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Abstract

Existing multi-model approaches for image set classifica-
tion extract local models by clustering each image set in-
dividually only once, with fixed clusters used for match-
ing with other image sets. However, this may result in the
two closest clusters to represent different characteristics of
an object, due to different undesirable environmental con-
ditions (such as variations in illumination and pose). To
address this problem, we propose to constrain the cluster-
ing of each query image set by forcing the clusters to have
resemblance to the clusters in the gallery image sets. We
first define a Frobenius norm distance between subspaces
over Grassmann manifolds based on reconstruction error.
We then extract local linear subspaces from a gallery im-
age set via sparse representation. For each local linear
subspace, we adaptively construct the corresponding clos-
est subspace from the samples of a probe image set by
joint sparse representation. We show that by minimising
the sparse representation reconstruction error, we approach
the nearest point on a Grassmann manifold. Experiments
on Honda, ETH-80 and Cambridge-Gesture datasets show
that the proposed method consistently outperforms several
other recent techniques, such as Affine Hull based Image
Set Distance (AHISD), Sparse Approximated Nearest Points
(SANP) and Manifold Discriminant Analysis (MDA).

1. Introduction
Image set classification approaches can be categorised

into two general classes: parametric and non-parametric

methods. The former utilise parametric distributions [2, 3,

17] to represent image sets. The similarity between the es-

timated parameters of the distributions can be considered

as a distance measure between two sets. However, the es-

timated parameters might be dissimilar if the training and

test data sets of the same subject have weak statistical cor-

relations [14, 28].

Non-parametric methods can be grouped into two

classes: single-model and multi-model methods. Single-

model methods can be further divided into two groups: sin-

gle linear subspace methods and affine hull methods. Sin-

gle linear subspace methods [14, 29] use principal angles to

measure the difference between two subspaces. As the simi-

larity of data structures is used for comparing sets, subspace

approaches can be robust to noise and relatively small num-

ber of samples [29, 28]. However, subspace methods con-

sider the structure of all data samples without selecting opti-

mal subsets for classification. Affine hull approaches [4, 12]

use geometric distances to compare sets, such as the clos-

est points between two affine hulls by least squares optimi-

sation. As such, these methods adaptively choose optimal

samples to obtain the distance between sets, allowing for

a degree of intra-class variations [12]. However, as only

distances between certain samples are used, structural in-

formation is largely ignored. Furthermore, deterioration in

discrimination performance can occur if the nearest points

between two hulls are outliers or noisy.

Multi-model approaches generate multiple local linear

models by clustering to improve recognition accuracy [9,

27, 28]. In [9], Locally Linear Embedding [21] and k-

means clustering are used to extract several representative

exemplars. The maximal linear patches technique is used

to extract local linear models in [27, 28]. For two sets with

m and n local models, the minimum distance between their

local models determines the set-to-set distance, which is ac-

quired by m× n local model comparisons.

A limitation of current multi-model approaches is that

each set is clustered individually only once, resulting in

fixed clusters of each set being used for classification. These

clusters may not be optimal for discrimination, as undesir-

able environmental conditions (such as variations in illu-

mination and pose) may result in the two closest clusters

representing two different characteristics of an object.

Consider that each cluster can be interpreted as repre-

senting a particular physical property of an object. For

example, let us assume we have two face image sets of

the same person, representing two different conditions.

The clusters in the first set represent various poses, while

the clusters in the second set represent varying illumina-

tion (where the illumination is different to the illumination

present in the first set). As the two sets of clusters capture

two different variations, matching two image sets based on

cluster matching may result in a non-frontal face (eg. ro-

tated or tilted) being compared against a frontal face.
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Contributions. To address the above problem, we pro-

pose to constrain the clustering of each query image set by

forcing the clusters to have resemblance to the clusters in

gallery image sets, while simultaneously using structural in-

formation (similar to single linear subspace methods) and

selecting a subset of samples (similar to affine hull meth-

ods).

Consider two sets to be compared. The proposed ap-

proach first uses sparse approximation to extract local linear

subspaces from the first set. Each local linear subspace is

then represented as a reference point on a Grassmann man-

ifold. For each reference point, we approximate its closest

point on the manifold from a group of points of the second

set. Instead of searching through all the points, we apply

joint sparse approximation to solve the search problem. We

prove that by minimising the joint sparse representation er-

ror, we are approaching the nearest point to the reference

point on the Grassmann manifold. The average distance of

the closest points from the second set to the corresponding

reference points of the first set is taken to indicate the dis-

tance between the two sets. We term the proposed approach

as Sparse Approximated Nearest Subspaces (SANS). Fig. 1

shows a conceptual illustration of the proposed approach.

Comparisons on three benchmark datasets for face, hand

gesture and object classification show that the proposed

method consistently outperforms several recent techniques.

To our knowledge, this is the first paper to show the link

between joint sparse approximation and Grassmann man-

ifolds, and the proposed method is the first that adaptively

constructs the closest subspace to a reference subspace from

the samples of a set.

We continue the paper as follows. In Section 2, we

briefly overview sparse representation and Grassmann man-

ifolds. We then define a Frobenius norm distance between

subspaces over Grassmann manifold in Section 3. The pro-

posed approach is discussed in detail in Section 4, followed

by empirical evaluations and comparisons with other meth-

ods in Section 5. The main findings and possible future

research directions are summarised in Section 6.

2. Mathematical Preliminaries
This section overviews sparse representation as well as

Grassmann manifolds, serving as a ground for further de-

velopments. More rigorous treatment of sparse represen-

tation can be found in [5, 6], while manifolds and related

topics are covered in [1, 7, 11].

2.1. Sparse Representation

Sparse representation is based on the observation that

natural signals can be concisely represented if the signal

basis is properly selected. Consider a single measurement

vector (SMV) x ∈ R
n, which requires n numbers for repre-

sentation in the spatial domain. If the basis of the space is

carefully selected, x can be represented with d atoms (with

d < n), where each atom is an entry in a dictionary. Assume

a dictionary D can represent all possible measurements of

the signal. The sparse representation of x can be achieved

by solving the following �0-norm optimisation:

min
w
‖w‖0 , s.t. x = Dw (1)

where ‖w‖0 is the �0-norm that counts the number of non-

zero elements in w. Greedy pursuit methods iteratively

approximates the sparse solution by finding the local op-

timal at each iteration to solve the equivalent feasible prob-

lem [25]:

min
w
||x−Dw||2, s.t. ‖w‖0 ≤ α. (2)

Figure 1. Conceptual illustration of the proposed approach. Image

sets A and B are separately clustered. The green dots indicate the

corresponding point on a Grassmann manifold using images in the

cluster. The black points indicate other Grassmann points using

subsets of images from image set A or B. Query set C is sepa-

rately clustered according to the clusters of sets A and B. Set C

is divided into 4 clusters during comparison with set A. The red

dots show that images in set C are adaptively clustered such that

the nearest Grassmann point can be constructed corresponding to

the reference green points on the manifold. In this way, the corre-

sponding nearest clusters in set A and C capture similar variations.

The gray points indicate other Grassmann points using subsets of

images from set C. When comparing with set B, set C is adaptively

clustered into 3 clusters.
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Sparse representation has been extended from SMV to

multiple measurement vectors (MMV) [23, 24, 26], also

known as joint sparse representation (JSR). In MMV, multi-

ple vectors are simultaneously reconstructed using the same

basis. Given a matrix X composed from a set of column

vectors, X = [x1,x2, . . . ,xm], and a dictionary D, JSR

solves the following optimisation problem:

min
W
‖W ‖p,r , s.t. X = DW (3)

where ‖W ‖p,r is the matrix norm defined as [23]:

‖W ‖p,r =

{∑n

i=1

(∑m

j=1
|wi,j |p

) r
p

} 1
r

=

{∑n

i=1

∥∥∥w[i]
∥∥∥r
p

} 1
r

(4)

with w[i] representing the i-th row of W . A typical choice

of p is 2 or ∞ [26]. Following the �0-norm optimisation in

Eqn. (2), solution of Eqn. (3) can be approximated by [5]:

min
W
‖X −DW ‖2F , s.t. ‖W ‖2,0 ≤ α, (5)

where ‖W ‖2,0 counts the number of rows in W that con-

tain non-zero elements.

2.2. Grassmann Manifolds

Manifold analysis has been extensively studied with suc-

cess in various disciplines, such as activity recognition and

pedestrian detection [10, 22]. A manifold can be consid-

ered as a low dimensional smooth surface embedded in a

higher dimensional space. At each point of the manifold, it

is locally similar to Euclidean space. In this paper we fo-

cus on a particular class of manifolds, known as Grassmann

manifolds.

A Grassmann manifold GD,m is a set of m-dimensional

linear subspaces of R
D. A point in GD,m can be repre-

sented by an orthonormal matrix with a size of D×m. The

matrix representation of a Grassmann point is not unique,

ie. two matrices A and B represent the same point if the

subspaces spanned by the column vectors of the two ma-

trices are the same. The distance between two Grassmann

points is the length of the shortest geodesic connecting two

points, which can be obtained via [7]:

dG (A,B) = ‖Θ‖2 (6)

where Θ = [θ1, θ2, · · · , θp] is the principal angle vector, ie.

cos(θi) = max
ai∈A, bj∈B

a′ibj (7)

subject to a′iai = b′ibi = 1, a′iaj = b′ibj = 0, i �= j. The prin-

cipal angles have the property of θi ∈ [0, π/2] and can

be computed through singular value decomposition of

A′B [16].

Grassmann manifolds provide a straightforward way to

solve image set matching problems. A set with m images

of D pixels can be transformed directly to a point on GD,m.

Thus the image set classification problem can be transferred

to a point classification problem on Grassmann manifolds.

3. Residual Distance on Grassmann Manifold
Following the form of JSR, we define a Frobenius norm

distance, named residual distance, between two subspaces

over a Grassmann manifold. For two subspaces Sa and Sb,

the distance between subspaces is defined as the summation

of distance from the unit vectors of orthonormal basis of the

subspace Sa to the subspace Sb. That is

D(Sa, Sb) = ||Ua −UbU
′
bUa||2F , (8)

where Ua and Ub are the orthonormal basis of Sa and Sb

individually. The distance D(Sa, Sb) is also the reconstruc-

tion error of Ua represented by the basis Ub.

This residual distance is the l2 norm of the sine of prin-

cipal angles given in Eqn (6) and is proved to be a form of

projection distance over Grassmann manifolds [10].

4. Sparse Approximated Nearest Subspaces
We now propose the approach to find the nearest sub-

space over Grassmann manifolds by minimising the resid-

ual distance. The proposed method consists of three main

components, which are explained in detail in the following

sub-sections.

1. Local linear subspace extraction. Images in a gallery im-

age set are grouped based on sparse representation, in order

to extract multiple local linear subspaces.

2. Nearest subspace approximation. For each local linear

subspace from a gallery image set, the approximated near-

est subspace is adaptively constructed from the samples of

the query image set. Joint sparse representation is applied to

approximate the nearest subspace.

3. Distance calculation. The average distance of all the clos-

est subspace pairs is considered as the distance between two

sets.

4.1. Local Linear Subspace Extraction

Given an image set Ia represented by matrix Xa =[
xa

1 ,x
a
2 , . . . ,x

a
Na

]
, where each column vector represents an

image of Ia, we can create a total of Na
m = Na!

m!(Na−m)!
sub-

spaces of rank m from the available Na sample images.

A collection of all these subspaces Sa
m is called the m-order

subspace set of Ia. We note that not all of the subspaces can

precisely represent the variations of the object and hence

only some of the subspaces should be used for classifica-

tion.

Single measurement vector (SMV) sparse representation

is applied to create and select local linear subspaces that

can accurately represent real samples from the image set.

This is in contrast to affine hull based methods [4, 12],

where the nearest points are synthetic samples generated

through linear combination of real samples. For each sam-

ple image xa
i from set Ia we use the remaining images

Da
k =

[
xa

1 ,x
a
2 , . . . ,x

a
i−1,x

a
i+1,x

a
Na

]
to reconstruct sample

xa
i sparsely as per Eqn. (2). We specify the number of atoms
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m to use by choosing the atoms corresponding to the largest

m absolutes of coefficients w acquired via Eqn. (2). Let us

construct matrix Ma
k =

[
xa

k1
,xa

k2
, . . . ,xa

km

]
containing m

column vectors of the selected atoms. Ma
k can be used to

represent a subspace sak. The distance between the sample

point xa
k and the subspace sak can be calculated by the re-

construction error rak = ‖Ma
kw

a
k − xa

k‖2, where wa
k are the

coefficients of the selected atoms.

From a manifold point of view, each subspace of order

m can be represented as a point on Grassmann manifold

GD,m. For each image xa
i ∈ Ia, the subspace sak constructed

by SMV sparse representation is represented as a point over

the manifold. By setting a threshold ε on the reconstruction

error, the SMV sparse representation can select representa-

tive subspaces sak that can linearly represent real samples xa
k

with an error smaller than threshold ε as following:

S̃a
m = {sak}, ∀rak < ε, k ∈ [1, Na], (9)

where ˜Sa
m is a set of selected points on the manifold. This

filtering step significantly reduces the number of points

from Na
m to less than Na. This type of subspace extrac-

tion is motivated by [8], where SMV sparse representation

is used to cluster linear subspaces.

4.2. Nearest Subspace Approximation

After extracting local linear subspaces, traditional multi-

model approaches use fixed subspaces (clusters) of each set

for classification. In contrast, we propose to adaptively clus-

ter the query image set via considering the clusters from a

gallery image set. To match image sets Ia and Ib, we first ex-

tract the local linear subspace set S̃a
m for image set Ia as per

Eqn. (9). Then for each extracted local linear subspace, we

find its corresponding nearest subspace from the m-order

subspace set Sb
m of Ib. From manifold point of view, for im-

age set Ib with Nb images, there are Nb
m = Nb!

m!(Nb−m)!
points

on the same manifold. For each point sak, we need to find its

closest point from Nb
m points of set Ib on the manifold.

Instead of searching through all the points on the mani-

fold, we apply joint sparse approximation [24, 26] to solve

this challenging NP-hard search problem. We first gener-

ate the orthonormal basis Ua of subspace sak. We then treat

all the samples in Ib as elements in dictionary and apply

joint sparse representation to find the optimal solution via

Eqn. (5) by specifying the number of active atoms m. Given

orthonormal basis Ua from sak, we find m samples from ma-

trix Xb, representing image set Ib, that give minimal sparse

representation error1:

min
W
‖Ua −XbW ‖2F , s.t.||W ||2,0 ≤ m. (10)

1Note that a rotated basis UaRa may have slightly different solution

to Ua due to the limitation of the approximated solution for joint sparse

representation.

Assume matrix X̃b is formed by the m samples selected by

equation 10 and W̃ is the corresponding non-zero elements

from W . Thus, the reconstruction error is

Ek =
∥∥∥Ua − X̃bW̃

∥∥∥2

F
. (11)

The samples X̃b can be also be used to construct a subspace

sbk with orthonormal basis Ub. The reconstruction error can

be rephrased as equation 8. Thus the reconstruction error

can be used as a measure of distance D(sak, s
b
k) = Ek be-

tween two subspaces on Grassmann manifold. By minimis-

ing the error, the nearest subspace over Grassmann mani-

folds is approached.

4.3. Distance Calculation

We have shown above how to approximate the nearest

subspace sbk from Sb
m, given a specific subspace sak from the

m-order subspace set S̃a
m. As we generate Nc local linear

subspaces from Ia and find their corresponding nearest sub-

spaces from Ib, the distance between two image sets Ia and

Ib is defined as the average distance of the nearest subspace

pairs:

D̂ (Ia, Ib) =
1

Nc

∑Nc

k=1
D

(
sak, s

b
k

)
, k ∈ [1, Nc] (12)

4.4. Complexity Analysis
The complexity of the proposed SANS method is depen-

dant on the complexity of joint sparse representation (JSR).

Given two image sets with nc and nd samples, the complex-

ity of JSR is O(ncndm), where m is the number of active

atoms used. Thus, the complexity of SANS is O(Ncmndm),

where Nc is the number of local linear subspaces generated.

By controlling m and the reconstruction threshold (to limit

Nc), the time complexity can be constrained.

5. Experiments
The proposed approach was first evaluated on synthetic

data to investigate the accuracy of nearest subspace approxi-

mation, followed by a performance comparison against pre-

vious state-of-the-art methods on three image set recogni-

tion tasks: face, gesture and object recognition.

5.1. Synthetic Data
We randomly generated m sample points in R

n

(n = 100) to construct a reference subspace Sref with rank

m. N >> m sample points are randomly generated in R
n

as a dictionary. The proposed nearest subspace approxima-

tion (NSA) approach is used to find m samples from the

dictionary to construct the approximated nearest subspace

Sapp and is compared with the actual nearest subspace Sact

found by a brute force method. The relative difference ra-

tio r =
|D(Sref ,Sapp)−D(Sref ,Sact)|

D(Sref ,Sact)
and the percentage of

Sapp in the top k nearest subspaces of Sref are consid-

ered as the measurements of performance. The results are
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Table 1. Accuracy of the proposed nearest subspace approximation (NSA) on synthetic data. m is the number of samples used to construct

the reference subspace Sref . N is the number of samples in dictionary. The total number of subspaces for each search is Cm
N . ‘mean rank’

is the average ranking of the approximated subspace Sapp in all subspaces. The percentage that Sapp is in the top k nearest subspaces

of Sref is shown for k = 1, k = 5, k = 0.01 × Cm
N , and k = 0.05 × Cm

N . Ratio r measures the relative difference of distance as

r = |D(Sref , Sapp)−D(Sref , Sact)|/D(Sref , Sact), where Sact is the actual nearest subspace of Sref found by a brute force method.

dictionary size N = 20

num. of total num. of mean Sapp in the top k nearest subspaces ratio time (ms)

samples m subspaces Cm
N rank k=1 k=10 k=1% k=5% r NSA brute force

2 190 6.33 32% 80% 45% 80% 0.014 0.9 33

3 1140 16.7 22% 59% 63% 91% 0.012 1.1 236

4 4845 44.7 18% 52% 83% 96% 0.008 1.3 1099

dictionary size N = 100

num. of total num. of mean Sapp in the top k nearest subspaces ratio time (ms)

samples m subspaces Cm
N rank k=1 k=10 k=1% k=5% r NSA brute force

2 4950 21.9 23% 60% 83% 100% 0.022 4 894

3 161700 375.3 7% 22% 96% 100% 0.018 4 32450

achieved based on the average of 1000 tests for dictionary

size N = 20 and N = 100 separately.

Table 1 shows how close the approximated nearest sub-

space is to the actual nearest subspace. The average relative

difference ratio r is less than 1.5%. The ratio is insensitive

to the number of samples m of reference subspaces. How-

ever, it is affected by the dictionary size. This is expected

as increasing the dictionary size, the total number of sub-

spaces is exponentially increased, while the ratio is only in-

creased slightly. Evaluating the performance from the point

of view of the ranking for the approximated nearest sub-

space, most of the approximated subspaces are in the top 1%

closest subspaces and almost all of the approximated sub-

spaces are in the top 5% closest subspaces. The proposed

approach can find maximally 32% actual nearest subspaces

when dictionary size is small. In the worst case, at least 7%

actual nearest subspaces are found when the total number of

subspaces is huge (> 160, 000). The calculation time of the

proposed method is nearly constant and takes only several

milliseconds, disregarding the number of samples and the

dictionary size. In contrast, the brute force method to find

the actual nearest subspace is hundreds or even thousands

of times slower.

5.2. Image Set Recognition Tasks
We used the Honda/UCSD dataset [17] for the face

recognition task, the ETH-80 dataset [18] for the object

recognition task and Cambridge-Gesture dataset [15] for

hand gesture recognition task. We will first briefly overview

the datasets used in the experiments (Section 5.2.1), fol-

lowed by a description and discussion of the experiments

(Section 5.2.2).

5.2.1 Datasets

Honda/UCSD consists of 59 videos of 20 subjects. There

are pose, illumination and expression variations across the

sequences for each subject. As in [28], face images from

each frame of Honda/UCSD dataset were cropped and re-

sized to 20× 20. We followed [12, 27] to conduct 10-fold

cross validations by randomly selecting one sequence for

each subject for training and using the rest for testing.

ETH-80 contains 8 object categories. Each category in-

cludes 10 object subcategories (eg. various dogs), with each

subcategory having 41 orientations. We resized the images

to 32× 32 and treated each subcategory as an image set.

For each category, we selected each subcategory in turn for

training and the remaining 9 for testing. In total, 80 image

sets were used for training and 720 for testing.

The Cambridge-Gesture dataset includes 900 video se-

quences for nine gestures. For each gesture, the 100 videos

are further divided into five illumination sets. Following

the protocol of [19], the first four sets are used for test set

and the fifth set is the training set. All images are resized to

20× 20 and we select the middle 32 frames from each video

sequence as in [19].

On the Honda/UCSD dataset, we used three configu-

rations of training and testing images: randomly chosen

50, randomly chosen 100, and all images. If the number

of images in a set is smaller than the number specified,

then all the images are selected. Using a subset of images

partly simulates real-world situations where a face detec-

tor and/or tracker may fail on some frames. On ETH-80

and Cambridge-Gesture datasets, we used all raw images

for classification, while on Honda/UCSD we used two types

of images: raw and normalised via histogram equalisation.

Histogram equalisation provides some compensation to il-

lumination variations, and hence it can mask the limitations

of the matching algorithms. As such, the raw image type

provides a more challenging comparison.

5.2.2 Comparative Evaluation and Discussion

The proposed method was compared against five recent al-

gorithms: Affine Hull based Image Set Distance (AHISD)

[4], Convex Hull based Image Set Distance (CHISD) [4],
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Table 2. Performance of the proposed SANS method with vary-

ing parameters m and ε on Honda/UCSD dataset using 100 raw

images per set.

ε = 0.01
m 10 15 20 25 30 35

accuracy 93.6 94.1 93.3 92.8 93.8 92.3

m = 15
ε 0.005 0.01 0.02 0.03 0.04 0.05

accuracy 92.8 94.1 92.3 93.6 93.3 93.3

Table 3. Comparison of the proposed method with the component

techniques involved, such as Joint Sparse Representation (JSR),

Grassmann Manifolds (GM) and Local Linear Subspace (LLS) ex-

traction. The results were obtained on the Honda/UCSD dataset.

‘h.e.’ indicates that the images were pre-processed with histogram

equalisation.

num. of image
JSR JSR+LLS

GM GM proposed
images type Eqn. (6) Eqn. (8) SANS

50
raw 83.8 87.7 88.7 90.0 92.3
h.e. 87.4 89.5 94.4 94.1 95.6

100
raw 88.2 93.8 87.9 90.0 93.8
h.e. 89.2 90.8 94.9 94.8 96.7

all
raw 87.7 93.6 88.7 92.1 94.1
h.e. 85.4 93.8 90.8 95.1 96.4

Sparse Approximated Nearest Points (SANP) [12], Mutual

Subspace Method (MSM) [29] and Manifold Discriminant

Analysis (MDA) [27].

AHISD, CHISD and SANP are nearest point based

methods, which find the closest points between two hulls.

MSM and MDA are subspace based methods which model

image sets as linear subspaces. Except for SANP, we ob-

tained the implementations of all methods from the original

authors. We also compare with two component techniques

involved in the proposed SANS method: Joint Sparse

Representation (JSR) technique (Eqn. (5)) and Grassmann

Manifold (GM) technique on two distances (Eqn. (6) and

Eqn. (8)).

The proposed SANS model has only two parameters:

the number of active atoms m and the sparse representa-

tion threshold ε. Preliminary experiments suggested that

m ∈ [10, 30] and ε ∈ [0.01, 0.05] resulted in satisfactory per-

formance. The performance of SANS is not sensitive to

both parameters in the range specified above. Table 2 shows

the results of varying m and ε on Honda/UCSD dataset,

using 100 raw images per set. The performance of SANS

is very stable and is consistently better than other methods

shown in Table 4. To avoid the effect of duplication samples

on local linear subspace extraction due to the limitation of

sparse representation, we remove the duplication of samples

in each image set individually.

Table 3 shows the comparison of the proposed SANS

Table 4. Performance comparison with other methods on the

Honda/UCDS dataset. ‘h.e.’ indicates that the images were pre-

processed with histogram equalisation.

num. of image AHISD CHISD SANP 2 MSM MDA proposed
images type [4] [4] [12] [29] [27] SANS

50
raw 68.4 69.7 71.0 84.9 71.0 92.3
h.e. 94.6 92.8 93.1 93.8 88.7 95.6

100
raw 65.9 66.9 68.7 84.4 72.1 93.8
h.e. 92.1 93.1 94.4 92.1 87.2 96.7

all
raw 64.1 61.5 71.1 84.4 74.4 94.1
h.e. 90.7 91.3 94.9 90.8 96.2 96.4

method with component techniques, including Joint Sparse

Representation (JSR), Grassmann Manifolds (GM) and lo-

cal linear subspace (LLS) extraction. The proposed SANS

method can be considered as GM+LLS. SANS always per-

forms the best compared to each individual technique. By

applying local linear subspace extraction, the performance

of both JSR and GM is improved. For all the methods, per-

formance on histogram equalised images is slightly better

than raw images.

The comparison with other state-of-the-art methods is

shown in Table 4. The proposed SANS method obtains

the highest accuracy in all cases, with considerable im-

provements over other methods on raw images. As the

Honda/UCSD dataset contains considerable illumination

variations, histogram equalisation is required by AHISD,

CHISD, SANP and MDA to obtain good performance. For

these four methods, there is about 20 percentage points dif-

ference between the performance on raw and normalised

images. In contrast, the proposed SANS method is con-

siderably more robust, obtaining high performance for both

raw and normalised images.

AHISD, CHISD and SANP are all based on the near-

est point distance between subspaces, which is inevitably

sensitive to the illumination variations. If two image sets

are taken in different illumination conditions, the distance

between points on two subspaces will be rather large, lead-

ing to a deterioration in classification performance. While

MDA clusters images to construct local linear models and

learns a more discriminant embedding space, the distances

between local models/subspaces are based on the Euclidean

distance between the center points of models. Thus the dis-

tances is also sensitive to illumination variations.

In contrast, MSM, JSR, GM and the proposed SANS ex-

ploit structural similarities between subspaces (eg. principal

angles), which are more robust to noise (such as illumina-

tion variations). It has been previously shown that for holis-

tic face representations, illumination variations lie in a low

2The performance of SANP on histogram equalised images is slightly

different from the results reported in [12]. The difference might be due to

a different face detector being used and/or the random selection of images.

Minor performance variations of this nature on the Honda/UCSD dataset

have also been observed for MDA in [12, 27].
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Table 5. Results on the Cambridge-Gesture dataset [15].

PM TCCA DCCA proposed
[19] [13] [14] SANS

Set 1 89 81 63 90
Set 2 86 81 61 89
Set 3 89 78 65 91
Set 4 87 86 69 89

Average 88 82 65 90

dimensional linear subspace [20]. Sparse representation ap-

proaches allow the use of several atoms to linearly repre-

sent any sample lying in the same subspace. In other words,

if there are several images of a person’s face taken under

varying illumination conditions, the subspace constructed

from these images can be used to represent many possible

illumination conditions. The Grassmann manifold approach

treats all samples lying in the same subspace as one point on

a Grassmann manifold, suggesting that illumination varia-

tions do not affect the point. The robustness of SANS also

comes from being able to exploit the variations present in

the training data by local linear subspace (LLS) extraction

and the adaptively constructed nearest subspaces. Multi-

ple local linear subspaces can be extracted from a gallery

image set that represent variations of a subject. For a given

local linear subspace, SANS finds the closest subspace from

the subspace set of the query image set, which represents a

similar variation. As an example, Fig. 2 shows the sample

images of an extracted local linear subspace as well as the

sample images of the constructed nearest subspaces.

Fig. 3 illustrates the results obtained on the ETH-80

dataset. In this test, all methods perform worse than on the

Honda/UCSD dataset. ETH-80 is more challenging as it

has much less images per set, significant appearance differ-

ences across subjects of the same class, and larger view an-

gle variations within each image set. Nevertheless, the pro-

posed SANS method dramatically outperforms other meth-

(a)

(b)

(c)

Figure 2. (a) Sample images of an extracted local linear sub-

space from a gallery image set. (b) Sample images of the con-

structed nearest subspace from a query image set of the same

class. (c) Sample images of the constructed nearest subspace from

a query image set of a different class.

Figure 3. Results on the ETH-80 dataset [18].

Table 6. Comparison of average time cost to compare two image

sets with 100 images per set.

Methods AHISD CHISD SANP MSM MDA SANS

Time (ms) 15.3 936.1 65.9 22.3 11.2 35.3

ods by more than 20 percentage points. We note that the

performance of MDA on ETH-80 is lower than that reported

in [27], as our setup is more challenging. Compared to [27],

where 5 sets are used for training, we use only one set. The

average time cost to compare two image sets is shown in

Table 6.

Table 5 shows the results of the proposed method com-

pared with three recent approaches for action classification

on the Cambridge-Gesture dataset. Nearest point based

methods, such as AHISD, CHISD and SANP, and the multi-

model method MDA perform poorly in this dataset with less

than 30% accuracy on average, due to the significant illumi-

nation variation. The proposed SANS method still performs

the best compared to state-of-the-art action classification

methods, including Product Manifolds (PM) [19], Tensor

Canonical Correlation Analysis (TCCA) [13] and Discrim-

inative Canonical Correlation Analysis (DCCA) [14] meth-

ods.

6. Main Findings and Future Directions
We have proposed a novel approach to approximate near-

est subspaces over Grassmann manifolds. To this end, we

first defined a residual distance over Grassmann manifolds.

Single measurement vector sparse representation is then

employed to create local linear subspaces from a gallery

image set, followed by joint sparse representation to ap-

proximate the corresponding nearest subspaces from the

probe image set. We have shown that by minimising the

joint sparse reconstruction error, the nearest subspace on a

Grassmann manifold is approached. The average distance

of nearest subspace pairs is defined a new distance between

two image sets.

In contrast to single linear subspace methods, the pro-
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posed Sparse Approximated Nearest Subspaces (SANS)

method extracts multiple local linear subspaces using a

subset of samples. Unlike affine hull based approaches,

SANS compares structural similarity between local linear

subspaces. Distinct to multi-model based methods, SANS

utilises the subspaces (clusters) of one image set to adap-

tively cluster the samples of another image set by construct-

ing the corresponding closest subspaces without complete

pairwise local subspace comparisons.

Comparative evaluations on synthetic data show that the

proposed method can approximate the nearest subspaces

with small errors. Further experiments on three recogni-

tion tasks show that the proposed approach consistently out-

performs several recent methods (AHISD [4], CHISD [4],

SANP [12] and MDA [27]), especially in cases of large im-

age variations and limited number of samples. The experi-

ments also indicate that subspace structural similarity based

methods generally perform better than nearest point based

methods for image sets with variations in illumination.

Future avenues of research include random rotation of

orthogonal basis for more robust nearest subspace approxi-

mation and learning more discriminative embedding spaces

for manifolds [10, 27]. The proposed nearest subspace ap-

proximation can also be extended to use other multi-model

approaches for local model extraction, such as Manifold

to Manifold Distance (MMD) [28], Manifold Discriminant

Analysis (MDA) [27] or Local Linear Embedding (LLE)

with k−means clustering [9].
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