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Abstract

In this paper we present a novel non-rigid optical flow
algorithm for dense image correspondence and non-rigid
registration. The algorithm uses a unique Laplacian Mesh
Energy term to encourage local smoothness whilst simul-
taneously preserving non-rigid deformation. Laplacian de-
formation approaches have become popular in graphics re-
search as they enable mesh deformations to preserve local
surface shape. In this work we propose a novel Laplacian
Mesh Energy formula to ensure such sensible local defor-
mations between image pairs. We express this wholly with-
in the optical flow optimization, and show its application in
a novel coarse-to-fine pyramidal approach. Our algorith-
m achieves the state-of-the-art performance in all trials on
the Garg et al. dataset, and top tier performance on the
Middlebury evaluation.

1. Introduction
Optical flow estimation is an important area of computer

vision research. Current algorithms can broadly be clas-

sified into two categories – variational methods and dis-

crete optimization methods. The former is a continuous

approach [5, 6, 18] to estimate optical flow based on modi-

fications of Horn and Schunck’s framework proposed in [9].

Such approaches can provide high subpixel accuracy but

may be limited by minimization of the non-convex energy

function. The latter [4, 14] is based on combinatorial opti-

mization algorithms such as min-cut and max-flow, which

can recover non-convex energy functions and multiple local

minima but may suffer from discretization artifacts, e.g. the

optical flow field boundary is aligned with the coordinate

axes. One desirable property of optical flow techniques is to

preserve local image detail and also handle non-rigid image

deformations. Under such deformations, the preservation of

local detail is particularly important. Garg et al. [7] impose
this by maintaining correlations between 2D trajectories of

different points on a non-rigid surface using a variational

framework. Pizarro et al. [12] propose a feature matching

approach based on local surface smoothness, and also show

particular application to non-rigidly deforming objects.

In computer graphics research, a common requirement

is that surface meshes are globally editable, but capable of

maintaining local details under mesh deformations. In or-

der to provide a flexible representation to allow computation

and preservation of such details, Laplacian mesh structures

have previously been described [13, 11]. Such schemes im-

pose constraints in differential Laplacian coordinates calcu-

lated upon groups of triangles associated with each vertex.

Meshes have previously been used in optical flow estima-

tion [8]. However, this is to reduce processing complexity

as opposed to specifically imposing smoothness.

In this paper we present an variational optical flow mod-

el which introduces a novel discrete energy based on Lapla-
cian Mesh Deformation. Such deformation approaches are
widely applied in graphics research, particularly for pre-

serving local details [13, 11]. In our work we propose that

the same concept, i.e. that of an underlying mesh which pe-

nalizes local movements and preserves smooth global ones,

can be of great use for optical flow and tracking. Constraints

on the local deformations expressed in Laplacian coordi-

nates encourage local regularity of the mesh whilst allow-

ing global non-rigidity. Our algorithm applies a mesh to

an image with a resolution up to one vertex per pixel. The

Laplacian Mesh Energy is described as an additional term
for the energy function, and can be applied in a straight-

forward manner using our proposed minimization strategy.

In addition, a novel coarse-to-fine approach is described for

overcoming the loss of small optical flow details during its

propagation between adjacent pyramid levels.

We evaluate our approach on the widely recognizedMid-
dlebury dataset [2] as well as the publicly available non-
rigid data set proposed by Garg et al. [7]. Our approach
provides excellent performance ranked in the top tier of the

Middlebury evaluation1, and either outperforms or shows
comparable accuracy against the leading publicly available

non-rigid approaches when evaluated on the non-rigid data

set of Garg et al.
1http://vision.middlebury.edu/flow/eval/results/results-e1.php
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2. Hybrid Energy

In this section, we introduce our novel hybrid energy for-

mula in which our algorithm considers a pair of consecutive

frames in an image sequence. The current frame is denoted

by I1(X) and its successor by I2(X), where X = (x, y)T

is a pixel location in the image domain Ω. We define
the optical flow displacement between I1(X) and I2(X) as
w = (u, v)T . In the proposed optical flow estimation ap-
proach, the core energy function can be expressed by the

following:

E(w) = EData(w) + λELap(w) + ξESmooth(w) (1)

where EData(w) denotes a data term that expresses both
Intensity Constancy and Gradient Constancy assumptions
on pixel values between I1(X) and I2(X). Similar to [5, 9],
a smoothness term is introduced into the formula, which

controls global flow smoothness. The term ELap repre-

sents our core contribution, i.e. the Laplacian Mesh Energy
ELap(w). All the three terms are detailed in the following
sections.

2.1. Continuous Intensity Energy

Following the standard optical flow assumption regard-

ing Intensity Constancy, we assume that the gray value of
a pixel is not varied by its displacement through the entire

image sequence. In addition, we also make aGradient Con-
stancy assumption which is engaged to provide additional
stability in case the first assumption (Intensity Constancy)
is violated by changes in illumination. The data term of en-

ergy function encoding these assumptions is therefore for-

mulated as:

EData(w) =

∫
Ω

Ψ(‖I2(X+ w) − I1(X)‖2

+ θ · ‖∇I2(X+ w) −∇I1(X)‖2)dX (2)

For robustness regarding occlusions and boundaries, we

apply the Lorentzian as the penalty function Ψ(s) =
log(1 + s2/2ε2) with ε = 0.001 to solve this formula. The
term ∇ = (∂xx, ∂yy)

T is the spatial gradient and θ ∈ [0, 1]
denotes a weight that can be manually assigned with differ-

ent values. Furthermore, the smoothness term of our algo-

rithm is a dense pixel based regularizer that penalizes global

variation. The objective is to produce a globally smooth op-

tical flow field:

ESmooth(w) =

∫
Ω

Ψ(‖∇u‖2 + ‖∇v‖2)dX (3)

where the robustness function Ψ(s2) is used again.

2.2. Discrete Laplacian Mesh Energy

In order to improve optical flow estimation against the

local complexity of non-rigid motion, a novel Laplacian
Mesh Energy concept is proposed in this section. The
aim of this energy is to account for non-rigid motion in

scene deformation. This concept is inspired by Laplacian
Mesh Deformation research in graphics, which aims to p-
reserve local mesh smoothness under non-linear transfor-

mation [13]. The usage of this concept in computer vision

research for optical flow estimation is introduced for the

first time here. Although non-rigid motion is highly non-

linear, the movement of pixels in such deformations still

often exhibits strong correlations in local regions. To rep-

resent this, we propose a quantitative Mesh Deformation
Weight based on Laplacian coordinates. The scheme was
originally presented by Meyer et al. [11] for mesh defor-
mation. Let M = (V,E,F) be a triangular mesh where
V = {v1, v2, . . . , vn} describes geometric positions of the
vertices in absolute cartesian coordinates, E denotes the set
of edges, and F the set of faces. Considering a small mesh
region, each vertex vi has a neighborhood ring denoted by
Ni = {j | (i, j) ∈ E} which is the set of adjacent vertices
of vertex vi. The degree di of vi is the number of elements
in Ni. Here the mesh geometric motion is described by d-

ifferentials instead of absolute Cartesian coordinates. We

define the differentials set as L = {δ1, δ2, . . . δn} where
the coordinate is presented as the difference between the

vertex vi and the geometric average of its neighbors, i.e.
δi = L(vi). We have

L(vi) = vi − 1

di

∑
j∈Ni

vj . (4)

These uniform weights are found sufficient for the 2D

mesh in our evaluation. Next, we have the mesh energy in

Laplacian coordinates as follows:

ELap(w) =

n∑
i=1

‖L(vi + wi) − L(vi)‖2 (5)

Where wi denotes the motion of the vertices vi. This
term of the energy function penalizes the shape variance af-

ter vertex motion. The rationale of using this energy is that

the Laplacian coordinates L encode relative information be-
tween vertices and can therefore be used to preserve shape

under mesh deformation.

3. Optical Flow Framework
Table 1 outlines our overall optical flow framework. In

order to utilize the Laplacian Mesh Energy it is required
to create a mesh over the initial image I1. Ideally, we de-
sire that the triangles of this mesh do not overlap bound-

aries in the scene as this may lead to distortions given par-

allax motion between objects at different depths. We there-
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Input: two images I1 and I2
1. Edge-Aware MeshM1 Initialization (Sec. 3.1)

2. n-levels Gaussian pyramids are constructed for both the
images and the mesh. Set the initial pyramid level k = 0
and initial flow field wk = (0, 0)T

3. The flow field is propagated to level k + 1
4. Detail-Aware Flow Field Enhancement (Sec. 3.2)
4.1 Estimate the tracked meshMk

2 for I
k
2 .

4.2 Flow field Enhancement usingMk
1 andMk

2 .

5. Hybrid Energy Optimization (Sec. 3.3)
5.1 Generate continuous Laplacian Mesh Energy
using meshesMk

1 andMk
2 .

5.2 Nested fixed point iterations.
6. If k �= n− 1 then k = k + 1 and go to step 3
Output: optical flow field
Table 1. The overall framework of our optical flow model.

fore first present an Edge-Aware Mesh Initialization scheme
(Sec 3.1) as part of our framework.

We also present a novel coarse-to-fine pyramidal frame-

work [5] to utilize our Laplacian Mesh Energy in a varia-
tional model. In our framework we overcome a previous

limitation of such pyramidal approaches, i.e. the loss of s-

mall flow details when propagating flow field from coarse to

finer pyramidal levels. In such cases, small image details at

a finer level of the pyramid are lost due to flow computation

being initially performed on a coarsely sampled version of

the image. As such, the flow for these detailed regions is

not remained and propagated to the finer level.

Finally, an optimization scheme (Sec. 3.3) is proposed

to minimize the discrete Laplacian Mesh Energy on every
level of the pyramidal framework. In the following sub-

sections each step is described in detail.

3.1. Edge-Aware Mesh Initialization

The proposed algorithm is input by an image pair and a

mesh with triangle edges that follow object boundaries in

one of the images as closely as possible. We will discuss

the implications of mesh design and its affect on our algo-

rithms behavior in the evaluation. The underlying mesh is

an essential part of Laplacian Mesh Energy computation.
Using a uniform mesh with equal distances between ver-

tices along its horizontal and vertical adjacent neighbors is

one strategy that can be employed in our approach. How-

ever, in such a case the grid elements within the mesh will

typically overlap the boundaries of objects scene, which re-

sults in unexpected errors in our energy minimization. This

is because triangles within the mesh will be skewed given

parallax motion between different objects at different image

depths, resulting in a noisier flow field in these areas.

In order to address this issue, we propose an edge-aware

meshing scheme which operates as follows: First, we cre-

ate two edge maps on the input image using SLIC Super-

pixels [1] and Sobel Kernel edge detection respectively. We
then apply a binary AND Operation on the two edge map-
s in order to deduce uncommon edges, and remove noise

using a Gaussian filter. The rationale behind this approach

is that the Sobel kernel returns a large number of candidate
edges, but also multiple false-positive noise like edges re-

lating to image detail as opposed to object boundaries. The

SLIC Superpixels on the other hand is less likely to create
boundaries relating to image detail. Performing an AND

operation eliminates a great deal of the noisy edge bound-

aries and retains a large proportion of reliable ones. Finally,

we construct a triangular meshM1 using Delaunay trian-
gulation on the remaining edge points.

Given the input meshM1, an n-level image pyramid is
built (Table 1). The input images I1, I2 along with the mesh
M1 are resized with the same sampling rate on each level,

denoted by Ik1 , I
k
2 andMk

1 , where k = 1, 2, . . . , n. We then
performDetail-Aware Flow Field Enhancement andHybrid
Energy Optimization on each level.

3.2. Detail-Aware Flow Field Enhancement

As mentioned in the beginning of Sec. 3, the aim of this

step is to preserve small flow details which may be lost

when propagated from the adjacent coarser level. First, we

estimate a meshMk
2 by propagating the meshMk

1 from Ik1
onto Ik2 . Next, we build a labelling model using vertex dis-
placement vectors and solve it to retain small flow details.

The whole process is detailed in the next two sections.

3.2.1 Frame-Frame Tracked MeshM2 Estimation

Iterative Refinement Algorithm

1: V,Vc,V′c
2: Vc → V′c
3: Vc ⊂ V
4: while not Vc = V
5: V′ := min

V′
{‖LV′ − LV‖2 +

∑m
i=1 ‖v′c·i − vc·i‖2}

6: for all v ∈ V, v′ ∈ V′ do
7: if Err(v → v′) < η then
8: Vc := Vc ∪ {v},V′c := V′c ∪ {v′}
9: end if
10: end for
11: end while

Table 2. The iterative refinement algorithm for tracked meshMk
2

estimation.

In order to propagate the mesh fromMk
1 toMk

2 at pyra-

mid level k, we employ an Anchor Patch based technique
and Laplacian Mesh Deformation, which utilizes Ik1 , I

k
2 and

Mk
1 . We follow the Anchor Patch process outlined in [10]

to achieve this mesh propagation: SIFT features are initially

detected and matched between images Ik1 and I
k
2 – given a

corresponding set of features between each image. We then
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go through every vertex v ofMk
1 and search for the three

nearest SIFT features f∗ within a 9× 9 search window cen-
tered on the vertex v in Ik1 . The corresponding features in
Ik2 and Barycentric Coordinate Mappings – defined by the
triangle formed by the 3 SIFT features – are used to calcu-

late a corresponding vertex v′ forMk
2 in I

k
2 .

Next, we apply an error function Err(v → v′) from
[3, 10] on all the newly created vertex correspondences be-

tween Ik1 and Ik2 . This is carried out in order to select the
most reliable vertex matches between the two images. The

error function provides an Error Score which is decided
by the Euclidean distance between the average pixel val-

ue of two small regions (3 × 3) centered on v and v′ re-
spectively. The vertex matches with low errors are selected

as sets of control points – defined here as Vc,V′c – where
{Vc,V′c|∀vc·i ∈ Vc, ∀v′c·j ∈ V′c, Err(vc·i → v′c·j) < η}
where η is our predefined error threshold. This method of
creating anchor point correspondences between meshes has

previously been utlized to obtain reliable vertex matches

between images in several recent state-of-the-art tracking

frameworks [3, 10].

Finally, in order to estimate the positions of the remain-

ing vertices in Mk
2 , Laplacian Mesh Deformation [13] is

applied usingMk
1 and the corresponding control points Vc

andV′c. We minimize the following function to achieve this:

min
V′

{‖LV′ − LV‖2 +
m∑
i=1

‖v′c·i − vc·i‖2} (6)

where L is a Laplacian matrix computed using Eq. (4), V
represents the vertex set ofMk

1 , and the number of control

points is captured bym. After minimizing [13] Eq. (6), we
obtain our initial meshMk

2 for I
k
2 , and denote this set of

vertices as V′. However, this set of vertices may contain
outliers due to the limited number of control points. We

therefore propose an iterative refinement algorithm to re-

move these (Table 2). In each iteration of our algorithm,

we apply our evaluation function (Err) on the matches be-
tween V and V′ to obtain low-scoring matches by which the
control point sets Vc and V′c are updated. These are prop-
agated onto the next iteration until all the matches between

V and V′ reach the Error Score threshold (under η). In our
implementation, if the Vc = V does not converge within 15
iterations, a thin-plate spline is employed on the point set

V− Vc to estimate positions of the points with higher than
acceptable errors.

3.2.2 Inter-Level Flow Field Enhancement

In this section we consider the small flow details encoded

by meshMk
2 from the previous section. In existing pyrami-

dal approaches, small motion displacements on a finer level

can be lost when the flow field is propagated from a coars-

er level. To address this issue we utilize a labeling model

......

...

(a) (b) (c)

Figure 1. Small flow Details Preservation. (a) Top: The mesh
and vertex displacement vectors (red arrows). Bottom: The flow
field w propagated from the adjacent coarser level. (b) The select-
ed flow candidates and their color coding. (c) Top: The labeling
model optimized using QPBO. Bottom: The visual comparison of
closeups between w (red) and the optimized flow field ŵ (blue).

which identifies discrepancies between the propagated flow

field w and a displacement vector w′. The process is out-
lined in Figure 1. Given our meshMk

2 for image I
k
2 , the

displacement vector w′ = {w′1, w′2, . . . , w′n} – where n is
number of the vertices – is computed by using the vertices

differences betweenMk
1 andMk

2 .

For each w′i, we consider the flow vector wi in w where
w′i and wi share the same pixel position. We compute the

Euclidean distance betweenw′i andwi, and for extra robust-

ness, we also compute the Euclidean distances between w′i
and the 8 adjacent neighbors of wi. The displacement w

′
i is

regarded as a potential flow candidate only if all 9 Euclidean

distances are larger than 1 pixel. This process is repeated on

all n displacement vectors inw to give a new flow candidate
list {w′g·1, w′g·2, . . . , w′g·m} where m � n. The number of
new flow candidates is usually between 20 and 25 in our

experiments. These new flow candidates are typically dis-

tributed widely over the whole image including generally

featureless regions (as opposed to those detected using e.g.

SIFT [17]). Given the dense mesh matches (betweenMk
1

andMk
2) used to calculate w′, this provides additional ro-

bustness to small feature displacement changes.

Having obtained the new flow candidate list, we then as-

sume that each pixel hasm + 1 choices to be selected from
either the new flow candidates or the original flow field w
– which can be treated as a labeling problem. Quadrat-
ic Pseudo-Boolean Optimization (QPBO) is employed to
solve this problem in our implementation, and has previous-

ly been used in other state-of-the-art optical flow methods

for similar labeling solutions [17]. However, in our work

the correspondences provided by w′ are dense, and thus can
potentially retain smaller flow details that would otherwise

be lost in pyramidal flow propagation, or feature matching

that might be less robust and sparser given non-rigidly de-

forming scenes.

The process described above (Figure 1) outputs a flow

field ŵk and ŵk = (ûk, v̂k)T , which is then used as the
initial flow field for computingwk+1 on level k+1 as below.
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3.3. Hybrid Energy Optimization

Due to the highly non-linear nature of the energy func-

tion E(w), its optimization is an essential part of our al-
gorithm. In this section, we introduce a numerical scheme

to minimize this hybrid energy w.r.t. the discrete Laplacian

mesh energy and the continuous intensity energy. We ini-

tially define mathematical abbreviations (similar to [5]) for

our intensity energy minimization as follows:

Ix = ∂xI2(X+ w) Iyy = ∂yyI2(X+ w)
Iy = ∂yI2(X+ w) Ixx = ∂xxI2(X+ w)
Iz = I2(X+ w) − I1(X) Ixz = ∂xI2(X+ w) − ∂xI1(X)
Ixy = ∂xyI2(X+ w) Iyz = ∂yI2(X+ w) − ∂yI1(X)

In order to minimize the mesh energy in our variational

model, we define its uniform weights in polar coordinates.

We have L = (Lr,Lθ)T where Lr denotes the magnitude
component and Lθ denotes the angle component, which re-
sults in two terms for the Laplacian mesh energy as follows:

ELap(w) = λ

∫
Ω

Ψ(‖Lr·2(X+ w) − Lr·1(X)‖2)dX

+λ

∫
Ω

Ψ(‖Lθ·2(X+ w) − Lθ·1(X)‖2)dX (7)

where both the termsL∗·1 andL∗·2 are computed respec-
tively based onMk

1 andMk
2 (Sec. 3.2.1) on level k. Note

that the terms are applied to each pixel of the input image.

We go through each triangle and employ bicubic interpola-

tion using the L∗ values on the three vertices of the triangle.
This process results in a continuous Laplacian Mesh Ener-
gy presented in Eq. (7). The term λ is a weight capturing
the influence of our Laplacian mesh, and is set to 0.6 in

our experiments. The behavior of our algorithm by varying

λ values is also considered in the evaluation section. The
mathematical abbreviations for the Laplacian Mesh Energy
are as follows:

L∗·x = ∂xL∗(X+ w)
L∗·y = ∂yL∗(X+ w)
L∗·z = L∗·2(X+ w) − L∗·1(X)

Our energy function E(w) is highly nonlinear on the
terms of L∗, w and Ψ. We employ two nested Fixed Point
Iterations on w after Euler-Lagrange equations are applied.
Fix w for Ik+1

∗ and Lk+1
∗ . In the first fixed point itera-

tion, the algorithm goes through every level of the pyramid

starting from the top/coarsest level. We assume that w con-
verges at the k-th iteration (the k-th level of the pyramid)
giving us wk = (uk, vk)T , k = 0, 1, . . . with an initializa-
tion w0 = (0, 0)T at the coarsest level of the pyramid. The
flow field wk is then propagated to the next finer level for
computing the initial flow field ŵk (sec. 3.2). However, the
new system reached fixed wk is still nonlinear and difficult
to solve as it contains terms Ik+1

∗ , Lk+1
∗ and the nonlinear

function Ψ′.

Fix dw for Ψ′. First order Taylor expansion is employed
on the terms Ik+1

z , Ik+1
xz , I

k+1
yz , Lk+1

∗·x , Lk+1
∗·y and Lk+1

∗·z in
order to remove the nonlinearity of Ik+1

∗ and Lk+1
∗ . We

have Ik+1
z ≈ Ikz + Ikxdu

k + Iky dv
k and Lk+1

∗·z ≈ Lk∗·z +

Lk∗·xduk+Lk∗·ydvk, where we assume that the flow field on
level k + 1 can be estimated by the flow field and the incre-

mental from previous level k, denoted aswk+1 ≈ ŵk+dwk.
Two unknown increments duk, dvk and two known flow
fields ûk ,v̂k can be obtained from the previous iteration.
Note that this assumption also applies to the terms Lk+1

∗·z .
For removing nonlinearity in Ψ′ with unknown increments
duk and dvk, we apply a nested second fixed point iteration.
Here, in every iteration step we assume that both duk,j and
dvk,j converge within j iteration steps with initialization of
duk,0 = 0 and dvk,0 = 0. Therefore, the final linear system
is obtained in duk,j+1 and dvk,j+1 as follows:

(Ψ′)k,jData · (Ikx (Ikz + Ikxdu
k,j+1 + Iky dv

k,j+1)

+θ [Ikxx(I
k
xz + Ikxxdu

k,j+1 + Ikxydv
k,j+1)

+Ikxy(I
k
yz + Ikxydu

k,j+1 + Ikyydv
k,j+1)])

+λ (Ψ′)k,jLap·r · Lkr·x(Lkr·z + Lkr·xduk,j+1 + Lkr·ydvk,j+1)

+λ (Ψ′)k,j+1
Lap·θ · Lkθ·x(Lkθ·z + Lkθ·xduk,j+1 + Lkθ·ydvk,j+1)

−ξ Div(Ψ′)k,jSmooth · ∇(uk + duk,j+1) = 0 (8)

(Ψ′)k,jData · (Iky (Ikz + Ikxdu
k,j+1 + Iky dv

k,j+1)

+θ [Ikyy(I
k
yz + Ikxydu

k,j+1 + Ikyydv
k,j+1)

+Ikxy(I
k
xz + Ikxxdu

k,j+1 + Ikxydv
k,j+1)])

+λ(Ψ′)k,jLap·r · Lkr·y(Lkr·z + Lkr·xduk,j+1 + Lkr·ydvk,j+1)

+λ(Ψ′)k,jLap·θ · Lkθ·y(Lkθ·z + Lkθ·xduk,j+1 + Lkθ·ydvk,j+1)

−ξ Div(Ψ′)k,jSmooth · ∇(vk + dvk,j+1) = 0 (9)

Where (Ψ′)kData and (Ψ′)kLap·∗ provides both robust-
ness against occlusion and sharpness on object boundaries,

(Ψ′)kSmooth is defined as diffusivity in the global smooth-

ness terms [5] as below:

(Ψ′)kData = Ψ′((Ikz + Ikxdu
k + Iky dv

k)2

+θ[(Ikxz + Ikxxdu
k + Ikxydv

k)2 + (Ikyz + Ikxydu
k + Ikyydv

k)2])

(Ψ′)kLap·∗ = Ψ′(Lk∗·z + Lk∗·xduk + Lk∗·ydvk)2

(Ψ′)kSmooth = Ψ′(
∥∥∇(uk + duk)

∥∥2 +
∥∥∇(vk + dvk)

∥∥2)
In our implementation, an n-level image pyramid is con-

structed by using a down sampling factor of 0.75 and Bicu-
bic Interpolation on each pyramid level. Furthermore, the
first fixed point iterations are set based on both the down

sampling factor and the image size while the nested second

fixed point iterations are fixed to 5 steps. Finally, the large

linear systems (Eq. (8) and (9)) are solved using Conjugate
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Figure 2. Snapshot of Average Endpoint Error (AEE) in Middlebury Evaluation (Captured on October 2nd, 2012). Our proposed method
is LME with automatic Edge-Aware mesh initialization.

(a) Ground Truth (b) Closeup (c) EA. Mesh (d) Manual Mesh

Figure 3. Visual comparison of our method on the Army and
Mequon sequences ofMiddlebury dataset using different mesh ini-
tialization schemes, i.e. (c) Automatic Edge-Aware Meshing and

(d) Manual Segmented Mesh.

Gradients with 45 iterations. The other parameter setting
can be found in the evaluation section (Sec. 4).

4. Evaluation
In this section we evaluate the performance of our ap-

proach and compare its performance with existing state-of-

the-art techniques. We use quantitative metrics to demon-

strate the performance of our approach against the highest

performing existing methods on the Middlebury dataset [2]
and a synthetic benchmark dataset with ground truth intro-

duced by Garg et al. [7]. As our method is designed to be
particularly suitable for non-rigid scenarios, we therefore

compare our approach against a number of the best per-

forming (state-of-the-art) publicly available non-rigid opti-

cal flow algorithms, details are as below: The first non-rigid

algorithm we have used for comparison is Garg et al.’s s-
patiotemporal optical flow algorithm. Their approach ex-

ploits correlations between 2D trajectories of neighboring

pixels to improve optical flow estimation. In addition, We

compare our results with the Improved TV-L1 (ITV-L1) al-
gorithm [15] and Brox et al. [5]. The former has a simi-
lar optimization framework and preprocessing steps to that

of Garg et al. and ranks in the reasonable midfield of the
Middlebury evaluation based on overall average. The latter
is proposed by Brox et al. to overcome the issues caused
by large pixel displacements with the help of integrating

the image pyramid and warping technique in a variational

model. Finally, We compare our method with the state-of-

the-art keypoint-based non-rigid image registration method

proposed by Pizarro et al. [12].
In summary, our results show that the Laplacian Mesh

Energy greatly improves algorithm performance while our
algorithm outperforms all publicly available non-rigid opti-

cal flow techniques. It also performs in the top tier of al-

l the Middlebury criteria, and strongly overall - especially
compared to the aforementioned specialist non-rigid optical

flow techniques.

4.1. Middlebury Dataset

We first performed an evaluation on the Middlebury
benchmark dataset using default parameter setting as fol-

lows: θ = 0.6, λ = 0.6 and ξ = 0.75 are set for the ener-
gy function E(w) while η = 0.25 is applied in vector dis-
placement candidate selection (Sec. 3.2). These parameter

setting remains consistent in all experiments in our paper.

As shown in Figure 2, Our implementations is denoted

by LME with the automatic Edge-Aware Mesh Initialization
(Sec. 3.1). We observe that LME ranks among the top three
algorithms and significantly outperforms most methods in

the Average Endpoint Error (AEE) test with an overall aver-
age rank 9.7. Moreover, our implementation provides sharp

flow estimation on the boundaries against the relative mo-

tion on sequence Mequon which contains multiple objects
and a non-rigid deformable background (Figure 3). How-

ever,Middlebury results against other non-rigid approaches
(Garg et al.’s method and Pizarro et al.’s) are not available.
We therefore compare our approach against theirs using a

specific non-rigid ground truth dataset (Sec. 4.2). Our ap-

proach also ranks in the top three overall for the Average
Normalized Interpolation Error (ANIE) test which repre-
sents the quality of local image detail during the warping.

Particularly strong performance is observed on Middlebury
sequences captured using the high-speed camera – Back-
yard, Basketball, Dumptruck and Evergreen. Moreover,
Figure 3 shows the visual comparison of our method on

Army and Mequon by varying the meshing strategies w.r.t.
the automatic Edge-Aware Mesh and the manually segment-
ed mesh. The latter provides the sharper motion boundary.

4.2. MOCAP Benchmark Dataset

In this section we compare against a recently popular

optical flow dataset specifically designed for non-rigid e-

valuation. In order to quantitatively evaluate their optical

flow algorithm, Garg et al. proposed benchmark sequences
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Average Endpoint Error R 1.0 Endpoint Error A 75 Endpoint Error
Methods Original Occlusion Guass.N S&P.N Original Occlusion Guass.N S&P.N Original Occlusion Guass.N S&P.N

Ours, LME 0.39 0.65 1.20 0.87 0.04 0.06 0.24 0.19 0.37 0.39 0.97 0.83
Garg et al., PCA [7] 0.58 0.70 1.62 1.20 0.12 0.16 0.61 0.41 0.69 0.77 1.98 1.42
Garg et al., DCT [7] 0.57 0.73 1.85 1.52 0.11 0.14 0.68 0.52 0.63 0.69 2.19 1.81
Pizarro et al. [12] 0.76 0.78 0.95 0.95 0.2 0.21 0.24 0.24 0.88 0.91 0.97 0.97
ITV-L1 [15] 0.56 0.69 1.81 1.37 0.09 0.11 0.68 0.45 0.50 0.53 2.23 1.58
Brox et al. [5] 12.62 13.55 13.73 13.32 0.28 0.32 0.72 0.69 1.83 9.38 4.99 4.52

(a) Endpoint error comparison of different methods on Garg et al. benchmark dataset [7].

Brox et al. ITV-L1 Garg et al. DCT Garg et al. PCA

R

Inverse Warps

Pizarro et al.

30I

LME
0

5

10

(b) Visual comparison on the alignment from the frame 30 to the reference frame in the sequence S&P.Noise.

Figure 4. Quantitative analysis (Endpoint Error) and the visual comparison on the Garg et al. benchmark dataset [7]. (a): Average Endpoint
Error and two robustness tests (R 1.0 and A75 [2]) are applied on results by varying methods. (b): Top-left Boxes: those include the chosen
frame, the reference frame and their closed up. The Rest: the first row is the alignment results; the second row is the closeups; the third
row is the error map against the ground truth flow field.

accompanying with ground truth [7]. A continuous dense

3D surface is obtained by interpolating sparse motion cap-

ture (MOCAP) data from real deformations of a waving

flag [16]. They then project the dense textured 3D surface

synthetically onto the image plane resulting in a sequence of

60 images (500 × 500 pixel dimension) along with optical
flow ground truth motion. Our evaluation is performed on

both the original captured sequence and three other degrad-

ed sequences from the Garg et al. benchmark dataset, which
includes: Synthetic occlusions – Two black dots with ra-
dius of 20 pixels orbit the deformable object. Gaussian
noise – Added with standard deviation of 0.2 relative to the
range of image gray value intensities. Salt & pepper noise
– Added with a density of 10%.

When comparing against the other methods, we use the

same parameters cited by other authors. That is, for both

Garg et al. and ITV-L1, the weights α and β are set to 30
and 2 respectively; and we also use 5 warp iterations and 20

alternation iterations [15]. According to parameter setting

in [7], Principal Components Analysis (PCA) and Discrete
Cosine Transform (DCT) are used for the 2D trajectory mo-
tion basis of Garg et al.. In addition, Brox et al. [5] is
applied with their default parameter setting.

Figure 4(a) shows AEE (in pixel) on the four benchmark
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Figure 5. AEE measures on Garg et al. [7] benchmark sequences
by varying the weighting λ (Edge-Aware (+EA) v.s. Uniform (+U-
ni) meshes). Right: Visual comparison of LME + Edge-Aware
mesh on alignment from frame 30 to a reference in the sequence

S&P.Noise by varying the weight λ.

sequences of Garg et al.. LME displays the best AEE mea-
surements on the Original, Occlusion and S&P.Noise se-
quences and outperforms Garg et al. (both PCA and D-
CT basis), ITV-L1 and Brox et al. algorithms on all four
sequences. Pizarro et al. has comparable performance (s-
lightly outperforming us by 0.25 RMS) to our method on

the Guass.Noise sequence.
In addition, we compute two robustness comparisons (R

243924392441



1.0 and A 75) using identical approaches to those in [2].

LME yields the best performance in both R 1.0 and A 75
tests on all trials. We also observe that LME obtains the
same score as Pizarro et al. and yields comparable perfor-
mance over the other methods on theGuass.Noise sequence.
We believe that this is because the large amount of Gaussian

noise weakens anchor control points in the Detail-Aware
Flow Field Enhancement step (Sec. 3.2): the accuracy of
SIFT feature detection and matching is thus reduced. This

issue may cause inaccurate deformation of meshM2 which

could result in incorrect energy calculation within the func-

tion E(w). One possible solution to this would be to use
features more robust against noise or to use a low pass fil-

ter, which is left for future work.

Figure 4(b) shows comparative Inverse Image Warping
results between LME and five other state-of-the-art algo-
rithms on the Garg et al. Original and S&P.Noise bench-
mark sequences. Examination of the images illustrates that

Laplacian Mesh Energy can generate a sharper and less dis-
torted image after warping. This provides some insight into

the algorithm’s strong performance in theMiddlebury inter-
polation result, as images warped using our computed flow

appear to preserve local visual detail.

We also evaluate the effect of varying the weight of the

Laplacian Mesh Energy on the Garg et al. dataset where
λ is varied with discrete values between 0 and 1. As
shown in Figure 5, AEE is improved as the value λ in-
creases on all trails. We observe that even provided with

a small weight (e.g. 0.2), Laplacian Mesh Energy still con-
tributes a stronger preservation of the local flow structure

and hence better preserved image detail during warping.

We also demonstrate how different input meshes may af-

fect performance. Figure 5 shows a quantitative analysis of

our method using Edge-Aware meshing and a uniform grid
mesh (5-pixel vertex distances) on the Garg et al. dataset.
The former outperforms the uniform grid mesh in all four

trails.

5. Conclusion
In this paper we have presented a novel optical flow ap-

proach which uses Laplacian Mesh Energy to preserve local
continuity of optical flow estimated on non-rigid deforma-

tions. Adapted from computer graphics, our novel energy

achieves this property by minimizing differentials in Lapla-

cian coordinates. In our evaluation we have compared our

method to several state-of-the-art optical flow approaches

on two well known evaluation sets. It has been demonstrat-

ed that our algorithm is capable of providing accurate flow

estimation and also preserving local image detail – evident

through high scores in Middlebury evaluation, and compari-

son to Garg et al.. For future work we are interested in more
intelligently creating the underlying mesh to better approx-

imate the image of interest.
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