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Abstract

We present an optical flow algorithm for large displace-
ment motions. Most existing optical flow methods use the
standard coarse-to-fine framework to deal with large dis-
placement motions which has intrinsic limitations. Instead,
we formulate the motion estimation problem as a motion
segmentation problem. We use approximate nearest neigh-
bor fields to compute an initial motion field and use a robust
algorithm to compute a set of similarity transformations as
the motion candidates for segmentation. To account for de-
viations from similarity transformations, we add local de-
formations in the segmentation process. We also observe
that small objects can be better recovered using translation-
s as the motion candidates. We fuse the motion results ob-
tained under similarity transformations and under transla-
tions together before a final refinement. Experimental vali-
dation shows that our method can successfully handle large
displacement motions. Although we particularly focus on
large displacement motions in this work, we make no sac-
rifice in terms of overall performance. In particular, our
method ranks at the top of the Middlebury benchmark.

1. Introduction
Inferring a dense correspondence field between two im-

ages is one of the most fundamental problems in Computer

Vision. It started with Horn and Schunck’s original opti-

cal flow work [15] in the early eighties. There have since

been many great advances. However, a good solution still

remains elusive in challenging situations such as occlusion-

s, motion boundaries, texture-less regions, and/or large dis-

placement motions. This paper addresses particularly the

issue of large displacement motions in optical flow.

Most existing optical flow formulations are based on lin-

earizing the optical flow constraint which requires an ini-

tial motion field between the two images. In the absence

of any prior knowledge, they use zero as the initial motion

field which is then refined by a gradient-based optimization

technique. Gradient-based optimization methods can only

Figure 1. Top left: one of two “Grove2” images from the Middle-

bury dataset. Top right: color-coded ground-truth motion. Bot-
tom left: color-coded motion computed from an approximate n-

earest neighbor field computed using [17]. We color the locations

with incorrect motions as red. One can see that the motion of many

parts of the image is correct. Bottom Right: the final motion re-

sult from our algorithm.

recover small deviations around the initial value. To handle

large deviations, i.e. large displacement motions, most op-

tical flow methods adopt a multi-scale coarse-to-fine frame-

work which sub-samples the images when going from a fine

scale to a coarse scale. Sub-sampling reduces the size of the

images and the motion within, but at the same time, the re-

duction in image size leads to a loss of motion details that

any algorithm can recover. Because of sub-sampling, most

methods that rely on the coarse-to-fine framework perform

poorly on image structures with motions larger than their

size. This is an intrinsic limitation of the coarse-to-fine

framework.

The intrinsic limitation of the coarse-to-fine framework

comes from the zero motion assumption which makes sense

when there is no prior information on the motion. However,

it turns out that it is possible to obtain reliable motion infor-

mation for a sparse set of distinct image locations using ro-

bust keypoint detection and matching such as [19]. One can
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incorporate the sparse matches into a dense field through

either motion segmentation [16], constraints [9] or fusion

[26]. Since keypoints are detected and matched in the en-

tire image, in theory these methods have no restrictions on

the amount of motion they can handle. However, in practice

they are subjective to the performance of the keypoint de-

tection and matching algorithms. In particular, regions with

weak texture often do not yield reliable keypoints and their

correspondence problems remain ambiguous.

In this paper, we propose to incorporate a different type

of correspondence information between two images, name-

ly nearest neighbor fields [5]. A nearest neighbor field be-

tween two images is defined as, for each patch in one image,

the most similar patch in the other image. Computing exac-

t nearest neighbor fields can be computationally expensive

depending on the size of images but there exist efficient ap-

proximate algorithms such as [5, 13, 17, 21]. Approximate

nearest neighbor field algorithms are shown to be effective

in terms of finding visually similar patches between two

images. The first key observation in this paper is that al-

though not designed for the motion estimation problem, ap-

proximate nearest neighbor fields contain a sufficiently high

number of patches with approximately correct motions (see

Figure 1). However, one cannot directly use nearest neigh-

bor fields as the input for a nonlinear refinement because

they often contain a huge amount of noise. Our second key

observation is that most images are composed of a smal-

l number of spatially contiguous regions that have similar

motion patterns. Based on this observation, we can view

the problem as a motion segmentation problem. In partic-

ular, we segment the images into a set of regions that have

similar motion patterns using a multi-label graph-cut algo-

rithm [8]. We compute the motion patterns from a noisy

nearest neighbor field using an algorithm that is robust to

noise.

There are two issues in the motion segmentation formu-

lation which are the type of motion patterns and the number

of them. These two issues are related in that more complex

motion patterns can describe the image with fewer pattern-

s. However, the more complex are the patterns, the more

difficult they are in terms of inferring them from a noisy

nearest neighbor field. In this paper, we choose to use sim-

ilarity transformations as the motion pattern. Most images

contain small deformations that cannot be modeled by sim-

ilarity transformations. This leads to errors in motion seg-

mentation such as bleeding observed in the results of [16].

Our third key observation is that it is not necessary for the

motion segmentation to obtain perfect results in terms of

motion estimation, as long as the error is within the limit

of a typical optical flow refinement. Based on this observa-

tion, we propose to allow for small deformations on top of

the similarity transformations in motion segmentation.

Finally, we observe that although motion segmentation

with similarity transformations and local deformations is

very effective in terms of capturing the overall motion be-

tween two images, it may sometimes miss objects of small

scale. We experimentally observed that small objects can

be reliably recovered under a translational motion pattern.

Therefore, we perform a fusion between the motion seg-

mentation result under translations and that under the simi-

larity transformations before a final refinement.

1.1. Related Work

There is a huge body of literature on optical flow follow-

ing the original work of Horn and Schunck [15]. It is be-

yond the scope of this paper to review the entire literature.

We only discuss the papers that address the large displace-

ment motion problem as that is the main focus of this work.

The coarse-to-fine framework was first proposed in [2,

12]. It has since been adopted by most optical flow algo-

rithms to handle large displacement motions. [1] was prob-

ably the first to note that the standard coarse-to-fine frame-

work may not be sufficient. They proposed to modify the

standard framework by using a linear scale-space focusing

strategy to avoid convergence to incorrect local minima. In-

stead, Steinbruecker et al. [22] proposed a new framework

which avoids warping and linearization. However, the al-

gorithm performs an exhaustive search for candidate corre-

spondences which can be computationally expensive. Brox

and Malik [9] proposed to add robust keypoint detection

and matching such as the SIFT features [19] into the clas-

sical optical flow framework which can handle arbitrarily

large motion without any performance sacrifice. Xu et al.

[26] also proposed to use similar robust keypoints. Instead

of adding keypoint matches as constraints, they expand the

matches into candidate motion fields and fuse them with the

standard optical flow result. Both [9] and [26] are based on

keypoint detection and matching algorithms and may suffer

in regions with weak texture due to lack of reliable key-

points.

Our work is related to [16] where motion segmentation

is also used to deal with large displacement motions. The

differences are that we use nearest neighbor fields as the

input and we allow local deformations in motion segmen-

tation, both of which are shown to improve the overall per-

formance. Motion segmentation is related to the so-called

layer representation in optical flow [24, 25]. The advan-

tages having an explicit segmentation are that we can incor-

porate simple models such as translation or similarity trans-

formations to describe the motion between two images and

integrate the correspondence information within individual

segments. Our work is related to [7, 24] in terms of using

local deformations and to [18, 26] in terms of fusing flow

proposals obtained with different algorithms or with differ-

ent parameter settings. Finally, our work is related to [6]

in terms of using nearest neighbor fields to compute corre-
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spondence. The differences are that [6] uses a variant of

Belief Propagation to regularize the noisy nearest neighbor

fields and we use motion segmentation.

1.2. Contributions

The main contribution of this work is an optical flow that

can handle large displacement motions. In particular we

improve upon existing methods in the following ways:

• We use approximate nearest neighbor field algorithm-

s to compute an initial dense correspondence field. It

turns out the approximate nearest neighbor field con-

tains a high percentage of approximately accurate mo-

tions which can be used by robust algorithms to recov-

er the dominant motion patterns.

• We formulate the motion estimation problem as a mo-

tion segmentation problem and allow local deforma-

tions in the segmentation process. Having local de-

formations significantly reduces the number of motion

patterns needed to describe the motion and therefore

improves the robustness of the algorithm.

• We find experimentally small objects with large mo-

tions are easier to discover under translations. We use

a novel fusion algorithm to merge the motion result

under translations with that under similarity transfor-

mations.

Admittedly, our method focuses on the large displacement

motion issue in optical flow and does not explicitly address

other outstanding issues, such as occlusions, motion bound-

aries, etc. However, our algorithm achieved a top ranking

on the Middlebury benchmark.

2. Our Approach
Our optical flow estimation algorithm consists of the fol-

lowing four steps: (1) Computing an approximate nearest

neighbor field between the two input images, (2) Identi-

fying dominant motion patterns from the nearest neighbor

field, (3) Performing motion segmentation with dominan-

t motion patterns, (4) Local flow refinement by traditional

optical flow formulation.

2.1. Nearest Neighbor Fields (NNF)

Given a pair of input images, we first compute an approx-

imate nearest neighbor field between them using Coheren-

cy Sensitive Hashing (CSH) [17]. As noted in introduction,

the nearest neighbor field is approximately consistent to the

ground truth flow field in majority of pixel locations. Our

empirical study shows that this is a valid assumption for

most cases in optical flow estimation.

Under this assumption, there are two advantages in lever-

aging the nearest neighbor field for optical flow problems.

Firstly, since nearest neighbor field algorithms are not re-

stricted by the magnitude of motions, they can provide valu-

able information for handling large motions in optical flow

estimation, which has been a main challenge for tradition-

al optical flow algorithms. Secondly, although the nearest

neighbor fields are generally noisy, they retain motion de-

tails for small image structures, which would most likely be

ignored by traditional optical flow algorithms.

Directly applying the nearest nearest neighbor field as

an initialization to traditional optical flow algorithms can-

not recover from large errors in the nearest neighbor field s-

ince these algorithms only refine flows locally, which makes

noise handling crucial in our formulation.

The patch size w used in the NNF computation is an

important parameter in our algorithm. On the one hand,

a larger kernel eliminate matching ambiguity. Especially

in repetitive patterns and textureless regions, a large range

of context is required for accurate matching. On the other

hand, a large kernel has more risk to contain multiple mo-

tion modes. Typically, we choose w = 16 for sequences of

size 640× 480 and w = 32 for high-resolution movies.

2.2. Dominant Motion Patterns

To suppress noise on the nearest neighbor field, here we

propose a motion segmentation-based method by restricting

the initial nearest neighbor field to a sparse set of dominan-

t motion patterns. To achieve this, we fist identify those

patterns robustly based on simple geometric transforma-

tion models between the two images based on an iterative

RANSAC algorithm and then use them to compute motion

segmentation from the nearest neighbor field.

We can simply adopt histogram statistics as in [14] to

extract K most frequent motion modes and use them as

the dominant motion patterns. This would work well if the

underlying motions only consist of translations. However,

when the scene contains more complex rigid motions such

as rotation and scaling, the number of modes required for

accurately representing the underlying motion field can be

very large.

To address this problem, we can extract the dominan-

t motion patterns under more sophisticated models such

as similarity/affine transformations. In other words, the

problem is to estimate dominant projection matrices P =
{P1, ..., PJ} from the nearest neighbor field. There have

been several works (e.g. [16]) adaptively estimating mul-

tiple homographies from sparse SIFT correspondences by

RANSAC [20], but they generally do not eliminate corre-

spondences deemed as “inliers” and add in perturbed in-

terest points to avoid elimination of too many correspon-

dences and true independent motions, which is also named

as “Phantom motion fields” in [16].

As in these methods, if we do not eliminate “inliers”,

the procedure will be biased towards large moving objects,
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(a) RubberWhale (b) Ground Truth

(c) SIFT [16] (d) PatchMatch

Figure 2. A comparison of dominant motion patterns extracted

from sparse SIFT correspondences and a dense nearest neighbor

field. (a) The RubberWhale example [4], (b) The ground truth,

(c)(d) Th similarity transformations inferred with dominant mo-

tion patterns extracted from sparse feature correspondences and

the nearest neighbor field, respectively.

which may cause a problem for relatively small objects such

as a flying tennis. It is possible that the true motion pattern

corresponding to a small object cannot be identified even

with a large number of RANSAC trials.

Here, we adopt a more robust approach by removing

only those “inliers” with high confidence values (samples

which are sufficiently close to the current motion pattern)

during the iterative RANSAC-based motion estimation pro-

cess. Also, the large number of potential correspondences

offered by the nearest neighbor field allows us to estimate

the motion patterns robustly even for small objects or non-

texture scenes.

Figure 2 shows an example from the Middlebury bench-

mark [4], which demonstrates the advantage of our method

over a sparse feature correspondence-based method (e.g.

[16, 26]). As we can see from the figure, due to lack of

textures on the cylinder, the SIFT-based estimation [16]

cannot reconstruct the motion of the rotating cylinder ac-

curately. In contrast, our dense correspondence-based

method closely reconstructs the ground truth with a simi-

larity transformation-based motion pattern.

In our implementation, we use the dominant motion pat-

terns extracted from both translation and similarity transfor-

mation. The reason is that motion modes from offset his-

tograms is complementary to motion patterns from similar-

ity transformations, i.e. translation models can more robust-

ly identify motions on small independently moving objects

and covers motions unexplainable with the set of estimated

similarity transformations. We also tried to complement our

motion models with affine transformation, but we found that

it is quite sensitive to errors in the original nearest neighbor

field due to its increased DOF.

(a) Direct Labeling (b) Perturbed Model

(c) Direct Labeling (d) Perturbed Model

Figure 3. The Effect of Motion Pattern Perturbation. Motion seg-

mentation result on the Venus and Hydrangea examples [4]. (a)(c)

motion estimation without motion pattern perturbation and (b),(d)

with motion pattern perturbation.

2.3. Local Deformations

The set of dominant motion patterns can reconstruct the

ground truth motion field quite well in some cases, but when

there exists non-rigid transformation or local deformation,

it is obvious that the dominant motion patterns alone are not

sufficient to well reconstruct the underlying field. To deal

with this problem, we allow a small perturbation around

each motion pattern.

We define the set Ω(u) := {u′| ||u′ − u||L2 ≤ ε} as a

small perturbation around motion pattern u. Then, for each

dominant offset u ∈ {u1, ...,uK} or motion pattern u ∈
{P1 ◦ x, ..., PJ ◦ x}, we choose u′ ∈ Ω(ui) that achieves

the smallest matching error |I1(x)− I2(x+ u′)|, where I1
and I2 are the input images, and x denotes a location in I1.

This perturbation step is essential in improving the quali-

ty of motion segmentation using dominant motion patterns.

It can be regarded as a kind of relaxation where we allow

each motion pattern to vary locally. An example is shown

in Figure 3 to demonstrate the advantages of local perturba-

tion on regularizing motion fields and obtaining more accu-

rate motion segmentation.

Another benefit of the perturbation model is that we can

use a compact set of motion patterns to represent a much

wider range of motions: since all u ∈ {ui} is perturbed

from a single motion pattern, we greatly reduce the num-

ber of dominant patterns required to describe the underlying

motion. The time complexity of the motion segmentation

step (described in the following) is super-linear to the num-

ber of motion patterns, so we typically achieve at least 4X

speed up by allowing perturbation (e.g. choosing ε = 1).
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2.4. Motion Segmentation with Dominant Motion
Patterns

Given the set of K candidate motion patterns and their
perturbation models, we formulate the dense motion esti-
mation procedure as a labeling problem:

E(u) =
∑

x

ΦD(I1(x)− I2(x+ u(x)))+

∑

(x,x′)|x∈N(x′)

ΦS(u(x)− u(x′))

s.t. u(x) ∈ {Ω(u1), ...,Ω(P1 ◦ x), ...},

(1)

where N(x) refers to 4-connected neighbors of x; ΦD and

ΦS are robust functions of data consistency and motion s-

moothness. The penalty of assigning u(x) to the concept

ui is defined as the minimum matching error in Ω(ui):

ΦD(ui) := min
u′∈Ω(ui)

Φ(I1(x)− I2(x+ u′(x)) (2)

and the edge preserving motion smoothness is defined as:

ΦS(u(x)− u(x′)) := w(x)Φ(u(x)− u(x′)) (3)

where we use the edge-preserving term w(x) =
exp(−||∇I1||κ) as in [3, 26]. In both Eqn (2) and (3),

we choose the slightly non-convex robust influence function

Φ(s) = (s2+ ε2)α (also named as generalized Charbonnier

penalty) with α = 0.45, which has been proved to work

well in motion analysis [23].
Directly optimizing Eqn (1) is a NP-hard problem, and

the sub-modularity makes it even more challenging. Ac-
cordingly, we optimize it by a two-stage fusion process
which approximates the global minimum. First, we esti-
mate the motion configuration that best explains the data
by choosing from motion patterns obtained from translation
and similarity transformation separately as:

u∗ = argmin
u

Ê(u) s.t. u(x) ∈ {Ω(u1), ...,Ω(uK)} (4)

and

u∗∗ = argmin
u

Ê(u)

s.t. u(x) ∈ {Ω(P1 ◦ x), ...,Ω(PJ ◦ x))},
(5)

where the energy function Ê takes the same form as E
in Eqn (3) but with a smoothness term on the motion pat-

tern type rather than actual flow vectors. We use multi-label

graph-cut [8] to optimize the above two equations. This

step is equivalent to solving for motion segmentation with

the two motion models separately, which is reasonable giv-

en that motion patterns from these two models are estimated

independently so they have overlaps.

Then, we apply a fusion algorithm to adaptively choose

between u∗ and u∗∗ to obtain the final result û as:

û = argmin
u

E(u) s.t. u ∈ {u∗,u∗∗} (6)

Due to its sub-modular condition, we apply a QPBO fusion

[10] similar to [26].

Figure 4. Large Motion of Small Objects. The first and second

columns show the input frames. The third column shows that our

flow result captures the motion of the fast moving, motion-blurred,

textureless balls in each of these three examples.

2.5. Continuous Flow Refinement

For generating final optical flow with sub-pixel accura-

cy, we need final continuous refinement. We achieve this by

simply initializing the motion field with û and estimate the

sub-pixel motion field by a continuous optical flow frame-

work [23].

3. Experimental Results
Regarding the running time, NNF takes about 2s;

RANSAC similarity transformation takes 20s; the multi-

label graph-cut takes about 60s; the final continuous refine-

ment takes 240s. The whole program takes 362s to compute

a high quality flow field for an image pair with resolution

640 × 480 in, for instance, the Urban sequence. Unless

otherwise noted, our flow results in this section include the

final continuous flow refinement step.

Validation of Large Motion Handling

Our first experiment is to validate our NNF-based flow

approach for handling large motions. Figure 4 shows that

we can capture large motions of small textureless objects,

namely the pool ball, the ping pong ball, and the tennis bal-

l. Although all three balls are also heavily motion-blurred

and there is no overlap of the balls between the frames, our

NNF-based method captures their large, fast motions ac-

curately. Feature-based methods will have problems here

because there are no reliable features to track on the ball-

s. Pyramid-based methods that rely on a small motion as-

sumption will also have problems because the balls will be

heavily blurred at the pyramid level for which the small mo-

tion assumption holds.

Figure 5 also shows large motion tests on the Middlebury

benchmark. We can see that LDOF [9] fails on some regions
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Figure 5. Large Motion on Middlebury [4]. (row 1) Urban input

frames. (row 2) LDOF flow [9] (left), Our flow (right). (row 3)

Truck input frames. (row 4) LDOF flow (left), Our flow (right).

due to ambiguity of repetitive patterns and occlusions, and

direct initialization by wrong sparse matching leads to noisy

results. In contrast, our algorithm achieves accurate motion

estimation by fusion of different motion patterns.

Figure 6 also shows large motion tests. But these exam-

ples have large motions of large objects, namely the um-

brellas and the tree. Figure 6 (c),(h) show the noisy NNFs

that nonetheless capture the dominant large motions in the

scenes. Our flow results in Figure 6 (d),(i) show that we can

compute these large motions of large objects quite effective-

ly from the NNF and dominant translations (not shown).

As shown in Figure 6(e),(j), the state-of-the-art MDPOF

method [26] fails to capture many of the motions of the

fast moving, low texture umbrellas and has difficulties at

the motion discontinuity on the left side of the tree.

Further Qualitative Evaluation

Recall that our method computes the flow directly at the

full input resolution. Although we focus on computing large

motions, this property of our algorithm also aids in captur-

ing fine motion details. We show the advantage of direct

(a) Finer Level (b) Coarser Level

(c) [23] (d) NNF (e) Fusion (f) Final Flow

(g) (h) (i) (j)

Figure 8. An example of motion detail preserving problem. (a,b)

Schefflera sequences at different scales; (c) classical coarse-to-fine

method[23] tends to miss some structures; (d) NNF (e) discrete

result motion û; (f) refined flow. (g)(h)(i)(j) are close-up views of

the red box region in (c)(d)(e)(f) respectively.

finest-scale operation in Figure 8. In (a) and (b) we show

the Schefflera sequence at different scales. A direct coarse-

to-fine framework is at risk of missing motion details, due to

being trapped in a local minimum during previous iteration

as shown in Figure 8(c); in comparison, our method is able

to preserve motion details, benefiting from use of the NNF

and handling motion estimation in the finest resolution, as

shown in Figure 8(c,d,e).

To further evaluate our approach, we apply our algorithm

on the Middlebury benchmark [4]. Some results are shown

in Figure 7. As we can see, for sequences in the first colum-

n, we estimate motions with the translation modes to get u∗

and the similarity modes to get u∗∗ in the third and fourth

column, and fuse them adaptively to obtain û as in fifth col-

umn. The fused result is quite consistent with ground truth

(second column), and is an improvement over using only

translations or only similarity transformations.

Close scrutiny reveals that for deforming objects (e.g.,

the cloth in the sequence “Demetrodon”) the dominant off-

set model u∗ performs much better, and for rigid-body mo-

tion (e.g. the cylinder in the sequence “RubberWhale”) u∗∗

generally outperforms u∗. The final fusion step adaptively

selects the “best” model between u∗ and u∗∗, and obtain-

s quite satisfactory results. For example, the fused Rubber

Whale flow in the fifth column uses the small hole flows

in the letter D and the fence from the translation result and

the rotating cylinder flow from the similarity result. The

translation flow roughly approximates the cylinder’s large

rotation with several translations.

Moreover, we find that û can also be served as a good

“initialization” for further continuous refinement. We show

some results in the last column of Figure 7.
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(a) Umbrella 1 (b) Umbrella 2 (c) NNF (d) Our Flow (e) MDPOF [26]

(f) FlowerGarden 1 (g) FlowerGarden 2 (h) NNF (i) Our Flow (j) MDPOF [26]

Figure 6. Large Motion of Large Objects. An example result of our method compared to the state-of-the-art optical flow estimation

algorithms. (a,b) two frames in the Movie “Resident Evil: Afterlife”. (c) The flow implied by the Nearest Neighbor Field. (d) Our final

flow after continuous refinement. (e) the state-of-the-art algorithm [26] fails on the fast moving umbrellas. The second row shows the same

quantities for the FlowerGarden frames (f),(g). Note that, although noisy as a flow field, the NNF in (h) captures the dominant motions in

this scene. (i) Our method produces a good flow result. (j) MDPOF [26] struggles at the large motion discontinuity to the left of the tree.

Input Ground Truth Translation Flow u∗ Similarity Flow u∗∗ Fused Flow û Refined Flow

Figure 7. Our flow results on the Middlebury benchmark [4]. (1st row) Dimetrodon, (2nd row) Grove3, (3rd row) RubberWhale, (4th row)

Venus2. First column: image sequences; second column: ground truth; third column: flow u∗ by translation in Eqn (4); fourth column:

similarity flow u∗∗ in Eqn (5); fifth column: fusion result û by Eqn (6); last column: further refined optical flow initialized with û.

Quantitative Evaluation

Finally, we quantitatively evaluate our algorithm on the

Middlebury benchmark database. In Table 1, we listed the

Average End-point Error and Average Angle Error (AAE)

of our algorithm. At the time of publishing, our method

achieves state-of-the-art quantitative results on the bench-

mark which contains small motions as well.

4. Conclusion

In this work, we introduce a novel PatchMatch flow

method for motion estimation. By exploiting the statistics

of ground truth and PatchMatch correspondences, we find

that they are approximately consistent. Based on this obser-

vation, we extract dominant offsets and rigid-body motion

modes. Then, we propose to solve the discrete optimization

problem by multi-label graph-cut.

The obtained motion can be served as a good start-

244724472449



Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy

AEPE 0.07 0.15 0.18 0.10 0.41 0.23 0.10 0.34

AAE 2.89 2.10 2.27 1.58 2.35 1.89 2.43 1.01

Table 1. Experimental results of our algorithm on Middlebury test set [4].

ing point of further continuous flow refinement. Our ex-

periments on the Middlebury benchmark database clearly

show that our approach can achieve very satisfactory per-

formance.

There are still some limitations of our work. Although

direct dense matching provides pixel-wise motion candi-

dates, raw patch feature is not robust to large appearance

variations such as changes of radiation condition, as well

as scaling and rotation. Sometimes repetitive patterns al-

so cause problems in PatchMatch process since ambigui-

ty could occur. Our next step will focus on a generalized

PatchMatch [11] to handle these problems.
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