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Abstract

Non-rigid structure from motion is a fundamental prob-
lem in computer vision, which is yet to be solved satisfacto-
rily. The main difficulty of the problem lies in choosing the
right constraints for the solution. In this paper, we propose
new constraints that are more effective for non-rigid shape
recovery. Unlike the other proposals which have mainly fo-
cused on restricting the deformation space using rank con-
straints, our proposal constrains the motion parameters so
that the 3D shapes are most closely aligned to each other,
which makes the rank constraints unnecessary. Based on
these constraints, we define a new class of probability distri-
bution called the Procrustean normal distribution and pro-
pose a new NRSfM algorithm, EM-PND. The experimental
results show that the proposed method outperforms the ex-
isting methods, and it works well even if there is no temporal
dependence between the observed samples.

1. Introduction

Finding 3D structure and motion from a set of 2D ob-
servations is one of the basic problems in computer vision.
Many applications, such as stereo reconstruction [7], re-
quire this task. Structure from motion (SfM) [10], which
estimates the 3D shape and pose of a rigid object from
2D-point tracks, is the most simple form of this problem.
SfM has been well-studied in a past few decades and can
be effectively solved by using the matrix factorization ap-
proach [7, 10]. However, its counterpart for deformable
objects, non-rigid structure from motion (NRSfM) [13], is
a difficult problem to solve. The difficulty is mainly due
to the ambiguity of the solution [13], which is a natural
consequence of the increased degree of freedom compared
to SfM. Therefore, many researchers have tried to solve
NRSfM by adding additional constraints [2, 4, 5, 8, 11, 13].

NRSfM is usually solved either by using the factoriza-
tion algorithm or the EM algorithm that are combined with
suitable constraints. Hence, how to choose the constraints
is really important. Majority of the approaches [4,8,11,13]
fix the number of shape bases to restrict the ‘degree’ of de-

formation. Based on this rank constraint, Akhter et al. [1]
showed that only an orthogonality constraint on the rota-
tions is sufficient to find a unique solution. However, the
choice on the number of shape bases greatly affects the
reconstruction performance and it is difficult to know the
right number. Meanwhile, dual approaches [2, 5] that con-
strain the number of trajectory bases, have been proposed
recently. These approaches assume temporal dependence
between frames, and incorporate the discrete cosine trans-
form (DCT) bases in the model. However, the number of
DCT bases should also be predetermined for these methods,
which is another difficulty.

All of these difficulties are caused by constraining the
number of bases. Most importantly, this number changes
the solution of rotations, because the rotations are found
based on the factorization results. As demonstrated in [1],
the uniqueness of the solution of NRSfM is closely con-
nected with the uniqueness of rotations. This means that
finding the correct rotations are vital for NRSFM.

In this paper, we propose a novel algorithm that solves
NRSfM without any rank constraint. Because finding the
correct rotations is important, we consider NRSfM as an
alignment problem and introduce an additional constraint
to each rotation matrix. This constraint is derived from
the generalized Procrustes analysis (GPA) [6, 14], which
aligns a set of shapes most closely to each other. Owing
to this new constraint, we do not need any rank constraint.
We also modify the scale constraint in GPA to make the
aligned shapes lie in a linear subspace, which makes the
problem tractable. This subspace includes all possible de-
formation of shapes, and moreover, the null space of this
subspace is 7-dimensional that is related to the variations
due to rigid transformations. In other words, rigid and non-
rigid shape variations are strictly separated under these con-
straints. This leads us to define a new class of probabil-
ity distribution called the Procrustean normal distribution
(PND), which is a special case of the normal distribution.
The proposed algorithm, EM-PND, essentially fits the 2D-
point tracks to a PND using the EM algorithm. Since there
is no constraint on the deformation space, EM-PND loses
less detail in the reconstructed shapes. Moreover, it does
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not require any temporal dependence between the observed
2D tracks. EM-PND also works well when there are some
missing data in the observation. Experimental results show
that the proposed algorithm performs best among the exist-
ing methods in most of the cases.

The remainder of this paper is organized as follows: We
explain the definitions and properties of PND in Section 2.
Based on PND, the proposed algorithm is introduced in Sec-
tion 3. The experiments are followed in Section 4, and fi-
nally, we conclude the paper in Section 5.

2. Procrustean Normal Distribution

Estimating rotations based on rank and orthonormality
constraints as in other NRSfM algorithms can be trouble-
some, because of two reasons. First, knowing the correct
rank is not easy and wrongly chosen rank can ruin the es-
timation. Second, how orthonormal the estimated rotations
are is not directly connected to the accuracy of the rotations.
Therefore, we propose another way to model the rotations
by incorporating GPA. GPA finds the relative motions (in-
cluding rotations) between similar shapes by aligning them
as closely as possible. This principle determines rigid mo-
tions by minimizing non-rigid variations, which can im-
prove the accuracy of the estimated rotations in NRSfM.

We show that the solution of GPA can be described by
a set of simple conditions with respect to (w.r.t.) aligned
shapes, and propose a new distribution based on the condi-
tions. This distribution can be effectively used to separate
rigid and non-rigid shape variations, and serves as a core
component of the proposed algorithm.

2.1. GPA and its modification

GPA superimposes multiple landmark shapes to a com-
mon reference using rigid transformations. Let Xi ∈
R

nd×np , si ∈ R, Ri ∈ R
nd×nd , and ti ∈ R

nd be the
3D shape, scale, rotation, and translation, respectively, for
the ith sample, 1 ≤ i ≤ ns, where nd, np, and ns are the di-
mension of the coordinate system, the number of landmarks
in a frame, and the number of frames, respectively. Then,
the GPA problem is defined as

min
si,Ri,ti,X

∑∥∥siRiXi + ti1
T −X

∥∥2

subject to RT
i Ri = I, f(s) = 1,

(1)

where 1 is a vector of ones, X is the mean shape, and s =[
s1 · · · sns

]T
. In this paper, ‖ · ‖ denotes the Frobenius

norm for matrices, i.e., ‖A‖2 = tr
(
ATA

)
= ‖vec(A)‖2,

where vec(·) is a vectorization operator. Here, f(s) = 1
is a scale constraint and the two popular choices [6, 14] are
(i) ‖siXi‖ = 1 and (ii) 1

ns

∑
‖siXi‖

2
= 1. The aligned

shapes will lie on a Procrustes shape space if the first con-
straint is used, and otherwise they will lie on a Kendall

shape space [14]. The procedure for solving a GPA problem
is summarized as

1. Translate Xi as Xi ← Xi−
1
np

Xi11
T , and normalize

it, i.e., ‖Xi‖ = 1. Set si = 1 and Ri = I.

2. Calculate the mean X = 1
ns

∑
siRiXi.

3. Update the rotations for the new mean. Each new

rotation is given as Ri = ViU
T
i where XiX

T
=

UiΛiV
T
i is a singular value decomposition (SVD).

4. Update the scales so that the objective function is min-
imized and the scale constraint is satisfied.

5. Repeat Steps 2–4 until convergence.

Here, the translation component is removed from each
shape in Step 1 and does not appear in the iterative pro-
cedure, because the optimal ti is in fact given as ti =
− 1

np
siRiXi1 [6]. Accordingly, the optimal X has a zero

translation component because X1 = 1
ns

∑
siRiXi1 = 0.

One may think of extending GPA to missing data cases
as a way of solving the NRSfM problem. However, both
the Procrustes and Kendall shape spaces are nonlinear man-
ifolds, which make it hard to handle the distribution of the
shape. We may drop the scale constraint to resolve this is-
sue, but it is not a good idea because there can be scale
changes due to camera motion that may significantly af-
fect the reconstruction performance (as shown in the sup-
plementary material). Therefore, we need to find a new
scale constraint that makes the aligned shapes lie in a linear
subspace. To do this, we propose another scale constraint so
that each shape variation from the mean shape is orthogonal
to the mean shape, i.e.,

vec
(
siRiXi −X

)T
vec

(
X
)
= 0. (2)

If we impose an additional constraint that the norm of the
mean shape is one, i.e., ‖X‖ = 1, then this constraint can
be rewritten as

vec(siRiXi)
T
vec

(
X
)
= si tr

(
RiXiX

T
)
= 1. (3)

Note that this is a linear constraint w.r.t. si, and it makes
the aligned shapes lie in the stereographic projection [14],
which is a mapping from an n-dimensional sphere to a hy-
perplane, of a Procrustes shape space. This let us describe
the distribution of the aligned shapes more easily using typ-
ical probability distributions. Step 4 of the above algorithm
can be restated incorporating these constraints as

4. Normalize the mean shape as X ← X/
∥∥X∥∥ and up-

date each scale as si = 1/ tr
(
RiX

T
i X

)
.
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Then, the necessary condition for optimality of problem
(1) is obtained as

RT
i Ri = I,

∥∥X∥∥2
= 1,

si tr
(
RiXiX

T
)
= 1, RiXiX

T
∈ Snd

+ ,
(4)

where Snd

+ is a set of nd-dimensional positive semi-definite
(PSD) matrices, which is convex. si, Ri, and X must satisfy
these conditions to be optimal. A more important insight
can be drawn from these conditions: Note that the third con-
dition is a linear equation w.r.t. an aligned shape siRiXi

and the last condition forces the set of the aligned shapes to
be convex, which are relatively easy to handle. Hence, if we
solve NRSfM based on a distribution constrained by these
conditions, then we may enforce the reconstructed shapes to
be a possible optimal solution for problem (1). This moti-
vates us to define a new distribution. Because there are three
more conditions in (4) besides the first equation, which is
the orthonormality constraint in other NRSfM algorithms,
the solution may be quite different from the other NRSfM
algorithms. In fact, these conditions can concisely describe
a set of non-rigid deformations, which will be explained in
the next subsection.

2.2. Definition and Properties of PND

Let Yi be the ith aligned shape expressed as Yi =
siRiXi and Y = X, then (4) can be written as∥∥Y∥∥2

= 1, tr
(
YiY

T
)
= 1, YiY

T
∈ S

nd

+ . (5)

Here, the second and last conditions are linear equality and
convex constraints w.r.t. Yi, respectively. However, if we
relax the PSD constraint to a symmetric constraint, then the
last one can be also expressed as a linear equality constraint
w.r.t. Yi, i.e.,

YiY
T
−YYT

i = 0. (6)

(In this paper, we use 0 to denote both matrices and vectors
of zeros.) To set the centroid of an aligned shape at the
origin, an additional constraint is introduced as

Yi1 = 0. (7)

These constraints can be simplified using the vectoriza-
tion operator as∥∥vec(Y)∥∥2

= 1, PT
N vec

(
Yi −Y

)
= 0, (8)

based on an nY ×nN -dimensional matrix PN , where nY =
ndnp and nN = nd (nd + 1)/2+ 1. PN is a function of Y
and is defined as

PN =
[
vec

(
Y
)

K
(
Y
)

(1⊗ I)
]
,

K
(
Y
)
=

[[
y1

]
× · · ·

[
ynp

]
×
]T

,
(9)

where yi is the ith column vector of Y and ⊗ is the Kro-

necker product.
[
y
]
× ∈ R

(
nd
2

)
×nd is a linear function of

y and is a matrix equivalent of the exterior product [3] of y
with another vector. For nd = 3, this is related to the cross
product and becomes

[
y
]
× =

⎡⎣ 0 −y3 y2
y3 0 −y1
−y2 y1 0

⎤⎦ . (10)

Note that nN , the number of columns of PN , corresponds
to the degree of freedom (DOF) of a rigid transform. For
example, nN = 7 for nd = 3, which corresponds to the
DOF of a rigid transform (1 for scale, 3 for rotation, and
3 for translation) in a 3-dimensional space. This follows
from the fact that vec

(
Y
)
, K

(
Y
)
, and (1⊗ I) in (9) cor-

respond to the scale, rotation, and translation constraints,
respectively. Since the variation of Yi is only allowed in
the subspace perpendicular to PN , i.e., perpendicular to the
subspace of rigid shape variations, the variations will only
contain nonrigid shape variations. Furthermore, vec

(
Y
)
,

K
(
Y
)
, and (1⊗ I) have the following interesting property.

Proposition 1. The range spaces of vec
(
Y
)
, K

(
Y
)
, and

(1⊗ I) are orthogonal to each other.

Proof. First, we show that (1⊗ I) is orthogonal to the other
terms. Note that

(1⊗ I)T vec
(
Y
)
= Y1 = 0, (11)

because the centroid of Y is at the origin. Similarly, be-
cause

[
y
]
× is a linear function of y,

(1⊗ I)
T
K
(
Y
)
=

∑[
yi

]T
× =

[∑
yi

]T
×
= 0. (12)

Finally, we show the relationship between vec
(
Y
)

and
K
(
Y
)
. Note that

K
(
Y
)T

vec
(
Y
)
=

∑[
yi

]
×yi. (13)

Hence, this expression is equivalent to the sum of the exte-
rior products of yi with themselves. Because the exterior
product of a vector with itself is 0, i.e., y ∧ y = 0 and
y × y = 0 for nd = 3, (13) is also 0.

This proposition states that each constraint specifies a
different orthogonal subspace. In other words, variations
due to scaling, rotation and translation are mutually orthog-
onal to each other under the constraints in (8).

Based on these constraints, we can define a new distri-
bution that only includes non-rigid shape variations, elimi-
nating rigid variations. We call this the Procrustean normal
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distribution, and denote it as NP

(
Y,Σ

)
. The parameters

of a PND satisfy the following conditions:∥∥Y∥∥2
= 1, Y1 = 0, PT

NΣ = 0. (14)

Hence, Σ ∈ R
nY ×nY is singular. To handle the singularity,

we denote QN as an orthogonalized version of PN . Based
on Proposition 1, QN can be described as

QN =
[
vec

(
Y
)

QK

(
1√
np

1⊗ I
)]

, (15)

where QK is an orthogonalized version of K
(
Y
)
, which

can be calculated using the QR decomposition. We also
define Q as an orthogonal matrix whose range space is the
left null space of QN . Then, the probability distribution
function (pdf) of a PND random matrix Y ∼ NP

(
Y,Σ

)
is

p(Y) ∝
1

|ΣR|
1

2

exp

(
−
1

2
vTQΣ−1

R QTv

)
δ
(
QT

Nv
)
,

ΣR = QTΣQ, v = vec
(
Y −Y

)
,

(16)

where ΣR ∈ R
nR×nR is the covariance matrix of QTv,

δ(·) is the nN -dimensional Dirac-delta function, and nR =
nY − nN . The Dirac-delta function is introduced so that
p(Y) can be expressed with the degenerate Σ. Note that
QΣ−1

R QT = Σ+, where (·)+ is the pseudo-inverse of (·).
Because PND does not include any rigid shape varia-

tions, it is possible to find relative motions between sample
shapes by fitting them to a PND. This has the same effect as
solving a GPA problem, and moreover, we can apply some
statistical estimation techniques to PND. There are two im-
portant advantages of PND in solving NRSfM. First, be-
cause no low-rank constraint is needed for PND, there is
no need to adjust the rank and less details will be lost in
the fitting process. Second, PND strictly separates rigid and
non-rigid variations in the fitting process, which will lead to
more accurate motion parameters and reconstructed shapes.
The idea of ruling out rigid variations is somewhat similar to
that in [12], however, PND does not require accurate motion
information in advance, unlike the approach. For PND, es-
timating the distribution of non-rigid variations determines
the rigid motions as a by-product, because QN depends on
the mean shape.

A rotation of a PND is also a PND as explained in the
following proposition:

Proposition 2. Let Y ∼ NP

(
Y,Σ

)
be a PND ran-

dom matrix, and Y′ = RY for an orthogonal matrix
R. Then, Y′ is also a PND random matrix as Y′ ∼
NP

(
RY, (I⊗R)Σ

(
I⊗RT

))
.

Proof. First of all, a linear transform of a normal distribu-
tion is also Gaussian, hence Y′ is Gaussian. Moreover, the

determinant |ΣR| remains the same because the transform
is orthogonal. By observing the squared error term in (16),

vec
(
RTY

′
−Y

)T

Σ+ vec
(
RTY

′
−Y

)
= v′T

(
(I⊗R)Σ

(
I⊗RT

))+
v′,

v′ = vec
(
Y′ −RY

)
,

(17)

and this gives the mean and the covariance matrix stated in
the proposition.

The only thing left to prove is whether the constraints on
Y′ hold after the transformation. To show this, we substi-
tute Y = RTY′ in (5), (6), and (7), i.e.,

tr
((

RTY′
)
Y

T
)
= tr

(
Y′

(
RY

)T)
= 1,(

RTY′
)
Y

T
−Y

(
RTY′

)T
= 0,

(
RTY′

)
1 = 0.

(18)

By multiplying R in the left and right sides of the second

equation in (18), we obtain Y′
(
RY

)T
−

(
RY

)
Y′T =

R0RT = 0, and similarly, Y′1 = R0 = 0 from the third
equation. Thus, the constraints for Y′ holds after the trans-
form.

Note that (14) can be applied to distributions other than
the normal distribution for the analysis of NRSfM, but we
use the normal distribution for its simplicity. The DOF of
PND is nY − nd − 1 for Y and nR(nR + 1)/2 for Σ.1 If
a distribution satisfies the properties of PND except the first
one of (14), we call it a scaled PND and denote it asN s

P .

3. The proposed algorithm: EM-PND

Let Di ∈ R
nd×np be the input landmark data, observed

by an orthographic camera, of the ith sample, and Wi ∈
R

nd×np be the weight matrix filled with ones and zeros that
indicates whether the corresponding elements are observed
or missing. In case of NRSfM, the last row of Wi should
be filled with zeros because the z coordinates are unknown.
We also assume that the translation component is initially
removed from each Di as

dijk ←

{
dijk −

∑
l wijldijl∑

l wijl
if wijk = 1

0 otherwise
, (19)

where dijk and wijk are the (j, k)th elements of Di and
Wi, respectively. This can be alternatively represented as

Di ←Wi 

(
Di − (ci 
 ((Wi 
Di)1))1

T
)
, (20)

where 
 is the Hadamard product and ci is an nd-
dimensional vector whose jth element is 1∑

l wijl
(0 if the

jth row of Wi is filled with zeros). After this initialization,
Di satisfies Di1 = 0. EM-PND fits a PND to these input
data using the EM algorithm. In the following subsections,
we will explain the detailed procedure of EM-PND.

1The derivation is given in the supplementary material.
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3.1. Objective function

The overall goal of EM-PND is to maximize the follow-
ing log-likelihood function:∑

log
(
p
(
Di,Xi

∣∣σ, si,Ri,X,Σ
))

=
∑

log(p(Di|Xi, σ)) + log
(
p
(
Xi

∣∣si,Ri,X,Σ
))

,
(21)

where σ is the standard deviation of the Gaussian noise in
Di. Here, Xi is a hidden variable representing the true 3D
shape of the ith sample.

Let the likelihood of Di be defined as

p(Di|Xi, σ) =
1

(2π)n
W
i

/2σnW
i

exp

(
−

1

2σ2
g2i

)
,

g2i = min
ti

‖Di −Wi 
 (Xi − ti)‖
2
,

nW
i =

∑
j

(∑
k

wijk

)
− sign

(∑
k

wijk

)
,

(22)

where sign(·) denotes the signum function. gi can be alter-
natively expressed as

g2i = ‖vec(Di)− Fi vec(Xi)‖
2 ,

Fi = Ŵi − Ŵi (1⊗ I) ci
(
1T ⊗ I

)
Ŵi,

Ŵi = diag(vec(Wi)) .

(23)

Here, Fi is a projection matrix, i.e., F2
i = Fi, and diag(a)

denotes a diagonal matrix with the elements of vector a on
the main diagonal.

In order to represent the prior distribution of Xi, we as-
sume that the aligned shapes Yi = siRiXi are indepen-
dently and identically distributed PND random matrices,
i.e., Yi ∼ NP

(
X,Σ

)
. According to Proposition 2, Xi

follows a scaled PND, i.e.,

Xi ∼ N
s
P

(
1

si
RT

i X,
1

s2i

(
I⊗RT

i

)
Σ (I⊗Ri)

)
. (24)

3.2. E-step

In E-step, we calculate the distribution of Xi given the
current estimates of the parameters and Di. If we define the
parameter set Φ =

{
σ, si,Ri,X,Σ

}
,

pE(Xi) = p(Xi|Di,Φ) =
p(Xi,Di|Φ)∫

p(Xi,Di|σ,Φ) dXi
. (25)

Since the distribution is Gaussian, we have to calculate the
mean and covariance matrix. After some manipulation, we
can find that

pE(Xi) ∝ exp

(
−

1

2
vec(Xi)

T
Hi vec(Xi) +

1

σ2

vec(Di)
T
vec(Xi)

)
δ

(
QT

N vec(RiXi)−

[
1
0

])
, (26)

where Hi = s2i
(
I⊗RT

i

)
Σ+ (I⊗Ri) +

1
σ2Fi. However,

in practice, the Dirac-delta term in this equation is too re-
strictive to allow a meaningful update in the EM procedure,
i.e., the parameters almost do not change in M-step. Hence,
we ignore the Dirac-delta term, and finally, obtain the fol-
lowing distribution:

pE(Xi) = pE(vec(Xi)) ∼ N (mi,Ci) ,

Ci = H+
i , mi =

1

σ2
Ci vec(Di) .

(27)

Ignoring the Dirac-delta term makes the distribution
pE(Xi) closer to the observation Di. This has a positive
effect to the convergence rate, but it also has a downside of
underestimating σ in M-step.

3.3. M-step

In M-step, the parameter set Φ is updated so that it max-
imizes the expectation of the log-likelihood w.r.t. pE(Xi),
which is given as

J(Φ) = E
[∑

log(p(Di,Xi|Φ))
∣∣∣pE(Xi)

]
=

∑
−nW

i log(σ)−
1

2σ2
‖vec(Di)− Fimi‖

2

−
1

2σ2
tr(FiCi)−

1

2
log|ΣR|+nR log(si)−

1

2
hT
i Σ

−1
R hi

−
s2i
2

tr
((
I⊗RT

i

)
QΣ−1

R QT (I⊗Ri)Ci

)
+ c0, (28)

where hi = QT
(
si (I⊗Ri)mi − vec

(
X
))

and c0 is a
constant. Then, the optimization problem for M-step is de-
scribed as

min
Φ

J(Φ)

subject to RT
i Ri = I,

∥∥X∥∥2
= 1,

si tr
(
RiMiX

T
)
= 1, RiMiX

T
∈ Snd

+ ,

(29)

where Mi is the expectation of Xi|pE(Xi), i.e., vec(Mi) =
mi. All the constraints in this problem are the same as the
constraints in (4) except that Xi is replaced with its expec-
tation Mi. Here, the PSD condition has been reinstated in
the last constraint because it makes the solution much easier
to calculate.

Since this problem is very complicated, we solve it us-
ing the alternating update method, i.e., we update each of
the parameters assuming that the other parameters are fixed.
In this framework, the most difficult parameter to update is
X, on which Q as well as the last three constraints in (29)
depend. To resolve this, we regard Q as an independent
parameter and simply ignore the constraints in the update
of X. Then, by differentiating the cost function w.r.t. X,
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equating it to zero, and normalizing the solution, we obtain
the following update equation:

X =
∑

siRiMi/
∥∥∥∑ siRiMi

∥∥∥ . (30)

The scales and rotations are relatively easy to update. Ac-
cording to the constraints in (29), the feasible si and Ri are
unique if the other parameters are fixed and all the samples
are non-degenerate. The corresponding update equations
are

MiX
T
= UiΛiV

T
i , Ri = ViU

T
i ,

si = 1/ tr
(
RiMiX

T
)
= 1/ tr(Λi) ,

(31)

where the first equation is calculated using SVD.
To update QN and Q based on the new X, we calculate

PN using (9) and then compute QN and Q from it, as de-
scribed in Section 2.2. ΣR can be easily found by solving
the first-order necessary condition of (29), i.e.,

ΣR =
1

ns

∑
hih

T
i + s2iQ

T (I⊗Ri)Ci

(
I⊗RT

i

)
Q.

(32)
Accordingly, the covariance matrix is calculated as Σ =
QΣRQ

T . σ can also be derived in a similar way. How-
ever, as mentioned in the previous section, σ tends to be
underestimated due to the approximation of pE(Xi), and
we introduce a scaling constant α > 1 to compensate this;

σ2 =
α∑
nW
i

∑
‖vec(Di)− Fimi‖

2
+ tr(FiCi) . (33)

For the experiments in Section 4, we used α = 2.
Strictly speaking, this update procedure should be iter-

ated several times in each M-step, but we have found in our
experiments that a single iteration is sufficient.

3.4. Practical considerations

The problem we are dealing with is highly nonlinear, and
providing good initial values for the parameters is impor-
tant. The rotations are especially crucial. The proposed
method works well for random initial rotations when the
shape variations are moderate, but the performance may de-
teriorate for large variations. Hence, we adopt the initializa-
tion method used in [5] for the rotations, which calculates
rotations based on the factorization results for all possible
numbers of shape bases and then automatically chooses the
most ‘orthonormal’ ones.2 The scale parameters are initial-
ized so that the norm of Di becomes 1, i.e., si = 1

‖Di‖ .
Based on these initial scales and rotations, the initial mean
shape is set to X = 1

ns

∑
siRiDi, and then PN , QN , and

Q are calculated. The reduced covariance matrix ΣR and

2The performance comparison with the random rotation initialization
is shown in the supplementary material.

the noise standard deviation σ are initialized as 10−3I and
10−3, respectively.

Although EM-PND alone is good enough for solving
NRSfM problems, it is a bit slow because it has to han-
dle numerous parameters in each EM iteration. Therefore,
by assuming σ = 0 and ΣR = I in (21), we solve the fol-
lowing simplified problem before the main EM procedure
to reduce the computation time.

min
si,Ri,zi,X

∑
‖siRi (Di + Li(zi))B−X‖2

subject to RT
i Ri = I,

∥∥X∥∥2
= 1,

si tr
(
Ri (Di + Li(zi))BX

T
)
= 1,

(34)

where zi is the vector of the missing elements for the ith
sample and B = I − 1

np
11T . Li(zi) ∈ R

nd×np is a map-
ping that places each element of zi to the corresponding lo-
cation in a shape matrix. It is noted that vec(Li(zi)) can be
expressed as vec(Li(zi)) = W̃zi where W̃ is a truncated

version of
(
I− Ŵ

)
removing all-zero columns. Similar to

the update equation in the previous section, the alternating
update equations for this problem are

zi =
(
W̃T (B⊗ I)W̃

)+

W̃T vec

(
1

si
RT

i X−Di

)
,

X =

∑
siRi (Di + Li(zi))B

‖
∑

siRi (Di + Li(zi))B‖
,

Ri = ViU
T
i , si = 1/ tr(Λi) ,

(35)

where (Di + Li(zi))BX
T

= UiΛiV
T
i . Since the cost

function of (34) is quite different from the cost function of
EM-PND, we have to be careful not to perform this simpli-
fied iteration too many times. Hence, we have to find a good
stopping criterion that takes the cost function of EM-PND
into consideration. Considering that the dominant term in
the cost function of EM-PND is log|ΣR|, we have found
out empirically that the following measure is appropriate.

csimple =
∑

max(log(λj/ε) , 0) , (36)

where λj is the jth eigenvalue of the sample covariance ma-
trix of vec(siRi (Di + Li(zi))) and ε (= 10−7 in the ex-
periments of Section 4) is a small constant.

The overall procedure of EM-PND is summarized as fol-
lows:

1. Normalize the input data as (20) and initialize all the
parameters as in the first paragraph of Section 3.4.

2. Repeat (35) until
(
ck−1

simple − cksimple

)
/cksimple < 5 ×

10−4, where k is the iteration number.

12831283128312851285



Table 1. Average reconstruction errors without noise and missing
data

data \ method EM-PPCA MP CSF2 SPM EM-PND

FRGC 0.1469 0.1395 0.1926 0.1094 0.0727
walking 0.1485 0.2699 0.0708 0.0861 0.0465

shark 0.0688 0.0874 0.0551 0.5475 0.0135
face 0.0208 0.0329 0.0209 0.0233 0.0165
yoga 0.61 0.632 0.0226 0.0224 0.014

stretch 0.5393 0.5792 0.0219 0.0288 0.0156
pickup 0.5149 0.3465 0.0607 0.0356 0.0372
drink 0.1292 0.2707 0.0123 0.0216 0.0037
dance 0.2325 0.4838 0.1349 0.1454 0.1834

Table 2. Average reconstruction errors with noise and without
missing data

data \ method EM-PPCA MP CSF2 SPM EM-PND

FRGC 0.198 0.1408 0.2061 0.184 0.0889
walking 0.1364 0.321 0.0966 – 0.077

shark 0.0486 0.118 0.1043 0.1784 0.06
face 0.0464 0.0523 0.0543 0.1054 0.0403
yoga 0.5287 0.6318 0.0529 0.0822 0.0409

stretch 0.5479 0.5806 0.0543 0.0652 0.0444
pickup 0.5037 0.3695 0.0705 0.0581 0.0409
drink 0.1764 0.2719 0.0365 0.0407 0.0339
dance 0.2229 0.4354 0.1544 0.151 0.1806

3. Calculate mi and Ci as in (27).

4. Update Φ using (30), (31), (32), and (33).

5. Repeat Steps 3 and 4 until
∥∥∥Xk

−X
k−1

∥∥∥2

< 10−10.

After finishing EM-PND, the final Mi can be used as a re-
constructed 3D shape. If a shape model rather than a recon-
structed shape is needed, then X and Σ can be used instead.
Similarly, si and Ri can be used to represent a rigid motion.

4. Experimental Results

We performed NRSfM experiments using EM-PND for
various data sets. We used the motion capture data sets from
[2] and [11]. To see the performance for the data with no
temporal dependence, we also manually annotated 62 land-
marks in each of 400 3D depth samples in the Face Recog-
nition Grand Challenge (FRGC) 2.0 Database [9]. Random
scaling and rotation were applied to each of these samples
to form a new 3D facial-landmark data with no temporal
dependence.

We conducted experiments with and without noise
and/or missing data. The standard deviation of the Gaus-
sian noise was set as σnoise = 0.02maxi,j,k{|dijk|}. For the
missing data, we randomly set 30 percents of the landmarks
as missing. We compared the propose method with some
other state-of-the-art schemes, which were EM-PPCA [11],
MP [8], CSF2 [5], and SPM [4]. The parameters of these
methods were set in accordance with their original paper,
and we used the block matrix method for SPM, which is
known to be the best algorithm according to [4]. The perfor-
mance was evaluated in terms of normalized reconstruction

Table 3. Average reconstruction errors with missing data and with-
out noise

data \ method EM-PPCA MP CSF2 EM-PND

FRGC 0.1764 0.1431 0.4505 0.0805
walking 0.1361 0.2819 0.1033 0.0469

shark 0.1374 0.1077 0.0653 0.0166
face 0.2978 0.0456 0.0412 0.0177
yoga 0.1463 0.5768 0.0854 0.0181

stretch 0.6735 0.6149 0.0597 0.015
pickup 0.4969 0.4053 0.0933 0.0149
drink 0.1692 0.2612 0.0357 0.0055
dance 0.2632 0.3951 0.1415 0.1766

Table 4. Average reconstruction errors with noise and missing data
data \ method EM-PPCA MP CSF2 EM-PND

FRGC 0.2196 0.1469 0.4574 0.0968
walking 0.1541 0.2853 0.1095 0.0842

shark 0.1323 0.1101 0.0872 0.0672
face 0.2273 0.0666 0.0583 0.0464
yoga 0.1401 0.5765 0.1583 0.0488

stretch 0.6881 0.6211 0.0707 0.0535
pickup 0.4931 0.401 0.0948 0.0486
drink 0.1868 0.2644 0.0428 0.0408
dance 0.2732 0.3986 0.1501 0.1601

error, i.e.,
ei = ‖X̂i −X∗i ‖/‖X

∗
i ‖, (37)

where X∗i and X̂i is the ith ground truth and reconstructed
shapes, respectively. Since a reconstructed shape have re-
flection ambiguity, we also measured the error for the in-
verted shape and picked the smaller error. All the exper-
iments were repeated ten times and the results were aver-
aged.

Tables 1-4 show the reconstruction errors under various
conditions. There are no experimental results for missing
data using SPM because SPM can not handle the case of
missing data. When an algorithm does not converge, its re-
sult is denoted as “–”. Among the 32 cases, excluding four
cases of the dance sequence, EM-PND gives the best perfor-
mance except for two cases, and even for these two cases,
EM-PND gives the second best performance. For the case
in the pickup sequence without noise and missing data, the
error difference between EM-PND and the best method is
about five percent. For the shark sequence, EM-PPCA gives
a smaller error than EM-PND for the case of no missing data
but with noise. This seems to be attributed due to the nature
of the shark sequence, which was artificially generated by
superposing two basis shapes [11]. Because of this, EM-
PPCA, which explicitly limits the number of shape bases
in the reconstruction process, gives better performance for
the shark data. However, this is hardly the case for the real-
world applications. The dance sequence includes a large de-
formation, and CSF2, which enforces temporal dependence
between frames, gives better results than the other schemes.
We expect that the performance of EM-PND for the dance
sequence can also be improved by enforcing temporal de-
pendence. In the other cases, EM-PND reduces the errors
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(a) Walking -
EM-PND

(b) Yoga - EM-PND (c) Pickup -
EM-PND

(d) Drink -
EM-PND

(e) Walking -
CSF2

(f) Yoga - CSF2 (g) Pickup -
CSF2

(h) Drink -
CSF2

Figure 1. Reconstructed results (top row: EM-PND, bottom row:
the second best method, ◦: observed ground truth, ×: missing
ground truth, +: reconstructed points).

by up to 85 percents compared to the second best methods.
Especially, EM-PND gives much better performance than
CSF2 even though they use the same rotation initialization
method. This indicates that the contribution of EM-PND to
performance enhancement is large. This outstanding perfor-
mance of EM-PND proves the effectiveness of using PND
in NRSfM. Another advantage of EM-PND is that there is
no parameter to be tuned, which will enable EM-PND to
give superb performance in practical problems. Note that
CSF2 gives relatively good performance, but not for the
FRGC data because CSF2 assumes the existence of tempo-
ral dependence between frames. EM-PND shows a better
fit between the reconstructed points and the corresponding
ground truth than the second best method, as can be seen
from the reconstruction results in Fig. 1. The videos of re-
constructed shapes are also provided in the supplementary
material to confirm the performance of EM-PND.

5. Conclusion

In this paper, we proposed EM-PND to solve NRSfM
problems. Instead of rank constraints employed in the other
methods, EM-PND imposes constraints on the motion pa-
rameters, following the practices in GPA, which makes the
3D shapes most closely aligned in a linear subspace. We
defined PND based on this constraints, and used a slightly

modified version of the EM algorithm to fit input samples
effectively to a PND. EM-PND gives state-of-the-art per-
formance, as validated in the experimental results, by sep-
arating rigid and non-rigid variations and not using any
rank constraint. Future work will consider the problems of
adding temporal dependence into the model and designing
a new factorization algorithm based on PND to reduce the
computation time.
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