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Abstract

We present a novel method for aligning images in an
HDR (high-dynamic-range) image stack to produce a new
exposure stack where all the images are aligned and ap-
pear as if they were taken simultaneously, even in the case
of highly dynamic scenes. Our method produces plausible
results even where the image used as a reference is either
too dark or bright to allow for an accurate registration.

1. Introduction

High-dynamic-range (HDR) imaging has started to make

its way to commercial products, such as smartphones. The

limited dynamic range of most imaging sensors often fails

to capture the irradiance range visible to the human eye in

common real-world scenes. A relatively cheap way to ad-

dress this limitation is to capture a stack of differently ex-

posed pictures of the same scene and merge them, effec-

tively extending the captured range [18, 6]. However, be-

cause the merging process assumes that the pixels of the

different images are aligned, any motion—either due to the

motion of the camera or to anything moving in the scene—

will cause ghosting artifacts (if the motion is large) or blur-
ring artifacts (if the motion is small).

A common approach to address the artifacts due to the

camera motion is to first register the low-dynamic-range

(LDR) images, a task complicated by the dramatic changes

in brightness across the stack, since most registration algo-

rithms rely on the brightness constancy assumption [31].

Ward [27] and Jacobs et al. [12] address the brightness

changes by binarizing each exposure and determining the

optimal translation and rotation, respectively. Tzimiropou-

los et al. [26] compute the gradient map for each exposure

and find a similarity transformation in the Fourier domain.

Tomaszewska and Mantiuk [25] used SIFT features to es-

timate a global homography. However, even assuming a

perfectly static scene, such rigid transformations would be

accurate only for planar scenes, or scenes where all the ob-

jects are far from the sensor’s plane.

Much research has focused on additional corrections for

subjects moving in the scene, under the assumption that the

Figure 1. Our method takes as an input an exposure stack of a

dynamic scene captured with a hand-held device (left column, note

the dramatic chances in the scene); it selects a reference image

and, for each of the other images in the stack, synthesizes an image

that looks as if it was taken at the same time as the reference, only

with different exposure settings (middle column). These images

can then be fused into a single image showing more details (right).

Our approach allows gathering data from the images in the stack

even for regions that are severely under- or over-exposed in the

reference, a main limitation of many state-of-the-art approaches.

camera is static, or that a global registration of the back-

ground can be performed. Gallo et al. [7] model the expo-

sure change and determine patches that might contain mov-

ing objects by counting the pixels that deviate from the pre-

dicted behavior. Raman and Chaudhuri [23] follow a simi-

lar idea, but they model the intensity change and detect the

motion in irregular patches obtained by grouping pixels into

super-pixels. These algorithms pay for the reduction of mo-

tion artifacts with a potentially reduced dynamic range, as

they drop data that does not follow the registration of the

background.

Some algorithms incorporate the de-ghosting process in

the weighting used to merge the pixels. Jacobs et al. [12]

detect pixels that would cause ghosting based on the vari-

ance and entropy across the exposure stack. Khan et al.
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[14] use kernel density estimators to compute the probabil-

ity that a pixel belongs to the background and weight the

pixel based on the computed probability. Heo et al. [10] use

a weight that emphasizes well-exposed pixels and a second

weight that enforces consistency across spatial and expo-

sure domains. Zhang and Cham [29] propose to weight the

pixel using local gradients across the exposure stack as a

measure of consistency. While computationally efficient,

these approaches have the drawback that they downweight

or completely ignore pixels of moving objects except, pos-

sibly, in one of the images. At the same time they may mix

in inconsistent pixels, even if with a reduced weight.

More sophisticated methods attempt to establish dense

correspondences between the reference image and the other

images in the stack. However, standard optical flow al-

gorithms [2] rely on the brightness constancy assumption,

which is always violated, by construction, in the case of ex-

posure stacks. Kang et al. [13] boost the image intensity to

compensate for this and use a standard optical flow to refine

the correspondence mapping initialized by a global registra-

tion. Zimmer et al. [30] propose to compute the optical flow

in the gradient domain which is assumed to remain constant

as exposures vary. Our earlier work [11] uses the method

by HaCohen et al. [9] to find dense correspondences; wrong

correspondences are then detected and corrected by pasting

small patches transformed with local homographies. The

recent method by Sen et al. [24] 1 converts each image into

a linear space inverting the camera response function, and

selects an image as the reference for the final HDR image.

Using a variant of PatchMatch, they reconstruct an HDR

image which maximizes the similarity with the reference

image at the pixel level while minimizing the bidirectional

similarity metric with the remaining images.

In general, methods dealing with non-rigid scene motion

fall in one of two categories, each with its limitations:

• Algorithms that do not define a reference image and

incorporate de-ghosting in the definition of the pixel

weights. These can only produce good results when

moving objects occupy different regions of the scene

in each image of the stack; for the same reason, these

approaches tend to require larger stacks, to optimize

the chances of capturing the background more often.

• Approaches requiring the definition of a reference

image. Pixels that are saturated or severely under-

exposed in the reference image are generally impos-

sible to match: the only pixels with valuable informa-

tion about the irradiance in those areas are therefore

discarded (either because they are detected as outliers,

or because they are not matched successfully).

1Sen et al. [24] developed their method concurrently to ours; the paper

and code became available only after our original submission, but for com-

pleteness we still include comparisons against it in the final version of this

paper.

The method we propose falls in the second category.

However, while it capitalizes on the benefits of selecting

a reference image (producing a consistent image [7]) it also

enables us to recover from the other images the regions that

contain clipped pixels (either too dark or too bright) in the

reference image.

In a nutshell, from each source image S in the stack we

attempt to build a new image that looks as if it was taken at

the same time as the reference R, but with the exposure set-

tings of S. For the areas where R provides sufficient detail,

the process is driven by the reference image to ensure con-

sistency. For the remaining areas, we use other constraints,

as reliable direct registration becomes impossible, and we

rely mostly on the information in the source image. To get

consistent results even when parts of the scene are moving,

we ensure that the boundaries of the saturated regions are

consistent with both R and S.

Our contribution is a novel method for generating a reg-

istered stack from a set of mis-aligned images of dynamic

scenes, similar to Hu et al. [11] and Sen et al. [24]. How-

ever, as opposed to their work, our algorithm can be applied

to generic non-linearized exposure stacks, and is also capa-

ble of dealing with large saturated regions in the reference

image, even under large camera motion or scene object dis-

placements. Besides, our method propagates both intensity

and gradient information in the reconstruction process, so

we can preserve more detail from the exposure stacks.

2. Method
Our algorithm works by first selecting the image with

the highest number of well-exposed pixels to be the refer-
ence image R [13, 7]. Then, for each source image S in

the stack, it synthesizes a new image L (the latent image)

that looks like the reference image R, only exposed like S.

In particular, the resulting latent image L has two important

properties. First, where the reference R is properly exposed,

L has image content that is geometrically compatible with

R. In Figure 1, where the reference R is the middle expo-

sure, this means for instance that the arms of the woman in

the latent images L must appear in the same location as they

appear in R. Second, if the reference R has areas that are ei-

ther too dark or too bright to perform a reliable registration,

the resulting L must have content from S that could plausi-

bly appear there: for example, for areas that are saturated in

the reference, such as some regions outside the window in

Figure 1, we just need to find content from the source S that

matches the neighboring areas (which we can reliably regis-

ter) and whose luminance could plausibly match the bright

pixels in the reference: the latent image L simply cannot be

“too dark” there. If the reference had been the darkest im-

age (top row in Figure 1), the areas posing these difficulties

would have been the dark areas, where details are lost due

to clipping.
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Figure 2. For each source image S in the stack, we want to syn-

thesize the latent image L we would have if we had captured it

at the same time as the reference image R, but with the same ex-

posure settings as used to capture S. τ is an intensity mapping

function accounting for how the pixel values change under the ex-

posure change. Pi is the p × p patch centered at pixel i, and the

superscript {R,L, S} indicates the image it is from. u(i) maps

pixel locations from L (and R) to S.

The same process is applied to all the images in the stack,

one at a time, so below we will focus on a pair of images.

Assuming that we have images 1, ..., 5 (ordered by exposure

time); if the reference image is 3, we first register 2 and 4 to

the reference 3, then 2 acts as the reference for 1, and 4 acts

as the reference for 5.

Figure 2 illustrates our process in more detail. The ref-

erence R is on the left (red), the source S is on the right

(blue), and we want to create a latent image L in the center

(green) so the shapes of objects in L look like they do in

R, except that they have the luminance range of S. We first

initialize L by applying a color mapping function τ to R,

where τ is initialized using the intensity histograms of the

images [8], and is later refined as L is updated. We then

find dense correspondences between L and S at the patch

level using the Generalized PatchMatch algorithm [3]. If

the reference patch PR
i is not clipped, that is, it is mostly

mid-tones and does not contain too dark or bright pixels,

PatchMatch looks for a match from S. However, if PR
i is

clipped, neither the color mapping τ , nor direct registration

is reliable. In this case we modify the PatchMatch to find

a patch PS
i that could plausibly match PR

i : pixels in PS
i

should match the pixels in PR
i that are not clipped, and the

rest of the pixels in PS
i would clip under the current τ . Note,

however, that those pixels don’t necessarily clip in S, allow-

ing us to bring in more detail to L than is available in R. As

we progress, the intensity mapping function τ is updated

and refined based on the dense correspondence. To avoid a

bad local minimum and to better synthesize clipped areas,

these processes are executed iteratively using a coarse-to-

fine schedule. We now proceed to explain the details of the

whole system.

2.1. Two-picture Synthesis Algorithm

We wish to synthesize the latent image L that looks just

as if R was taken using the exposure setting of S: in other

words, L should be consistent with R everywhere in ge-

ometry. To account for this, we need to define a radiance
consistency measure Cr between two images. To maximize

the applicability of our algorithm, we do not want to limit

its scope to RAW (linear) images. Image signal proces-

sors (ISP) apply various non-linear transformations to the

almost-linear pixel values; these highly non-linear transfor-

mations are usually much more sophisticated than simple

gamma compressions, and they sometimes even depend on

the image content [11, 15], making it difficult or even im-

possible to invert the transformations. Hence, instead of

linearizing the input images, we take inspiration from the

energy definition by Darabi et al. [5], but we account for a

generic intensity mapping function τ :

Cr(L,R, τ) =
∑
i∈Ω

( d(L, τ(R)) + α d(∇L,∇τ(R)) ) ,

(1)

where, for clarity, we omitted the dependency of R and

L from the pixel location i. Ω is the image domain and

d(x, y) = ‖x − y‖2. For every pixel i in either image,

we extract six channels: the three RGB components and the

three corresponding gradients. The parameter α balances

the color and gradient (texture) consistencies. In addition

to boosting the details of the texture [1, 21], using gradi-

ents helps to compensate for exposure changes [30]. The

intensity mapping function τ describes how the RGB values

change from the reference to the source image.

Minimizing the cost of Eq. 1 is an ill-posed problem, so

we need additional constraints to better define L. We can

define a term structurally very similar to Eq. 1, that encour-

ages texture consistency between L and the source image

S:

Ct(S,L, u) = (2)

1

p2

∑
i∈Ω

(
d(PL

i , PS
i+u(i)) + α d(∇PL

i ,∇PS
i+u(i))

)
,

where PS
i is a p×p patch centered at i in image S (same for

PL
i and L) and u(i) maps patches in L to the corresponding

patches in S, see Figure 2. If α is set to zero, this term

resembles the coherence term defined by Wexler et al. [28]

and Kopf et al. [16]. We operate in the RGB color space and

only search over translations, which makes the updates of L
faster but does not lower the quality of our results, given the

expected changes in an exposure stack.

Now we can combine the two energy functions and find

the desired image:

L∗ = arg min
L,τ,u

( Cr(L,R, τ) + Ct(S,L, u) ) . (3)

2.1.1 Optimization Algorithm

We propose to decompose the optimization problem in Eq. 3

into three relatively simple sub-optimizations, and then iter-
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ate between them until convergence. For the coarsest level,

we initialize τ using the intensity histograms of the im-

ages [8] to minimize the effect of misalignment between

the images, initialize L = τ(R), and apply the Generalized

PatchMatch on S and L to initialize u.

In the first step, given the existing L, we optimize for u;

note that u only appears in Ct, Eq. 3. Ct can be minimized

globally with respect to u, as the latter is independent for

each pixel, see Eq. 2. The optimal solution can therefore

be reduced to finding the nearest-neighbor patches in S for

each patch PL
i . Instead of a complete search, we use Gen-

eralized PatchMatch [3].

In the second step, given the existing u and τ , we seek to

find a solution L that minimizes Eq. 3; note that this equa-

tion is quadratic in L and it is therefore equivalent to the

following quadratic function:

L∗ = argmin
L

( d(L, T ) + α d(∇L,∇T ) ) (4)

where, using Eqs. 1 and 2, and summing over the pixels

in the patches rather than over than over the patches them-

selves, Eq. 2, we define the auxiliary image T as

T (i) =
1

2
τ(R(i)) +

1

2p2

∑
j∈n(i)

S(i+ u(j)), (5)

where n(i) is a p× p window centered at i. Basically, T is

the weighted average of the colors of all the similar pixels in

S and the patch in τ(R), while∇T denotes the weighted av-

erage of the gradients. Eq. 4 is a Screened Poisson equation,

which can be optimized efficiently in the Fourier domain

[4]. The square function d(x, y) we defined is computation-

ally efficient, but the result is very sensitive to outliers. To

avoid the effects of outliers, we add two weighting terms:

T (i) =
1

s
[wτ (i)τ(R(i)) +

1

p2

∑
j∈n(i)

wu(j)S(i+ u(j))],

(6)

where wτ (i) and wu(i) reflect the confidence of the inten-

sity mapping function τ(·) and the geometric mapping u(·)
for pixel i, respectively, and s is the normalization factor

wτ (i) +
1
p2

∑
j∈n(i) wu(j). Note that with two additional

weighting terms, if a matching pixel is in a useful range in

both R and S we combine the information. If one of the

two images is bad, we use the other image. Finally, if both

images are bad, we use only the reference.

The intensity mapping function τ , which describes how

the RGB values change from the reference to the source im-

age, cannot be accurate across the whole range, due to satu-

ration and under-exposure. For example, if S was captured

with a shorter exposure time (darker) than R, and if the top

of the range in the domain of R is saturated, τ will be flat

in that area, thus not providing any relevant information;

all the useful information for registration and HDR image

creation is in S. The opposite may be true when S was

captured with a longer exposure time, see inset, where red

bands show the range in which the mapping τ is not reliable.

We choose wτ to reflect the quality of τ(R(i)): wτ (i) is ε (a

small constant) if R(i) is severely over- or under-exposed,

but if the quality of pixel i is good, wτ (i) is 1.

The weight function wu(i) indicates the confidence in

the mapping u(i). HaCohen et al. [9] define this confidence

using the local consistency ratio of u(i), but this may fail

for the regions where over- or under-exposure causes the

texture to be weak. Instead, inspired by Wexler et al. [28],

we define:

wu(i) =

⎧⎪⎪⎨
⎪⎪⎩
exp

(
−d(τ(PR

i ), PS
i+u(i))

2σ2
1

)
if R is not clipped

exp

(
−d(PR

i , τ−1(PS
i+u(i)))

2σ2
2

)
if R is clipped

(7)

Intuitively, we normally want to use pixels from S when

they are consistent with R (the first case in Eq. 7). How-

ever, consider an area that is saturated in R and assume that

we are working with an S that is darker, and therefore bet-

ter exposed. In such regions, τ(PR
i ) is not reliable and we

want to relax the requirement that patches from S have to

match, or we would reject all the patches in that area. On

the other hand, if a patch in S is so dark that it wouldn’t

possibly become saturated in R we also don’t want to allow

its use. Basically, by applying τ−1 to PS
i+u(i) first (the sec-

ond case in Eq. 7), we say that if this patch from S would

saturate we are still willing to use it. In this way, the clipped

areas of R in L can be reasonably synthesized using the in-

formation from S. σ1 and σ2 are data-dependent parameters

controlling the smoothness of the induced error surface and

we compute them as Wexler et al. [28].

In the third and last step, given the existing L, we need to

re-estimate the intensity mapping function (IMF) τ (Eq. 1)

[17, 8, 22, 9, 11]. We follow the parametric models of Ha-

Cohen et al. [9] and Hu et al. [11],

τc = argmin
τ

∑
i∈Ω
||τ(Rc(i))− Lc(i)||1, (8)

with τ ′c(·) ≥ 0, τc(·) ∈ [0, 1], and c ∈ {r, g, b}, but with

two main differences: first, instead of using RANSAC to re-

move outliers, we use the L1 norm, which can be optimized

using iteratively reweighed least squares (IRLS). Second,
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in addition to the hard monotonicity constraint, we also re-

quire the function to be within [0, 1], and be convex (or con-

cave) if the exposure time of R is longer (or shorter) than

that of S. We found that this additional constraint creates a

better, generally smoother IMF.

2.1.2 Multi-scale Solution

At each of the steps described above, the objective func-

tion is guaranteed to not increase. To further enforce a bet-

ter local optimum, and to speed up convergence, we use

a pyramid approach. The optimization starts at the coars-

est scale of a Gaussian pyramid, and the solution is propa-

gated to finer scales. When moving from a level to a finer

one, three variables need to be propagated; we transfer τ
as is, and linearly interpolate the mapping u. However, we

found that linear interpolation of the latent image L leads to

blurry results. Therefore, we propagate the solution using

the weights wτ and wu described above; the rationale is that

each pixel of image L at a given scale should be initialized

with the corresponding pixel from the reference image from

the same level of the pyramid (appropriately mapped with

τ ) if it is within a reasonable range. Otherwise, it should be

initialized using the source image S (using the mapping u
derived from the previous level).

3. Results
We now compare the performance of our algorithm to

state-of-the-art approaches. As mentioned in Section 1, we

are only aware of four methods that attempt to address the

general case of camera motion and scene changes at the

same time [13, 30, 11, 24]. All the fused results were

generated using the method by Mertens et al. [20], with

the exception of Figure 6, which was tonemapped with the

method by Mantiuk et al. [19] to allow for a fair comparison

with the method by Sen et al.
Figures 3 and 4 show results sensibly better than Zim-

mer et al. and Kang et al. respectively.When the refer-

ence image is reasonably well-exposed everywhere, our

method produces very similar results as Hu et al. How-

ever, when part of the reference is saturated, as in Figure 5,

Hu et al. discard valuable information from the shorter ex-

posure (first row, middle image); our method, on the other

hand, successfully captures all the available information in

the synthesized latent image (second row, middle image).

Sen et al. assumes exposure stacks of RAW or linearized

images. For the examples shown in Figure 5, this assump-

tion is violated because no estimation of the camera re-

sponse function was available, and their result shows visible

artifacts. Figure 6 shows another case with a large saturated

region. We use RAW images as the input for the algorithm

by Sen et al. and their non-linear counterpart (first row in

Figure 6) as the input to our method. Note that the halos

Figure 3. Comparison with Zimmer et al. [30]. The top image

shows our result. The two bottom rows show blow-outs of two

different regions of the image that are problematic for Zimmer et
al. (left). Our algorithm does not produce artifacts (right). Images

courtesy of Henning Zimmer.

in the results by Sen et al. are not caused by the tonemap-

ping algorithm, rather they are artifacts of their registration

algorithm. In our result (bottom, rightmost image in Fig-

ure 6) the sky is more faithful to the original images and

no artifacts are introduced. As we mentioned in the previ-

ous section, we attempt to preserve as much information as

possible from the exposure stack by using both the intensity

and the gradients in our reconstruction.

As for any patch-based algorithm, our results are some-

what affected by the patch size p. In all our examples we

used p = 10. However, in some situations this may be too

small a neighborhood. Figure 7 shows an extreme case of

a stack comprising only two images, with a region that is

saturated in both images, demonstrating one of the limita-

tions of our method. Note that any existing method would

be hard-pressed to achieve decent results here because the

dramatic change of exposure makes it extremely difficult to

match pixels across the images; the fact that the stack con-

tains only two pictures also constitutes a challenging situ-

ation for most state-of-the-art algorithms. Our method can

register the images correctly despite selecting a reference

image that has a completely saturated sky. However, since

the sun is saturated in both images, our algorithm fills in

the saturated sun using non-saturated pixels from S. Since

this region is saturated, the algorithm technically did the

right thing: it filled the region with the available informa-

tion. However, most photographers would prefer the sun

to be left un-touched; in this case a simple increase of the

patch size to p = 15 solves the problem.
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Figure 4. Comparison with Kang et al. [13]. Note the large motion of the head in the original images (left). The middle image is the result

by Kang et al., note that the artifacts around the ears and muzzle. On the right is our result. Images courtesy of Sing Bing Kang.

Figure 5. A comparison with Hu et al. [11] and Sen et al. [24]. The first column shows the original images. The reference, as selected by

Jun et al., is the middle exposure. Notice that the sky is almost completely saturated, causing their algorithm to disregard useful information

in the short exposure (top row, middle image), and leading to poor quality in the fusion result (top right). Sen’s algorithm is designed to

work on linear exposure stacks. For this non-linear stack, a reliable estimation of the camera response function would require acquiring

a stack of registered images. Partially due to the non-linearity of the input images, their method fails in reconstructing the content for

the saturated regions in the reference: both reconstructed HDR image (middle row, rightmost image) and the intermediate aligned shorter

exposure stack (middle row, middle image) show a degraded quality. With the same reference frame our algorithm can synthesize a novel

image which is completely consistent with the reference, and also captures all the details of the sky (bottom row, middle image). This

directly reflects in the high quality of our exposure fusion result (bottom row, rightmost image).
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Figure 6. Another comparison with Sen et al. [24]. The first column shows the original images in the stack, the middle exposure is

selected as the reference. For the method by Sen et al., we first linearize the original images and use the linearized exposure stacks as

the input. Their algorithm generates a plausible result (top middle and right). However, their method still suffers from various artifacts.

For example, the blurred sky in the saturated region and the halo around the dome are unexpected. Note that the halo in the reconstructed

shorter exposure is not caused by tone mapping but the errors in HDR reconstruction. For the tone mapped HDR image (top right), the

reconstructed sky is not natural for the saturated region in the reference. Our algorithm can synthesize an image (bottom middle) that is

completely consistent with the reference and also preserves as much information as possible from the whole exposure stack. Our tone

mapped HDR image is plausible and virtually artifact free (bottom right).

Figure 7. A very challenging 2-image stack. The original images (left) are dramatically separated in terms of exposure time: the areas that

are correctly exposed in one are barely visible in the other. An interesting feature of this stack is that the region around the sun is saturated

in both images. Note that the longer exposure, which we selected as the reference (left bottom), is completely saturated in the sky; our

algorithm attempts to synthesize the saturated region in the source image from other pixels in the same image, thus effectively removing

the sun (middle top). A larger patch size (p = 15) forces the algorithm to leave the sun region untouched (middle bottom). The last column

shows the exposure fusion result for the standard patch size (top) and for the larger patches (bottom).
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4. Conclusions
We have presented a novel method to generate a perfectly

aligned stack from a set of images of a dynamic scene, cap-

tured with a hand-held camera. Four previous methods can

deal with both the camera and scene object motion at the

same time: Kang et al. [13], Zimmer et al. [30], Hu et
al. [11], and Sen et al. [24]. We showed that our method,

like [11] and [24], compares favorably with the first two; in

addition we showed that our method outperforms [11] and

[24] in several ways. It successfully deals with large satu-

rated regions in the reference image, which is the most com-

mon limitation for algorithms that select a reference frame.

Further, our algorithm does not require linear images; this

not only allows to capitalize on the finely tuned process-

ing that cameras perform when compressing the images to

8 bits, but it also extends the applicability of the proposed

approach to a larger set of scenarios.
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