designed to

solve the non-convex and non-smooth objective func-

tion.

2. Related Work
In this section, we review some works related with ours

in several aspects.

Image Semantic segmentation. From the methodol-

ogy view, the methods can be roughly divided into three

categories: fully-supervised, semi-supervised and weakly-

supervised. In the fully-supervised setting, CRF (Condi-

tional Random Field) [21, 19] models are used typically

and have lots of effective extensions [5]. Its basic formula-

tion is defined over image pixels and various potential func-

tions are proposed to depict the relations of multiple unit-

s. However, the CRF-style models often have complicated

structures and many parameters which are hard to optimize

and inference. To alleviate the dependence of fine-labeled

training data, Socher et.al [22] proposed a semi-supervised

model to find a mapping between visual and textual word-

s by projecting them into a latent meaning space, in which

partial fine-grained labeled images are also needed. Li et.

al [6] proposed a partially-supervised hierarchical genera-

tive model to jointly classify, annotate, and segment var-

ious scene images. While the model estimation required

a handful of clean images in which some object regions

are marked with their corresponding tags. From this view,

the above fully-supervised or semi-supervised solutions are

very limited due to the high cost on the acquisition of fine-

grained image labels. Weakly-supervised semantic segmen-

tation [26, 27] arised to solve this problem. Vezhnevets

et.al [26] proposed a graphical MIM model and introduced

an objectness to distinguish objects from background class-

es. The work [27] is an extension of [26], in that work, the

author built a multiple image model and adopted a param-

eter family of CRF models, to evaluate the quality of each

model in the family, a model selection criterion is proposed.

Label To Region. Label to region means reassign the

labels annotated at the image-level to those segmented im-

age regions rather than the whole image [13, 12, 23]. Liu

et.al proposed a bi-layer sparse coding formulation for re-

constructing an image region using the over-segmented im-

age patches. And they further improved the work to solve

the problem by search on web [15]. Yang et.al [28] pro-

posed the spatial group sparse coding by integrating the s-

patial correlations among training regions. However, all the

works adopt a sequential pipeline to first over-segment im-

ages and then design suitable models to describe the intro-

and inter- correlations among labels and segmented regions,

while the performance of region-level tagging will be cer-

tainly degenerated by imperfect segmentation algorithms.

Image Cosegmentation. Co-segmentation [7, 8, 16]

means to simultaneously segment a common salient fore-

ground object from a set of images which can be seen as

a special case of our work. Kim et.al [8] maximized the

overall temperature of images associated with a heat dif-

fusion process and the position of sources corresponding

to different classes. Joulin [7] proposed a novel energy-

minimization approach to cosegmentation that can handle

multiple classes and images. Most existing works are only

applied to a subgroup of images with same foreground and

not intended to handle irregularly appearing multiple fore-

grounds. Besides, they did not explore any supervision like

easily available image-level labels in their learning process.

3. Weakly-Supervised Dual Clustering

To uncover the correspondence between image superpix-

els and semantic labels, in this work we develop a weakly-

supervised dual clustering model by simultaneously max-
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imizing the appearance consistency of superpixels within

the same class and the separability of multiple classes. The

former problem leads to solving a bottom-up unsupervised

clustering while the latter problem leads to methods de-

signed for top-down discriminative clustering problem.

3.1. Notations

Assume we have a data collection with I images X =
{X1, · · · , Xi, · · · , XI}. Let X = [X1, · · · , Xi, · · · , XI ]
denote the data matrix with Xi = [x1

i , · · · , xni
i ], where

xk
i ∈ Rd is the feature descriptor of the k-th superpixel in

the i-th image and ni is the number of superpixels in the i-th
image. For brevity, we denote X = [x1, · · · , xi, · · · , xN ]

without confusion, where N =
∑I

i=1 ni. Suppose these I
images are sampled from C classes and the label informa-

tion is defined as G = [g1, ..., gi, ...gI ] ∈ {0, 1}C×I , where

gi ∈ {0, 1}C is the label vector of Xi. g
c
i = 1 if Xi belongs

to the c-th class and 0 otherwise. The predicted superpixels-

level label matrix Y ∈ RN×C is defined as

ycn =

{
1, if the n-th superpixel belongs to the c-th class,
0, otherwise.

(1)

3.2. Spectral Clustering

On the one hand, visually similar superpixels have high

probability to share the same label. On the other hand, spec-

tral techniques have been demonstrated to be effective to de-

tect the cluster structure [20], which can integrate the con-

sistency relationships of superpixels among different im-

ages. In light of this, we employ spectral techniques to mine

the aforementioned contextual information.

The interactions among superpixels are represented by

an affinity matrix S ∈ RN×N defined as

Sij =

{
exp(−‖xi−xj‖2

σ2 ), xi ∈ Nk(xj) or xj ∈ Nk(xi),

0, otherwise.

Here Nk(x) is the set of k-nearest superpixels of x. The

k-nearest superpixels are selected only from the superpix-

els from one image or the images sharing common labels,

because the label of a superpixel is identified from labels

of the image it belongs to. σ a free parameter to control

the decay rate. In addition, to encourage spatially smooth

labelings, the spatial neighbor superpixels within the same

image are also connected. Then the spectral clustering term

is defined as minimizing the following equation:

J (Y ) =
1

2

N∑
i,j=1

Sij‖ yi√
Aii

− yj√
Ajj

‖22 = Tr[Y TLY ], (2)

where A is a diagonal matrix with Aii =
∑N

j=1 Sij and L =

A−1/2(A− S)A−1/2 is the normalized Laplacian matrix.

3.3. Discriminative Clustering

Since not all the features are important and discrimina-

tive for a certain class, a discriminative clustering strategy

with l2,1-norm regularization is introduced. Its outputs are

required to be consistent with the outputs of spectral clus-

tering. Besides, it is required to adaptively choose the dis-

criminative features. To this end, we assume that there is

a linear transformation W ∈ Rd×C between features and

the predicted labels. Therefore, the objective function for

discriminative clustering is formulated as

minL(Y,W ) = α
N∑
i=1

loss(yi,W
Txi) + β‖W‖2,1, (3)

where loss is a loss function to be defined, and α and β
are two nonnegative parameters. The l2,1-norm is defined

as ‖W‖2,1 =
∑d

i=1

√∑C
j=1 W

2
ij . The l2,1-norm regular-

ization term is imposed to ensure W sparse in rows. In

that way, the proposed method is able to handle correlat-

ed and noisy features and enable to evaluate the correlation

between labels and features.

For simplify, in this work we adopt the least square loss

function and then have

L(Y,W ) = α‖XTW − Y ‖2F + β‖W‖2,1. (4)

Through learning the linear transformation, i.e., a mapping

function from visual features to labels, the discriminative

feature representations for each class can be obtained.

3.4. Weakly-Supervised Constraint

Given an image and its associated labels, it is reasonable

and natural to restrict the mapping between superpixels and

labels to meet the following constraints.

• One superpixel corresponds to at most one label.

• One label has at least one superpixel mapped to it. It

guarantees that if a label is assigned to an image, there

is at least one superpixel supporting this label.

• Superpixels should correspond to the labels of images

they belong to. This makes sure that there are no image

superpixels supporting an invalid label.
To satisfy the first constraint, we impose an orthogonali-

ty constraint on Y just like [10], i.e., Y TY = IC ∈ RC×C ,

where IC is an identity matrix. Since Y is the cluster in-

dicator, it is reasonable to constraint Y ≥ 0. When both

nonnegative and orthogonal constraints are satisfied, only

one element in each row of Y is greater than zero and all of

the others are zeros. Hence the learned Y is more accurate

and more capable to provide discriminative information.

To satisfy the last two conditions, we explicitly impose a

weak-supervision constraint with a hyper-parameter γ:

Q(Y ) = γ
I∑

i=1

C∑
c=1

| max
xij∈Xi

ycij − gic|. (5)
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where ycij is the value of Y corresponding to the j-th super-

pixel within the i-th image on label c. Since it is difficult to

directly dealing with Eq. 5 and ycij ∈ [0, 1], we have:

| max
j∈Xi

ycij − gci |=
{

1−maxxij∈Xi y
c
ij , if gci =1,

maxxij∈Xi
ycij , else.

(6)

Then the right side of Eq. 5 is rewritten as:

γ[
I∑
i

C∑
c

(1− gci ) max
xij∈Xi

ycij +
I∑
i

C∑
c

gci (1− max
xij∈Xi

ycij)].

(7)

Similar with [14], the first term is further relaxed by∑
i

∑
c(1− gci )

∑
xij∈Xi

ycij . Then Q(Y ) is rewritten as:

Q(Y ) = γ
I∑

i=1

C∑
c=1

[(1− gci )h
T
c Y

T qi + gci (1− max
xij∈Xi

pTijY hc)],

(8)
where hc ∈ RC is an indicator vector whose all elements

except for the c-th element are zeros. qi ∈ RN is a vector

whose all elements excepts for those elements correspond-

ing to the i-th image are zeros. pij ∈ RN is an indicator

vector whose element corresponding to the j-th superpixel

in the i-th image is one and other elements are zeros.

3.5. The Proposed Formulation

Jointly considering the above three aspects, we obtain a

unified objective function J (Y ) + L(Y,W ) +Q(Y ):

min
Y,W

Tr[Y TLY ] + α‖XTW − Y ‖2F + β‖W‖2,1

+ γ

I∑
i=1

C∑
c=1

[(1− gci )h
T
c Y

T qi + gci (1− max
xij∈Xi

pTijY hc)]

s.t. Y TY = IC , Y ≥ 0. (9)

Note that the l2,1-norm regularization is non-smooth and

the max term is non-convex. So the objective function is

not convex over Y and W simultaneously. In Section 4, we

focus on how to solve this optimization problem.

4. Optimization Algorithm
4.1. CCCP Algorithm

The CCCP algorithm solves the optimization problem

using an iterative process. At each round t, given an initial

value, CCCP substitutes the concave part of the objective

function using the 1-st order Taylor expansion. The sub-

optimum solution is achieved by iteratively optimizing the

subproblem until convergence.

Since the last term in Eq. 9 is a sum term, we

consider only the term related with gic. Let l =
[yci1, ..., y

c
ij , ..., y

c
ini

]T , we pick the subgradient of l with

η ∈ Rni and its j-th element is given by:

ηj =

{
1
nα

, if l
(t)
j = max(l(t)),

0, otherwise.
(10)

where nα is the number of superpixels with the largest la-

bel value max l(t). At the (t + 1)-th iteration, we estimate

the current l based on l(t) and the corresponding η(t). As

ηT l(t) =
∑

j ηj l
(t)
j = max l(t)

∑
ηj �=0 ηj = max l(t), for

the function max(l), its 1-st order Taylor expansion is ap-

proximated as (max l)l(t) ≈ max l(t) + ηT (l − l(t)) =
max l(t)+ ηT l−max l(t) = ηT l, which could be also writ-

ten as :

I∑
i=1

C∑
c=1

gci (1− hcBUiY hT
c ) (11)

where B = [B1, ..., Bi, ..., BI ], each Bi =
[bTi1, ..., b

T
ic, ...b

T
iC ] ∈ RC×ni is a matrix correspond-

ing the image i and bic = ηT . Ui ∈ RN×N is a diagonal

block matrix, Ui = diag(u1, .., ui), uk = 0nk×nk
for

k = 1, ...i− 1, i+ 1, ...I and ui = Ini×ni .

4.2. Iterative Optimization

Now, we adopt an iterative optimization process. First,

we relax the orthogonal constraint and the optimization

problem (9) becomes

min
Y,W

L (Y,W ) = Tr(Y TLY ) + α‖XTW − Y ‖2F + β‖W‖2,1

+ γ

I∑
i=1

C∑
c=1

[(1− gci )hcY
T qi + gci (1− hcBUiY hT

c )]

+
μ

2
‖Y TY − IC‖2F

s.t. Y ≥ 0.
(12)

where μ ≥ 0 is a parameter to control the orthogonality con-

straint. In our experiments it is set large enough to ensure

the orthogonality constraint satisfied. We have

∂L (Y,W )

∂W
= 2(αX(XTW − Y ) + βDW ) = 0

⇒W = α(αXXT + βD)−1XY.

(13)

Here D is a diagonal matrix with Dii =
1

2‖wi‖2 . Substitut-

ing W by Eq. 13, Eq. 12 can be rewritten as:

min
Y

L = Tr[Y TMY ] + γ[
I∑
i

C∑
c

(1− gci )hcY
T qi

+
I∑
i

C∑
c

gci (1− hcBUiY hT
c )] +

μ

2
‖Y TY − IC‖2F

s.t. Y ≥ 0. (14)

where M = L + α(IN − αXT (αXXT + βD)−1X) and

IN ∈ RN×N is an identity matrix. To optimize the above

problem, we introduce multiplicative updating rules. Let-

ting φij be the Lagrange multiplier for constraint Yi,j ≥ 0
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Algorithm 1 Weakly-supervised Dual clustering.

Input:
Data matrix X ∈ Rd×N ;

Label matrix G ∈ RC×I ;

Parameters α, β, γ, μ.

1: Construct the k-nearest neighbor graph and calculate L;

2: The iteration step t = 1;

Initialize Y ∈ RN×C ;

Set Dt ∈ Rd×d as an identity matrix.

3: repeat
4: W t = α(αXXT + βDt)−1XY t;

5: M t = L+ α(IN − αXT (αXXT + βDt)−1X);
6: calculate Bt;

7: calculate P t according Eq. 16;

8: Y t+1
ij ← Y t

ij
2(μY t)ij

(2MtY t+P t+2μY t(Y t)TY t)ij

9: update the diagonal matrix Dt+1 as Dt
ii =

1
2‖W t

i ‖2 ;

10: t=t+1;

11: until Convergence criterion satisfied

Output:
label matrix Y ;

multi-class classifier W .

and Φ = [φij ], the lagrange function is L + Tr(ΦY T ).
Setting its derivative with respect to Y to 0, we obtain

2MY + P + 2μY Y TY − 2μY +Φ = 0, (15)

where

P = γ

I∑
i=1

C∑
c=1

[(1− gci )qihc − gciU
T
i BThT

c hc]. (16)

Using the Karush-Kuhn-Tuckre (KKT) condition [9]

φijYij = 0, we obtain the updating rules:

Yij ← Yij
2(μY )ij

(2MY + P + 2μY Y TY )ij
(17)

Then we normalize Y such that (Y TY )ii = 1, i = 1, ..., C.

The optimization algorithm is summarized in Algorithm 1.

5. Experiments
In this section, we conduct extensive experiments to val-

idate the performance of the proposed method and discuss

the experimental analysis.

5.1. Datasets

To verify the effectiveness of our method, we conduc-

t experiments on two public and challenging datasets, i.e.,

MSRC [21] and LabelMe [11].

MSRC: It is a widely used dataset in semantic segmen-

tation task. It contains 591 images from 21 different classes

and there are 3 labels per image on average. The dataset is

split into 276 training images and 256 test images.

LabelMe [11]: It is a more challenging dataset than M-

SRC. It contains 2688 images from 33 classes. There are

2488 training images and 200 test images.

The both datasets are provided with pixel-level

groundtruth. We adopt SLIC algorithm [2] to obtain the

superpixels for each image, and describe each superpix-

el by the typical bag-of-words representation while using

SIFT [17] as the local descriptor. To present fair compar-

isons with other methods, we use training images to learn

our model, and use test images to evaluate the performance.

We evaluate the performance of semantic segmentation

from two views: the labeling performance and segmentation

performance. The labeling performance is usually evaluat-

ed via two kinds of quantitative measures: total accuracy

(T Acc) which measures the percentage of classified pixels,

and average per-class accuracy (Aver Acc) which measures

the percentage of correctly classified pixels for a class then

averaged over all classes. Because the various baselines on

the both datasets adopt different evaluation standards so we

report different measures to accord with the corresponding

baselines. For segmentation evaluation metric we adopt the

intersection-over-union score (IOU score) [7] which is a s-

tandard measure in PASCAL challenges. It is defined as

maxk
1
|I|

∑
i∈I

GTi
⋂

Rk
i

GTi

⋃
Rk

i

, where GTi is the groundtruth and

Rk
i the region associated with the k-th class in the image i.

5.2. Parameter Analysis

Five parameters need to be set in WSDC, k in the k-

nearest graph construction, α and β in Eq. 4, γ in Eq. 5, μ in

Eq. 12. We set k = 50 to construct the k-nearest graph. In

the experiment we find that α is insensitive so we fixed α =
1000 empirically. μ is set to be 108 which is large enough to

guarantee the orthogonality constraint satisfied. Specifical-

ly, we focus on the effects of β and γ, because the two pa-

rameters are crucial to our results. The range of β and γ are

{10, 102, 103, 104, 105} and {102, 103, 104, 105, 106, 107}
respectively. The semantic segmentation performance is

used to tune parameters. The results on both datasets are

shown in Fig. 2. We can observe the following conclusions.

Firstly, when β and γ increase from small to large, the per-

formance varies apparently, which shows that the l2,1-norm

term and weakly-supervision constraint have great impacts

on the performance. Secondly, accuracies reach the peak

points when β = 103, γ = 104 and β = 104, γ = 106 on

both datasets respectively which all lie in the middle range

and the accuracies do not increase monotonically when β
and γ increase. Because extremely large β makes the rows

sparsity overwhelming and extremely small β will fail to

select the discriminative features. Extremely large γ will

lead to neglect the effects of other terms which is also in-

advisable. In the following experiments, we adopt the best
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Figure 2. Parameter tuning results of paramters β and γ for MSRC

and LabelMe.

parameter settings on both datasets.

5.3. Experiments on MSRC dataset

We compare the proposed algorithm with LAS [15],

MTL-RF [25], MIM [26] and RLSIM [4] to evaluate the

semantic segmentation performance. We summarize these

methods from the three sides as in Table 1: Supervision,

ILP (Image Label Prior) and MOF (Multiple of Features).

‘Full’ supervision means each pixel is labeled with a tag

and ‘Weak’ supervision means only image-level labels are

available. ‘With’ ILP represents during the predicting pe-

riod, the images’ labels are available and we only predict

the labels of superpixels from the image’s labels. ‘Without’

ILP indicates the labels of images are absolutely unknown.

MOF = ‘yes’ stands for the method using multiple features.

Table 2 shows the overall semantic segmentation per-

formance. Two facts can be observed. First, our method

achieves the best result which can validate the effectiveness

of our method. Even we use single feature and without ILP,

our method is comparable even better than other method-

s. Secondly, unlike RLSIM 1 gets much higher accuracy

with ILP than RLSIM 2 without ILP, the results of WSD-

C 1 and WSDC 2 are very near and both achieve high ac-

curacies, which approves during the prediction period the

image-level labels have negligible effect on our algorith-

m’s performance. In addition, requiring image-level priors

to boost performance is also a weakness of many semantic

segmentation methods. Figure 3 illustrates the per-class ac-

curacies on MSRC. Our method gets the best results on 10

out of 21 classes and especially works well on some very

hard classes such as bird, cat, dog, etc.

For segmentation performance, we compare our method

with [7, 8, 16]. All the three methods divide the images

into some subgroups which images with a same label are

deemed as a subgroup, and they process the images from a

subgroup at one time. In our experiments, we report the seg-

mentation performance under two settings: one is WSDC 3

which segments images from a subgroup at one time, the

other one we directly report the segmentation performance

of WSDC 2. Segmenting images of the whole dataset with

Table 3. Segmentation performances of our method comparing

with other baselines on MSRC dataset.
class WSDC 2 WSDC 3 [7] [8] [16]

bike 27.6 39.9 43.3 29.9 42.8

bird 48.2 48.3 47.7 29.9 -

car 48.0 52.3 59.7 37.1 52.5

cat 56.0 52.3 31.9 24.4 5.6

chair 72.1 54.3 39.6 28.7 39.4

cow 30.5 43.2 52.7 33.5 26.1

dog 42.8 50.8 41.8 33.0 -

face 25.3 45.8 70.0 33.2 40.8

flower 71.0 84.9 51.9 40.2 -

house 28.2 48.6 51.0 32.3 66.4
plane 15.6 35.9 21.6 25.1 33.4

sheep 56.3 66.3 66.3 60.8 45.7

sign 51.2 59.5 58.9 43.2 -

tree 71.3 58.1 67.0 61.2 55.9

average 46.1 52.9 50.2 36.6 40.9

multiple foregrounds and backgrounds at one time is a big

challenge for most segmentation methods.

Table 3 shows the segmentation performance on MSR-

C dataset. First, under the same setting, WSDC 3 gets

the highest average IOU score comparing with [7, 8, 16].

It can proves that the weakly-supervision information can

promote the segmentation performance. Secondly, WS-

DC 2 obtains comparable results with other methods. It

is worth to noting that, segmenting a subgroup of images

which share the same foreground itself is a strong supervi-

sion. Even WSDC 2 segments the whole image set with

multiple foregrounds and backgrounds our method still out-

perform [8, 16]. The results of WSDC 2 will certainly be

effected by the imbalanced labels and irregular appearing

foregrounds and backgrounds. Thirdly, our method obtains

the best results on 6 out of 14 classes especially on cat and

dog categories which are easily confusing objects classes.

This reflects that the guidance of weakly-supervision can

boost the segmentation performance and especially helpful

to disambiguate the easily confusing categories which is al-

so a second target of our method.

5.4. Experiments on LabelMe dataset

Fully-supervised methods [21, 24, 11] and weakly-

supervised methods [27, 26] are used as compared methods

and the condition settings of them are displayed in Table 4.

Semantic segmentation comparisons on LabelMe are p-

resented in Table 5. Our method outperforms the weakly-

supervised methods substantially and is comparable with

fully-supervised approaches. The segmentation average

IOU score is 20.1%. To our best knowledge, no works have

reported the segmentation performance on LabelMe dataset.
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Table 1. The experimental settings of our method and baselines on MSRC dataset.

method MTL-RF [25] LAS [15] MIM [26] RLSIM 1 [4] RLSIM 2 [4] WSDC 1 WSDC 2

Supervision Weak Weak Weak Weak Weak Weak Weak

ILP Without Without With With Without Without With

MOF No No Yes No No No No

Table 2. Total accuracy (T Acc) of our method comparing with baselines on MSRC dataset.

method MTL-RF [25] LAS [15] MIM [26] RLSIM 1 [4] RLSIM 2 [4] WSDC 1 WSDC 2

T Acc 51 63 67 69 47 69 71

Table 6. Total accuracy (T Acc) of our method under different

data settings on MSRC dataset.

order Learning Predicting ILP T Acc

1 τ1 + τ2 τ1 + τ2 yes 68.5

2 τ1 + τ2 τ2 yes 70.7

3 τ1 τ2 yes 71.0

4 τ1 τ2 no 69.0

5 τ2 τ2 yes 71.4

Table 7. Average per-class accuracy (Aver Acc) of our method

under different data settings on LabelMe dataset.

order Learning Predicting ILP Aver Acc

1 τ1 + τ2 τ1 + τ2 yes 25.0

2 τ1 + τ2 τ2 yes 26.3
3 τ1 τ2 yes 26.0

4 τ1 τ2 no 25.0

5 τ2 τ2 yes 23.2

5.5. Out-of-Sample and Label Prior Discussion

To further investigate the ability of solving the out-of-

sample problem of our method, we use different data set-

tings during the learning and predicting periods. We name

the standard training set and test set as τ1 and τ2 respective-

ly. The results of our method under different data settings

on both datasets are reported in Table 6 and Table 7. Sev-

eral facts can be obtained. First, the highest and lowest ac-

curacies on both datasets under different settings make little

difference which proves our method is relatively stable and

robust. Second, compared setting 2 and 3, whether the test

set τ2 is explored in the model learning process or not, the

obtained accuracies are comparable. Maybe due to the sim-

plicity of MSRC, the out-of-sample setting (setting 3) on the

dataset achieves better performance than the in-sample set-

ting (setting 2). Third, the results with ILP are only a little

higher than without ILP. This demonstrates that our method

is effective to semantically parsing images even no labels

are provided. Finally, the proposed algorithm achieves the

best performance with setting 5 and setting 2 on the MSRC

and LabelMe datasets, respectively. The reason may be that

τ2 of MSRC has more images and fewer class labels than τ2
of LabelMe.

6. Conclusion

In this paper, we propose a Weakly-Supervised Dual

Clustering (WSDC) method to automatically segment the

images into localized semantic regions. We combine spec-

tral clustering and discriminative clustering into a unified

framework to integrate the contextual relationships between

superpixels and discriminative features of multiple classes.

To fully exploit discriminative features, we impose the non-

negative constraint on the label matrix Y and l2,1-norm reg-

ularization on the linear transformation. The image-level

labels are imposed as weakly-supervised constraints to as-

sign each cluster a semantic label. Extensive experiments

on public challenging datasets have shown the effectiveness

of our method.
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