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Abstract

Since the seminal work of Thrun [17], the learning to
learn paradigm has been defined as the ability of an agent to
improve its performance at each task with experience, with
the number of tasks. Within the object categorization do-
main, the visual learning community has actively declined
this paradigm in the transfer learning setting. Almost all
proposed methods focus on category detection problems,
addressing how to learn a new target class from few sam-
ples by leveraging over the known source. But if one thinks
of learning over multiple tasks, there is a need for multiclass
transfer learning algorithms able to exploit previous source
knowledge when learning a new class, while at the same
time optimizing their overall performance. This is an open
challenge for existing transfer learning algorithms. The
contribution of this paper is a discriminative method that
addresses this issue, based on a Least-Squares Support Vec-
tor Machine formulation. Our approach is designed to bal-
ance between transferring to the new class and preserving
what has already been learned on the source models. Exten-
sive experiments on subsets of publicly available datasets
prove the effectiveness of our approach.

1. Introduction

Vision-based applications like Google Goggle, assisted

ambient living, home robotics and intelligent car driver as-

sistants all share the need to distinguish between several ob-

ject categories. They also share the need to update their

knowledge over time, by learning new category models

whenever faced with unknown objects. Consider for in-

stance the case of a service robot, designed for cleaning

up kitchens in public hospitals. Its manufacturers will have

equipped it with visual models of objects expected to be

found in a kitchen, but inevitably the robot will encounter

something not anticipated at design time – perhaps an ob-

ject out of context, such as a personal item forgotten by a

patient on her food tray, or a new type of food processor

that entered the market after the robot. To learn such new

object, the robot will generally have to rely on little data and

explanation from its human supervisor. Also, it will have to

preserve its current range of competences while adding the

new object to its set of known visual models. This chal-

lenge, which holds for any intelligent system equipped with

a camera, can be summarized as follows: suppose you have

a system that knows N objects (source). Now you need to

extend its object knowledge to the N + 1-th (target), us-

ing only few new annotated samples, without having the

possibility to re-train everything from scratch. Can you

add effectively the new target N + 1-th class model to the

known N source models by leveraging over them, while at

the same time preserving their classification abilities?

As of today, we are not aware of previous work address-

ing this issue, nor of existing algorithms able to capture all

its nuances. The problem of how to learn a new object

category from few annotated samples by exploiting prior

knowledge has been extensively studied [20, 11, 7]. The

majority of previous work focused on object category de-

tection (i.e. binary classification) rather than the multiclass

case [1, 19, 18]. It is natural to ask if such previous meth-

ods would work well in the scenario depicted, by just ex-

tending them to the multiclass. We argue that to solve the

N −→ N + 1 transfer learning problem one needs to ad-

dress a deeper algorithmic challenge.

In addition, learning from scratch and preserving train-

ing sets from all the source tasks might be infeasible due to

the large number of tasks or when acquiring tasks incremen-

tally, especially for large datasets [15]. In object categoriza-

tion case this might come as training source classifiers from

large scale visual datasets, in abundance of data.

Consider the following example: a transfer learning task

of learning a dog detector, given that the system has already
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Figure 1: Binary (left) versus N −→ N + 1 transfer learn-

ing (right). In both cases, transfer learning implies that the

target class is learned close to where informative sources

models are. This is likely to affect negatively performance

in the N −→ N + 1 case, where one aims for optimal ac-

curacy on the sources and target classes simultaneously.

learned other kind of animal detectors. This is achieved, in

one form or another, by constraining the dog model to be

somehow “similar” to the horse and cat detectors learned

before [11, 18]. Success in this setting is defined as op-

timizing the accuracy of the dog detector, with a minimal

number of annotated training samples (Figure 1, left).

But if we consider the multiclass case, the different tasks

now “overlap”. Hence we are faced with two opposite

needs: on one side, we want to learn to recognize dogs from

few samples, and for that we need to impose that the dog

model is close to the horse and cat models learned before.

On the other side, we want to optimize the overall system

performance, which means that we need to avoid mispre-

dictions between classes at hand (Figure 1, right). These

two seemingly contradictory requirements are true for many

N −→ N + 1 transfer learning scenarios: how to reconcile

them in a principled manner is the contribution of this paper.

We build on the algorithm of Tommasi et al. [18], a

transfer learning method based on the multiclass extension

of Least-Squares Support Vector Machine (LSSVM) [16].

Thanks to the linear nature of LSSVM, we cast transfer

learning as a constraint for the classifier of the N +1 target

class to be close to a subset of the N source classifiers. At

the same time, we impose a stability to the system, biasing

the formulation towards solutions close to the hyperplanes

of the N source classes. In practice, given N source mod-

els, we require that these models would not change much

when going from N to N + 1.

As in [18], we learn how much to transfer from each

of the source classifiers, by minimizing the Leave-One-Out

(LOO) error, which is an unbiased estimator of the gener-

alization error for a classifier [4]. We call our algorithm

MULticlass Transfer Incremental LEarning (MULTIpLE).

Experiments on various subsets of the Caltech-256 [9]

and Animals with Attributes (AwA) datasets [13] show that

our algorithm outperforms the One-Versus-All (OVA) ex-

tension of [18], as well as other baselines [11, 20, 1]. More-

over, its performance often is comparable to what it would

be obtained by re-training the whole N + 1 classifier from

all data, without the need to store the source training data.

The paper is organized as follows: after a review of pre-

vious work (Section 2), we describe our setting (Section 3)

and our algorithm (Section 4). Experiments are reported in

Section 5, followed by conclusions in Section 6.

2. Related Work
Prior work in transfer learning addresses mostly the bi-

nary classification problem (object detection). Some ap-

proaches transfer information through samples belonging to

both source and target domains during the training process,

as in [14] for reinforcement learning. Feature space ap-

proaches consider transferring or sharing feature space rep-

resentations between source and target domains. Typically,

in this setting source and target domain samples are avail-

able to the learner. In that context, Blitzer et al. [2] proposed

a heuristic for finding corresponding features, that appear

frequently in both domains. Daumé [6] showed a simple

and effective way to replicate feature spaces for perform-

ing adaptation for the case of natural language processing.

Yao and Doretto [20] proposed an AdaBoost-based method

using multiple source domains for the object detection task.

Another research line favors model-transfer (or

parameter-transfer) methods, where the only knowledge

available to the learner is “condensed” within a model

trained on the source domain. Thus, samples from source

domain are not preserved. Model-transfer is theoretically

sound as was shown by Kuzborskij and Orabona [12],

since relatedness of the source and target tasks enables

quick convergence of the empirical error estimate to the

true error. Within this context, Yang et al. [19] proposed a

kernelizable SVM-like classifier with a biased regulariza-

tion term. There, instead of the standard �2 regularization,

the goal of the algorithm is to keep the target domain

classifier “close” to the one trained on the source domain.

Tommasi et al. [18] proposed a multi-source transfer model

with a similar regularizer, where each source classifier was

weighted by learned coefficients. The method obtained

strong results on the visual object detection task, using

only a small amount of samples from the target domain.

Aytar and Zisserman [1] proposed a similar model, with a
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linear formulation for the problem of object localization.

Both methods rely on weighted source classifiers, which is

crucial when attempting to avoid negative transfer. Several

Multiple Kernel Learning (MKL) methods were proposed

for solving transfer learning problems. Jie et al. [11]

suggested to use MKL kernel weights as source classifier

weights, proposing one of the few truly multiclass transfer

learning models. An MKL approach was also proposed by

Duan et al. [7]. There, kernel weights affect both the source

classifiers and the representation of the target domain.

3. Problem Setting and Definitions
In the following we denote with small and capital bold

letters respectively column vectors and matrices, e.g. α =
[α1, α2, . . . , αN ]T ∈ R

N and A ∈ R
M×N with Aji corre-

sponding to the (j, i) element. When only one subscripted

index is present, it represents the column index: e.g. Ai is

the i-th column of the matrix A.

As in related literature, we define a set of M training

samples consisting of a feature vector xi ∈ R
d and the

corresponding label yi ∈ Y = {1, . . . , N,N + 1} for

i ∈ {1, 2, . . . ,M}. We will denote by X the sample-

column matrix, i.e. X = [x1, · · · ,xM ]. We use the for-

malism of linear classifiers, so that a multiclass classifier is

described as a matrix W = [W 1, . . . ,WN ], where each

column vector W n represents the hyperplane that separates

one of the N classes from the rest. Hence, the label as-

sociated to a given sample x is predicted as fW (x) :=
argmax
n=1,...,N

W�
nx + bn. Note that it is straightforward to lift

the theory to the non-linear domain by using kernels, and

for clarity we describe the algorithm in linear notation.

A common way to find the set of hyperplanes W is by

solving a regularized problem with a convex loss function,

that upper bounds the 0/1 loss. For reasons that will become

clear later, we base our method on the OVA variant of the

LSSVM [16], which combines a square loss function with

�2 regularization. Defining the label matrix Y such that Yin

is equal to 1 if yi = n and −1 otherwise, we obtain the

multiclass LSSVM objective function

min
W ,b

1

2
‖W ‖2F +

C

2

M∑
i=1

N∑
n=1

(W�
nxi + bn − Yin)

2,

where ‖ · ‖F is the Frobenius norm.

In our setting of interest, there are two types of infor-

mation. First, we have a set of models that were obtained

from the source N class problem. These source models are

encoded as a set of N hyperplanes, that we again represent

in matrix form as W ′ = [W ′
1, . . . ,W

′
N ]. Note that we

assume no access to the samples used to train the source

classifiers. Second, we have a small training set composed

from samples belonging to all the N + 1 classes, target and

source classes.

4. MULTIpLE
The aim of our approach is to find a new set of hyper-

planes W = [W 1, . . . ,WN ],wN+1, such that i) perfor-

mance on the target N+1-th class improves by transferring

from the source models, and ii) performance on the source

N classes should not deteriorate or even improve compared

to the former. Thanks to the model linearity, we obtain a

metric between classifiers, that could be used to find clas-

sifiers with similar performance by enforcing the distance

between them to be small. We propose to achieve both aims

above through the use of distance-based regularizers.

The first objective can be recognized as the transfer

learning problem. It has been shown that this can be imple-

mented using the regularizer ‖wN+1 −W ′β‖2 [18]. This

term enforces the target model wN+1 to be close to a lin-

ear combination of the source models, while negative trans-

fer is prevented by weighing the amount of transfer of each

source model using the coefficient vector β = [β1 . . . βN ]�.

The second objective of avoiding degradation of existing

models W ′ has been ignored in the transfer learning liter-

ature. However, as explained before, adding a target class

may affect the performance of the source models and it is

therefore useful to transfer the novel information back to

the N source models. To prevent negative transfer, we en-

force the new hyperplanes W to remain close to the source

hyperplanes W ′ using the term ‖W −W ′‖2F . With both

regularizers in the LSSVM objective function, we obtain

min
W ,wN+1,b

1

2
‖W −W ′‖2F +

1

2
‖wN+1 −W ′β‖2F

+
C

2

M∑
i=1

N+1∑
n=1

(W�
nxi + bn − Yin)

2 .

The solution to this minimization problem is given by

W n = W ′
n +

M∑
i=1

Ainxi, n = 1, · · · , N (1)

wN+1 =

N∑
n=1

βnW
′
n +

M∑
i=1

Ai(N+1)xi, (2)

and b = b′ −
[
b′′ b′′�β

]
, where A = A′ − [A′′ A′′β],[

A′

b′�

]
:= M

[
Y
0

]
(3)

[
A′′

b′′�

]
:= M

[
X�W′

0

]
(4)

M :=

[
X�X+ 1

C I 1
1� 0

]−1

. (5)

The solution of the tranfer learning problem is completely

defined once we set the parameters β. In the next section

we describe how to automatically tune these parameters.
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4.1. Self-tuning of Transfer Parameters

We want to set the transfer coefficients β to improve

the performance by exploiting only relevant source mod-

els while preventing negative transfer. With this in mind,

we extend the method of [18] to our setting and to our ob-

jective function. We optimize the coefficients β automati-

cally using an objective based on the LOO error, which is

an almost unbiased estimator of the generalization error of a

classifier [4]. An advantage of LSSVM over other methods

is that it allows the LOO error to be computed efficiently in

closed-form.

Specifically, we cast the optimization of β as the mini-

mization of a convex upper bound of the LOO error. The

LOO prediction for a sample i with respect to hyperplane

W n is given by (derivation is available in supplementary

material1)

Ỹin(β) := Yin − Ain

Mii
. (6)

In matrix form we have

Ỹ(β) = Y − (M ◦ I)−1(A′ − [A′′ A′′β]) . (7)

We stress that (7) is a linear function of β.

We now need a convex multiclass loss to measure the

LOO errors. We could choose the the convex multiclass loss

presented in [5], which keeps samples of different classes at

the unit marginal distance:

L(β, i) = max
r �=yi

|1 + Yir(β)− Yiyi(β)|+, (8)

where |x|+ := max(x, 0). However, from (1) and (2) it

is possible to see that by changing β we only change the

scores of the target N + 1-th class. Thus, when using this

loss almost all samples are neglected during optimization

with respect to β. We address this issue by proposing a

modified version of (8), Lmod(β, i) as{ |1 + Yi(N+1)(β)− Yiyi(β)|+ : yi �= N + 1
max
r �=yi

|1 + Yir(β)− Yiyi(β)|+ : yi = N + 1

The rationale behind this loss is to enforce a margin of 1

between the target N + 1-th class and the correct one, even

when the N + 1-th class has not the highest score. This has

the advantage of forcing the use of all the samples in the

optimization of β.

Given the LOO errors and the multiclass loss function,

we can obtain β by solving the convex problem

min
β

M∑
i=1

Lmod(β, i)

s.t. ‖β‖2 ≤ 1, βi ≥ 0, i = 1, . . . , N .

(9)

1http://www.idiap.ch/˜ikuzbor

Constraining β within a unit �2 ball is a form of regular-

ization on β, that prevents the overfitting of the parameters

β. This optimization procedure can be implemented ele-

gantly using projected subgradient descent [3], which is not

affected by the fact that the objective function in (9) is not

differentiable everywhere. The pseudocode of the optimiza-

tion algorithm is summarized in Alg. 1.

Algorithm 1 Projected subgradient descent to find β

Input: M, A′, A′′, T
Output: β

1: β ← 0
2: for t = 1 . . . T do
3: Ỹ ← Y − (M ◦ I)−1(A′ − [A′′ A′′β])
4: Δ← 0
5: for i = 1 . . .M do
6: if yi �= N + 1 then
7: if 1 + Yi(N+1) − Yiyi > 0 then
8: Δ← Δ+

A′′
i

Mii

9: end if
10: else if maxr �=yi

(1 + Yir − Yiyi
) > 0 then

11: Δ← Δ− A′′
i

Mii

12: end if
13: end for
14: β ← β − Δ

M
√
t

15: βi ← max(βi, 0) ∀i = 1, . . . , N
16: if ‖β‖2 > 1 then
17: β = β

‖β‖2
18: end if
19: end for

Computational complexity for obtaining A′,A′′ and M
is inO(M3+M2(N+1)), which comes from matrix opera-

tions (3)-(5). Note that this complexity is better than the one

of a classical OVA SVM which in worst case is known to be

in O(M3N) [10]. The Alg. 1 is in O(MN(T +1)), where

we assume that most terms in (7) are precomputed. Each

iteration of the algorithm is very efficient since it depends

linearly on both training set size and number of classes.

To conclude this section, a compact description of the

MULTIpLE algorithm is: i) find the optimal tranfer weights

β with Alg. 1; ii) calculate the final solution using (1)-(5).

The source code of MULTIpLE is available online1.

5. Experiments
We present here a series of experiments designed to in-

vestigate the behavior of our algorithm when (a) the source

classes and the target class are related/unrelated, and when

(b) the overall number of classes increases. All experiments

were conducted on subsets of two different public datasets,

and the results were benchmarked against several baselines.

In the rest of the section we first describe our experimental
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setup (section 5.1), then we describe the chosen baselines

(section 5.2). Section 5.3 reports our findings.

5.1. Data setup

We run all experiments on subsets of the Caltech-256

database [9] and of the Animal with Attributes (AwA)

database [13]. From the Caltech-256 database, we selected

a total of 14 classes and for the AwA dataset, 42 classes. We

did not carry out any image pre-selection or pre-processing.

Moreover, for both databases we used pre-computed fea-

tures available online2. Specifically, for the Caltech-256

experiments we used the following features: oriented and

unoriented PHOG shape descriptors, SIFT appearance de-

scriptors, region covariance and local binary patterns to-

talling in 14 descriptor types [8]. For the AwA experiments

the chosen features were SIFT, rgSIFT, SURF, PHOG, RGB

color histograms and local self-similarity histograms [13].

For each class considered, we randomly selected 80 im-

age samples. These were then split in three disjoint sets:

30 samples for the source classifier, 20 samples for training

and 30 samples for test. The samples of the source classifier

were used for training the N models W ′ (Section 4).

The performance of each method (see Section 5.2) was

evaluated using progressively {5, 10, 15, 20} training sam-

ples for each of the N+1 classes. The experiments were re-

peated 10 times, using different randomly sampled training

and test sets, which we refer to as data splits. Furthermore,

to get a reliable estimate of the performance of transfer with

respect to different classes, we used a leave-one-class-out

approach, considering in turn each class as the N + 1 tar-

get class, and the other N as source classifiers. We report

results averaged over all data splits and leave-one-class-out

evaluations.

5.2. Algorithmic setup

We compared MULTIpLE against two categories of

baselines. The first, that we call no transfer baselines, con-

sists of a group of algorithms addressing the N −→ N + 1
problem without leveraging over source models; the sec-

ond, that we call transfer baselines, consists of a group of

methods attempting to solve the N −→ N + 1 problem by

leveraging over source models. The no transfer baselines

are the following:

No transfer corresponds to LSSVM trained only on the

new training data.

Batch corresponds to a LSSVM trained using all available

samples, i.e. assuming to have access to all the data used

to build the source models plus the new training data. The

performance of this method might be seen as an indicator

of the best performance achievable on the problem, thus as

2Caltech-256: http://www.vision.caltech.edu/Image_
Datasets/Caltech256/
AwA: http://attributes.kyb.tuebingen.mpg.de/

an important reference for assessing the results obtained by

transfer learning methods.

Source is the LSSVM N -class source classifier. In this

case, classification on the sample belonging to N + 1-th

class is assigned 0 accuracy.

Source+1 corresponds to a binary LSSVM trained to dis-

criminate between the target class vs the source classes

given the training data. It is evaluated on the N+1 problem

by combining it with Source in a OVA setting. It is arguably

the simplest possible approach to address the N −→ N +1
problem.

Source+1 (hinge) is the scheme analogous to Source+1, but

utilizing the hinge loss �(x, z) = |1 − xz|+, thus corre-

sponding to a classical SVM formulation.

As transfer baselines, we chose the following methods:

MKTL We compared against Multi Kernel Transfer Learn-

ing (MKTL) [11], which is one of the few existing discrimi-

native transfer learning algorithm in multiclass formulation.

MultiKT-OVA We implemented an OVA multiclass exten-

sion of the binary transfer learning method by Tommasi et
al. [18] as follows: as in the standard OVA formulation,

we train MultiKT instance to discriminate between one of

N + 1 classes and the rest N . At the same time we use

Source as the source classifier. Thus, eventually we obtain

N + 1 MultiKT instances.

PMT-SVM-OVA We also implemented an OVA multiclass

extension of the binary transfer learning method by Aytar

and Zisserman [1], as done for MultiKT-OVA.

MultisourceTrAdaBoost-OVA As a final transfer learn-

ing baseline, we implemented an OVA extension of Mul-

tisourceTrAdaBoost [20], where each source corresponds

to a subset of samples designated for the source classifier,

while belonging to a specific class. We follow the authors

by using linear SVM as weak learner.

Apart for PMT-SVM-OVA and MultisourceTrAdaBoost-

OVA, which cannot be kernelized, we used all the features

available for each dataset via kernel averaging [8], com-

puting the average of RBF kernels over all available fea-

tures from the dataset at hand and RBF hyperparameters

γ ∈ {2−5, 2−6, . . . , 28}. The trade-off hyperparameter

C ∈ {10−5, 10−6, . . . , 108} was tuned by 5-fold cross-

validation for the no transfer baselines. In case of model-

transfer algorithms, source model’s C value was reused.

Since MultisourceTrAdaBoost-OVA is a non-kernel

baseline, to test its performance over multiple features we

concatenated them. This approach proved computationally

unfeasible for PMT-SVM-OVA (we used the implementa-

tion made available by the authors). Thus, to compare fairly

with it, we also did run experiments using, for all methods, a

linear kernel and a single feature (SIFT for the Caltech-256

and PHOG for the AwA). We refer to this setting as linear.
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Figure 2: Experimental results for N + 1 = 5, Caltech-256. From left to right, columns report results for the unrelated,

mixed and related settings. Top row: no transfer baselines, linear case. Middle row: transfer learning baselines, linear

case. Bottom row: transfer and competitive no transfer baselines, average of RBF kernels over all features. Stars represent

statistical significance of MULTIpLE over MultiKT-OVA, p < 0.05.

5.3. Evaluation results

Mimicking the setting proposed in Tommasi et al. [18],

we performed experiments on different groups of related,

unrelated and mixed categories for both databases.

For the Caltech-256 database, the related classes were

chosen from the “quadruped animals” subset; the unrelated

classes were chosen randomly from the whole dataset, and

the mixed classes were taken from the “quadruped animals”

and the “ground transportation” subsets, sampled in equal

proportions. For the AwA database, the related classes were

chosen from the “quadruped animals” subset; the unrelated

classes were randomly chosen from the whole dataset, and

the mixed classes were sampled in equal proportions from

the subsets “quadruped animals” and “aquatic animals”.

This setting allows us to evaluate how MULTIpLE, and the

chosen baselines, are able to exploit the source knowledge

in different situations, while considering the overall accu-

racy. To assess the performance of all methods as the over-

all number of classes grows, we repeated all experiments in-

336133613363



Figure 3: Results for N + 1 = 20, AwA, transfer and competitive no transfer baselines, average of RBF kernels, all features.

Left to right: unrelated, mixed and related settings. Stars represent statistical significance of MULTIpLE over MultiKT-OVA.

creasing progressively their number, with N+1 = 5, 10, 20
respectively. Because of space constraint and redundancy,

only a subset of all experiments is reported here3.

Figure 2 shows the results obtained for N + 1 = 5. The

left column shows the results for the unrelated setting; the

center column shows the results for the mixed setting, and

the right column shows the results for the related setting.

The first row compares the results obtained by MULTIpLE

with those of the no transfer baselines (Section 5.2), using

a single feature and a linear kernel. We see that the perfor-

mance of MULTIpLE is always better than no transfer, and

in two cases out of three is better or on par with Source and

Source+1 (hinge) (unrelated and mixed), while it is always

equivalent to Source+1. This is not the case anymore when

using multiple features through kernel averaging (Figure 2,

bottom row): when using the kernelized version of all algo-

rithms, our approach always performs equal or better than

most baselines, apart for Batch and in rare cases, Source+1

(hinge). Compared to Batch, in two cases out of three (un-

related, related) MULTIpLE performs on par with it. This

is a remarkable result, as the Batch method constitutes an

important reference for the behavior of transfer learning al-

gorithms in this setting (Section 5.2).

Figure 2, middle row, reports results obtained for

MULTIpLE and all transfer learning baselines, as defined

in Section 5.2, for one feature and the linear kernel. We see

that our algorithm obtains a better performance compared

to all the others, especially in the small sample regime. As

our method builds on the MultiKT algorithm, we tested the

statistical significance of our performance with respect to

it, using the Wilcoxon signed-rank test (p < 0.05). In two

cases out of three (related, unrelated), MULTIpLE is sig-

nificantly better than its competitor. This is the case also

when using all features via kernel averaging. We mark these

cases with a star on the plots (Figure 2, middle and bottom

3All experimental results and the source code are available at

http://www.idiap.ch/˜ikuzbor.

row). With respect to the transfer baselines, the related set-

ting seems to be the one more favorable to our approach.

With respect to the no transfer baselines, MULTIpLE seems

to perform better in the unrelated case.

The performance of PMT-SVM-OVA and Multisource-

TrAdaBoost-OVA is disappointing, compared with what

achieved by the other two transfer learning baselines, i.e.

MultiKT and MKTL. This is true for all settings (re-

lated, unrelated and mixed). Particularly, the performance

of MultisourceTrAdaBoost-OVA does not seem to benefit

from using multiple features (Figure 2, middle and bottom

row). On the basis of these results, we did not consider these

two baseline algorithms in the rest of our experiments.

Figure 3 shows results for N + 1 = 20 classes on the

AwA dataset, for the unrelated (left), mixed (center) and re-

lated (right) settings, all features (averaged RBF kernels).

For sake of readability, we report here only the baselines

which were competitive with, or better than, MULTIpLE in

the N +1 = 5 case, in at least one setting. We see that here

our algorithm consistently outperforms all transfer learning

baselines, especially with a small training set, while obtain-

ing a performance remarkably similar to Batch, in terms of

accuracy and behavior. The Wilcoxon signed-rank test (p <
0.05) indicates that, in all these experiments MULTIpLE is

again significantly better than MultiKT-OVA. These results

suggest that, as the number of sources grows, our method

gets closer to the Batch performance while using only a con-

siderably smaller amount of data – the ultimate goal of any

effective transfer learning method. Results obtained on the

whole AwA dataset support this claim3.

6. Discussion and Conclusions
All results confirm our claim that the mere extension to

multiclass of existing binary transfer learning algorithms is

not sufficient to address the N −→ N + 1 problem. This is

well illustrated by the gap in performance between MUL-

TIpLE and MultiKT, which is consistent across datasets,
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Figure 4: Results for N+1 = 20, AwA, unrelated: accuracy

over the N sources (left) and over the +1 target (right).

settings and the number of classes. The main difference

between the two algorithms is the term we added into the

objective, that allows to learn the new class, while preserv-

ing the performance on the old classes. The results we have

shown demonstrate the importance of such a term in the be-

havior of the algorithm. One might argue that the worse per-

formance of the transfer learning baselines depends on how

we implemented the OVA extension for such binary meth-

ods. Still, the results obtained by MKTL, the only transfer

learning baseline with a multiclass formulation, clearly in-

dicate that the ability to handle multiple sources by itself

is not the solution. To gain a better understanding on how

MULTIpLE balances the need to preserve performance over

the sources, and the learning of the target class, we show the

accuracy plots for the AWA experiments, N + 1 = 20, un-

related, for the N sources and for the +1 target separately

(Figure 4). MULTIpLE and Batch present similar behav-

iors, as they both preserve the accuracy over the N sources.

Both methods do not aggressively leverage over sources

for learning the target class, as done by MultiKT-OVA and

MKTL (to a lesser extent), although MULTIpLE seems to

be able to do so better than Batch. Thus, our choice of op-

timizing the overall accuracy has resulted in a method able

to reproduce the behavior and the performance achievable

if all training data would be accessible. Note training with

all the data might not be possible, nor desirable, in all appli-

cations. As opposed to this, the OVA extensions of existing

binary transfer learning algorithms are more biased towards

a strong exploitation of source knowledge when learning

the target class, at the expenses of the overall performance.

How to combine these two aspects, namely how to design

principled methods able to obtain an overall accuracy com-

parable to that of the Batch method while at the same time

boosting the learning of the target class, remains the open

challenge of the N −→ N + 1 transfer learning problem.
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