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Abstract

In the past few years there has been a growing inter-
est on geometric frameworks to learn supervised classifi-
cation models on Riemannian manifolds [31, 27]. A pop-
ular framework, valid over any Riemannian manifold, was
proposed in [31] for binary classification. Once moving
from binary to multi-class classification this paradigm is not
valid anymore, due to the spread of multiple positive classes
on the manifold [27]. It is then natural to ask whether
the multi-class paradigm could be extended to operate on
a large class of Riemannian manifolds. We propose a math-
ematically well-founded classification paradigm that allows
to extend the work in [31] to multi-class models, taking into
account the structure of the space. The idea is to project
all the data from the manifold onto an affine tangent space
at a particular point. To mitigate the distortion induced
by local diffeomorphisms, we introduce for the first time in
the computer vision community a well-founded mathemati-
cal concept, so-called Rolling map [21, 16]. The novelty in
this alternate school of thought is that the manifold will be
firstly rolled (without slipping or twisting) as a rigid body,
then the given data is unwrapped onto the affine tangent
space, where the classification is performed.

1. Introduction
Applications in computer vision often involve the study

of real world problems where the nonlinear constraints lead
to data that lies on curved spaces [19, 28, 3]. When treating
cases that cannot be solved within the standard Euclidean
tools, it is usual to resort to some local linear approxima-
tions or to use ad hoc solutions. Those solutions are not
always valid, which poses a challenge for several computer
vision applications where data often lies in complex man-
ifolds, namely in Riemannian manifolds i.e. a nonlinear,
curved yet smooth, metric space (e.g. diffusion tensor pro-
cessing [20, 1], foreground segmentation [4], object recog-
nition/classification [2, 27, 31, 29], activity recognition, text

categorization, shape analysis [28] motion/pose/epipolar
segmentation, multi-body factorization [25, 6]). In order
to extract all the underlying information of the data it is re-
quired to consider the Riemannian structure of the space.
Prior Work : Recently, the development of geometric
frameworks to learn supervised classification models on
Riemannian manifolds has been addressed in the computer
vision community [31, 27]. A popular framework was de-
rived by Tuzel et al. [31] for binary classification on Rie-
mannian manifolds. This classifier is an additive model,
where a set of weak learners are built by regression over the
mappings of the data points on appropriate tangent planes
(at the Karcher mean of the positive training points) and
combined through boosting. The consideration of the neg-
ative samples in the mean computation would bias the re-
sult, since they are assumed to be spread on the manifold
[31, 27]. This framework was tested to detect pedestrians
in images using as descriptor a region covariance matrix
[30] (Sym+ - symmetric positive definite matrices), but the
algorithm is valid over any Riemannian manifold and can
be combined with several different boosting (classification)
methods.

Despite of its popularity, the Tuzel’s framework [31]
contains an important bottleneck [27]. Learning problems
on Riemannian manifolds are generally solved by flattening
the manifold via local diffeomorphisms [5], i.e. the man-
ifold is locally embedded into an Euclidean space. How-
ever, embedding the manifold using those local diffeomor-
phisms leads to some problems. The exponential map is
onto but only one-to-one in a neighborhood of a point. The
inverse mapping (logarithmic map) is uniquely defined only
around a small neighborhood of that point. It is generally
not possible to define global coordinates which make the
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whole manifold look like an Euclidean space. As argued
by Tosato et al. [27] : once we try to change the paradigm
from binary to multi-class classification the Tuzel’s frame-
work [31] is not valid anymore due to the spread of multiple
positive classes on the manifold. From this perspective, it
is natural to see efforts for solve this bottleneck. Tuzel [31]
endowed the Sym+ manifold with the well-known Affine-
Invariant metric, however a thorough analysis of this space
opens a new perspective. The space of Sym+ is a special
Riemannian manifold since there is another metric, called
Log-Euclidean [1], which allows to overcome the above
limitations. As showed in [1] the simple matrix exponen-
tial (exp) is a diffeomorphism from the Euclidean space of
symmetric matrices to the Sym+ space. The space of Sym+

endowed with a Log-Euclidean metric is in fact isomorphic
(the algebraic structure of vector space is conserved) and
isometric (distances are conserved) with the corresponding
Euclidean space of symmetric matrices [1], i.e. the Log-
Euclidean framework defines a mapping where the space of
Sym+ is isomorphic, diffeomorphic and isometric to the as-
sociated space of symmetric matrices [1]. This mapping is
precisely the simple matrix logarithm (log), which can be
seen as the logarithm map at the identity [1].

By endowing the space of Sym+ with the Log-Euclidean
metric, Tosato et al. [27] proposed a mathematically well-
founded multi-class framework designed to operate on this
particular manifold (Sym+). All the data is projected onto
a unique tangent space at the identity (simple matrix loga-
rithm), where a typical multi-class LogitBoost algorithm is
applied [7]. More recently, by using the tensors (Sym+)
as features aggregator, Carreira et al. [2] also embedded
all the Sym+ manifold into an Euclidean space by endow-
ing Sym+ with the Log-Euclidean metric to perform multi-
class classification using linear SVM. In this case, they pro-
posed a novel and very efficient method to perform semantic
segmentation, achieving results that outperforms the state-
of-the-art being orders of magnitude faster to train and test.
However, the Tosato/Carreira’s paradigm [27, 2] (embed all
the manifold) is not generalizable in the sense that it cannot
be applied to other Riemannian manifolds due to the speci-
ficity of the mapping/metric used. It is then natural to ask
whether the multi-class concept could be extended to oper-
ate on a large class of Riemannian manifolds.

Recently a new school of thought emerged [11, 12, 13,
5]. This new paradigm suggests to embed the Riemannian
manifold into a Reproducing Kernel Hilbert Space (RKHS)
by using Mercer kernels on Riemannian manifolds. Partic-
ulary, Hamm et al. [11, 12] proposed to use specific Grass-
mann kernels in order to embed the Grassmann manifold
into a RKHS. Harandi et al. [13] used the Stein kernel to
perform sparse coding and dictionary learning for symmet-
ric positive definite matrices. Caseiro et al. [5] proposed a
novel kernel-based mean shift on general Riemannian man-

ifolds, by using a general Riemannian kernel function, i.e.
heat kernel. However, the use of kernel-based algorithms
for build classifiers on general Riemannian manifolds is
not a good option. Firstly, to our knowledge the heat ker-
nel is the unique Mercer kernel suited to general Rieman-
nian manifolds. Secondly, the calculation of the heat kernel
constitute a complex theoretical/technical problem and the
computational burden is high. Finally, by using Mercer ker-
nels to implicitly project the data from the manifold we are
restricted to use kernel-based classifiers.
Contributions : To the best of our knowledge this is
the first work that propose a mathematically well-founded
classification paradigm that allows to extend/generalize the
Tuzel’s [31] and Tosato’s [27] frameworks to multi-class
models on general Riemannian manifolds (considering the
Riemannian structure of the space). The idea is to project
all the data from the manifold onto an affine tangent space
at a particular point (e.g. identity) and then perform the
classification there. To mitigate the distortion induced by
local diffeomorphisms, we introduce for the first time in
the computer vison community a well-founded mathemat-
ical concept, so-called Rolling map [16, 21]. The novelty
in this alternate school of thought is that the manifold will
be firstly rolled (without slip and twist) as a rigid body,
then the given data is unwrapped onto the affine tangent
space, where the classification is performed. For the sake of
brevity the proof of concept will be done by testing with a
multi-class LogitBoost algorithm [27, 7] on the Grassmann
manifold [6, 25, 29, 28, 12, 16, 24]. We remark that our
paradigm is also valid with others Riemannian manifolds.

2. Rolling Maps on Riemannian Manifolds
In the past few years there has been a growing interest in

describing mathematically rolling motions, without slip and
twist, of smooth manifolds (due to its analytic and geomet-
ric richness) [21, 15, 22, 16]. The study of these kinematic
problems proved to be relevant, in part because the knowl-
edge on how to realize such virtual movements allows to
solve complicated problems on certain manifolds, by reduc-
ing them to similar problems on much simpler manifolds.
For example, those rolling movements have been used with
great success to compute interpolating curves and solve
other optimal control problems on manifolds [15, 22, 16].
For instance, to solve interpolation problems on a mani-
fold, a combination of unwrapping techniques via, local dif-
feomorphisms, and rolling motions enables to project data
from the manifold to its affine tangent space at a point, solve
the interpolation problem on the latter and then obtain an in-
terpolating curve on the manifold by wrapping back while
unrolling. The resulting curve is defined in explicit form,
and has the advantage of being coordinate free [15, 16].

Rollings motions are rigid motions in the embedding
space, subject to some holonomic constraints (rolling con-
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Figure 1. Rolling Map :M rolls upon M̄ = V ∼= TP0Mwithout
slip or twist, along a rolling curve α : [0, T ]→M [22].

ditions) and nonholonomic constraints (no-slip and no-twist
conditions). The most classical of all rolling motions is that
of the 2-dimensional sphere rolling over the tangent plane
at a point, along a curve, in which the nonholonomic con-
straints are satisfied by the absence of sliding and spinning
and the holonomic constraints compels the sphere to stay
tangent to the tangent plane during the movement.

Recalling the general definition of rolling, as in [21], this
rolling motion describes how two oriented connected Rie-
mannian manifoldsM and M̄, having the same dimension
and both embedded in the same Euclidean space <n, roll
over each other without slip and twist. Whitney’s theorem
[10], guarantees that a k-dimensional Riemannian manifold
can be isometrically embedded into some Euclidean space
<n for an appropriate choice of n ≥ k.

We assume that M̄ is stationary and M rolls over M̄.
This is a rigid motion and so can be described by the ac-
tion of the special Euclidean group SEn = SOn n <n on
<n. The symbol n represents the semi-direct product of the
special orthogonal group (SOn, (·)) by the additive group
(<n, (+)). We also assume that SOn acts transitively on
M, that is, SOn ◦ P ⊂ M, for any P ∈ M. Elements
h ∈ SEn are typically represented by pairs h = (R, s),
where R ∈ SOn defines a rotation and s ∈ <n defines a
translation. The action of SEn on <n is usually defined by:

SEn ×<n → <n, (h,P) 7→ h ◦P = R ◦P + s. (1)

In what follows, if P is a point belonging to a manifold
M, TPM denotes de tangent space to the manifoldM at
the point P and (TPM)⊥ denotes the normal space toM
(with respect to the Euclidean metric) at P. A rolling mo-
tion is described by a rolling map, which is a curve in SEn
satisfying several conditions. We give the formal definition
of a rolling map, as presented in [21].

Definition 1 A rolling map, describing howM rolls upon
M̄, without slip or twist, along a smooth rolling curve
α : [0, T ]→M, is a smooth map

h : [0, T ] → SEn = SOn n <n
t 7→ h(t) = (R(t), s(t)) , (2)

satisfying the holonomic (rolling conditions) and nonholo-
nomic constraints (no-slip and no-twist conditions):

• C1 - Rolling conditions

– h(t) ◦ α(t) =: αdev(t) ∈ M̄
– Th(t)◦α(t)(h(t) ◦M) = Tαdev(t)M̄

• C2 - No-slip conditions

– ḣ(t) ◦ h(t)−1 ◦ αdev(t) = 0

• C3 - No-twist conditions

– (Tangential part)
(ḣ(t) ◦ h(t)−1) ◦ Tαdev(t)M̄ ⊂ (Tαdev(t)M̄)⊥

– (Normal part)
(ḣ(t) ◦ h(t)−1) ◦ (Tαdev(t)M̄)⊥ ⊂ (Tαdev(t)M̄)

The curve αdev : [0, T ] → M̄, defined in the first rolling
condition (C1), is called the development curve of α(t) on
M̄. The second rolling condition (C2) means that the tan-
gent spaces coincide at every point of contact.

In order to understand better the nonholonomic con-
straints, it is necessary to define the actions appearing in
the no-slip and no-twist conditions. This is well explained
in [16], in terms of the action (1) of SEn on <n, and also
included here for the sake of clarity. If x ∈ <n is a point
and η ∈ <n is a vector, i.e., there exists a smooth curve
y ∈ (−ε, ε)→ <n such that ẏ(0) = η, then

ḣ(t) ◦ x = d
dσ

(h(σ) ◦ x)
˛̨
σ=t

;“
ḣ(t) ◦ h−1(t)

”
◦ x = d

dσ
((h(σ) ◦ h−1(t)) ◦ x)

˛̨
σ=t

;

“
ḣ(t) ◦ h−1(t)

”
◦ η = d

dσ
((ḣ(t) ◦ h−1(t)) ◦ y(σ))

˛̨̨
σ=0

.

(3)
In our work we are interested in the particular case when
M̄ is the affine tangent space at a point P0 ∈ M hereafter
denoted by V to simplify notations, and α(0) = P0. V is
also a k-dimensional subspace embedded in <n.

2.1. Algorithm

Let X1, ...,Xm ∈M, be an input set ofm samples used
to train a multi-class classifier. Recall that the idea is to
project all the data X1, ...,Xm from the manifoldM onto
the affine tangent space V at a particular point P0 ∈ M
and then perform the classification in V . In order to ap-
ply the rolling map, the samples X1, ...,Xm in M must
be sorted (ordered) according to Algorithm 1, to obtain the
sorted samples P1, ...,Pm ∈ M. P0 ∈ M is fixed a pri-
ori (at this point we do not care how P0 is selected), T is a
positive real number and 0 = t0 < t1 < ... < tm = T is a
partition of the time interval [0, T ].
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Input: {X1, ...,Xm} ∈ M, P0 ∈M, ∆ = T
m

, t0 = 0

for i = 1,...,m do
• Dj = GeodesicDistance (Pi−1,Xj ), j = 1, ..., m

• k = arg min
j
{Dj}, j = 1, ..., m

• ti = i∆ and Pi = Xk

• Point Xk will not be considered anymore

Algorithm 1:

The algorithm, proposed next, to solve the classification
problem is based on rolling and unwrapping techniques
which perform the projection of the data ∈ M onto
V ∼= TP0M. This combined technique mitigates distor-
tions that might occur when the projection is performed
using local diffeomorphisms only. For each i = 1, · · · ,m,
the point Pi is mapped to Qi ∈ V .

Rolling and unwrapping Algorithm:

1. Compute a smooth curve α : [0, T ] → M joining P0

(at t = 0) to Pm (at t = T ).

2. RollM over V along the curve α(t), using the corre-
sponding rolling map h(t). This generates a smooth
curve αdev : [0, T ] → V joining the points Q0 = P0

and Qm = h(t) ◦Pm

3. Use a suitable local diffeomorphism φ : M⊃ Ω→ V ,
with P0 ∈ Ω, betweenM and the affine tangent space
V , satisfying φ(P0) = P0, Dφ(P0) = Id, and project
the sorted data P1, ...,Pm−1 to V while rolling along
α. This combined technique of rolling and unwrap-
ping projects the sorted data P1, ...,Pm−1 onto V to
produce Q1, ...,Qm−1, given explicitly by

Qi = φ(A) + αdev(ti)−P0, (4)

where A = (h(ti) ◦Pi)− αdev(ti) + P0.

4. Identify the affine tangent space V with TP0M, de-
fine an orthonormal coordinate system for the tangent
space and compute a minimal (vectorial) representa-
tion q1, ...,qm ∈ <d of Q1, ...,Qm.

5. Train the classifier on the Euclidean space TP0M,
using the data q1, ...,qm instead of the sorted data
P1, ...,Pm ∈M.

Remark: The formula (4) for computing the projected
points Qi is well defined. In particular, in spite of the addi-
tions and subtractions, A ∈M and Qi ∈ V . To understand
this, one needs to use the following two facts:

(i) The rotational part of the rolling map h = (R, s) acts
transitively on the manifoldM, i.e., R(t) ◦M ⊂ M.

Input: {P1, ...,Pm} ∈ M, Test Point = Z ∈M
• Dj = GeodesicDistance (Z,Pj ), j = 1, ..., m

• k = arg min
j
{Dj}, j = 1, ..., m

• tZ = 0.5(tk + tk+1) ;

Algorithm 2:

This implies that the translational part of the rolling
map is related with the development curve through
s(t) = αdev(t)−P0, and s(t) ∈ TP0M.

(ii) V , being the affine tangent space at P0, is defined as:
V = {P0 + W, W ∈ TP0M}.

Now, using (i) and the fact that h(t) ◦P = R(t) ◦P + s(t),
for any P ∈M, we can write

A = (h(ti) ◦Pi)− αdev(ti) + P0

= (h(ti) ◦Pi)− s(ti) = R(ti) ◦Pi ∈M
.

Also, due to (i) and (ii),

Qi = φ(A) + αdev(ti)−P0 = φ(A)︸ ︷︷ ︸
∈V

+ s(ti)︸︷︷︸
∈TP0M

∈ V.

Classification: Given a test point Z ∈ M, the goal is to
project this point onto the same tangent space V ∼= TP0M
where the classifier was trained. This is performed by using
the Algorithm 2. The output of this algorithm is the time
tZ where the test sample Z belongs in the sorted set of train
samples P1, ...,Pm ∈ M. In order to project the test point
Z ∈M we only need to use Eq. 4 to obtain

Z 7→ φ(A) + αdev(tZ)−P0, (5)

with A = (h(tZ) ◦ Z)− αdev(tZ) + P0.

3. Rolling Maps for Grassmann Manifolds
Rolling maps for Grassmann Manifolds are presented in

[16]. At first glance, it is not clear that these rolling maps
are according to the general definition in previous section,
but they are. What happens it that the authors of [16] took
advantage of the fact that Grassmann manifolds can be rep-
resented in matrix form and have adapted the definition of
rolling in order to preserve the matrix struture. This sim-
plifies substantially all the computations. For the sake of
completeness, we include in this section part of the content
of [16] in which concerns rolling Grassmann manifolds on
the affine tangent space at a point, in particular the kine-
matic equations for this rolling motions, derived from the
holonomic and nonholonomic constraints.

Let Gk,n (short notation = G) represent the Grassmann
manifold of all k-dimensional subspaces of <n. Consider-
ing that a k-dimensional subspace in <n can be uniquely
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associated with an (n × n) orthogonal projection matrix
P = PT of rank k, the Grassmann manifold is defined as a
particular subset of the symmetric matrices Symn:

Gk,n := {P ∈ Symn | P 2 = P, rank(P ) = k}. (6)

In this representation, Gk,n and the affine tangent space at a
point are considered embedded in Symn, equipped with the
metric induced by the Frobenius norm (this is the Euclidean
metric for matrices). In this case the rolling motion is de-
scribed by the action of the group G = SOn n Symn on
S ∈ Symn by the rule

G× Symn → Symn, ((Θ, X),S) 7→ ΘSΘT +X, (7)

where Θ ∈ SOn and X ∈ Symn. A smooth curve α : [0, T ]
in G, with α(0) = P0, is given as

t→ α(t) = Θ(t)P0ΘT (t), (8)

for some Θ(t) ∈ SOn satisfying Θ(0) = I (I the identity
matrix). The goal now is to determine conditions on the
mapping

h : [0, T ]→ SOn n Symn, t→ h(t) = (ΘT (t), X(t))
(9)

so that it is a rolling map of G over the affine tangent space
at a point P0 ∈ G, along the curve α(t), and development
curve αdev(t) = h(t) ◦ α(t) given by

αdev(t) = ΘT (t)α(t)Θ(t) +X(t) = P0 +X(t). (10)

For simplicity, assume that the base point P0 is

P0 =
[
Ik 0
0 0

]
. (11)

The kinematic equations for rolling having any other
P ∈ G as base point, can be easily obtained from this par-
ticular case due to the fact that P = ΘP0ΘT , for some
Θ ∈ SOn. So, even if the base point is chosen to satisfy a
certain critera, all the mathematics involving rolling can be
easily recalculated [16]. The kinematic equations when the
base point is P0 are:

Ẋ(t) =
[

0 Ψ(t)
ΨT (t) 0

]
, (12)

Θ̇(t) = Θ(t)
[

0 −Ψ(t)
ΨT (t) 0

]
, (13)

where Θ(0) = I, X(0) = 0. The (matrix) function
Ψ: < → <k×(n−k) plays the role of a control function.
Choosing Ψ is equivalent to choosing the rolling curve.
When Ψ(t) = Ψ is constant, the kinematic equations may
be solved explicitly as:

Θ(t) = exp
(
t

[
0 −Ψ

ΨT 0

])
, (14)

X(t) = t

[
0 Ψ

ΨT 0

]
, (15)

and, in this case, the rolling curve is a geodesic in G with
development being a geodesic in the affine tangent space.
Fortunately, there exist an explicit formula for the exponen-
tial of matrices with the special block structure in (18), and
Θ can be given by

Θ(t) =
[

(Ik −BBT )1/2 −B
BT (In−k −BTB)1/2

]
, (16)

where

B := Ψ
sin(ΨTΨ)1/2

(ΨTΨ)1/2
(17)

is represented by a series expansion. Using this special rep-
resentation of Gk,n as projection matrices and this particular
value for P0, a typical element ξ ∈ TP0G is defined as

ξ =
[

0 Y
Y T 0

]
(18)

where Y is any real k × (n− k) matrix. Since the TP0G is
the space of symmetric matrices, there are only d = n(n+
1)/2 independent coefficients. This minimal representation
defines an orthonormal coordinate system for TP0G.

In order to implement the rolling and unwrapping algo-
rithm presented in the previous section, we now need to
determine the matrix Ψ, given the initial α(0) = P0 and
final α(T ) = Pm points of the geodesic curve defined by
α(T ) = Pm = Θ(T )P0ΘT (T ). This is not a trivial task
since in general is not possible to invert the matrices P0

and Pm. However, Srivastava et al. [24] defined a simple
solution to this problem (we refer to [24] for more details).

4. Multi-Class Classification on G
Let S = {Pi, yi}i=1,...,m be an input set of m samples

to train a multi-class classifier (C classes), with Pi ∈ G and
label yi ∈ {1, ..., C}. All the samples of S are projected
from the manifold onto an Euclidean space, i.e. affine tan-
gent space V ∼= TP0G using the Rolling map (P0 = iden-
tity). The mapped set is defined as ST = {qi, yi}i=1,...,m,
with qi ∈ <d. Given the set ST ∈ V , the classification ob-
jective is to define a function F (qi) : V 7→ {1, ..., C} [27]

F (qi) = arg max
j
{Fj(qi)}, j = 1, ..., C (19)

The strong classifier Fj (single-class) can be defined as
a sum of L class-specific weak learners {flj}l=1,...,L, i.e.
Fj(qi) =

∑
flj(qi), l = 1, ..., L. Following the Tosato’s

work [27] we use a standard multi-class LogitBoost algo-
rithm [7] to learn these weak classifiers. Basically, the
weak learners are used to define the inter-class decision
boundaries. In this case, the multi-class weak learners
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τ1 τ2
G Performance (%) Performance (%)

n k LogI LogM RmI LogI LogM RmI
C = 3 | P = 400

10 4 77.87 81.53 85.04 79.33 80.48 83.34
20 5 79.27 84.02 92.86 81.19 83.80 93.77
30 6 75.91 79.87 97.02 76.71 78.27 99.31
40 7 76.73 83.20 94.82 77.80 82.71 96.38

C = 3 | P = 500
10 4 74.66 86.45 97.00 74.71 86.71 98.96
20 5 79.12 81.28 96.31 80.66 79.82 98.04
30 6 76.85 81.17 94.18 77.63 79.66 95.19
40 7 81.07 86.49 94.51 83.26 86.75 95.63

C = 4 | P = 400
10 4 73.51 83.18 93.31 74.18 83.34 95.03
20 5 78.20 78.34 93.13 80.43 76.89 94.79
30 6 72.87 80.50 89.41 73.33 79.77 89.83
40 7 75.08 76.03 97.11 76.28 73.81 99.10

C = 4 | P = 500
10 4 72.87 71.29 87.42 73.66 67.82 87.51
20 5 74.94 81.24 91.02 76.41 81.09 92.32
30 6 63.85 80.25 88.39 61.63 79.77 88.81
40 7 69.91 78.77 90.53 69.71 77.80 91.66
Average 75.16 80.85 92.62 76.05 79.90 93.72

Table 1. Rates (%) : Synthetic Data

flj : V 7→ < are built from the combination of binary weak
learners glj : V 7→ < that solve a binary problem, one class
against the others. The binary weak classifiers glj : V 7→ <
are learned by solving a weighted regression problem and
combined as follows [27]

flj(qi) =
C − 1
C

(
glj(qi)−

1
C

C∑
k=1

glk(qi)

)
(20)

For more details, please refer to [27, 7]. This algorithm is
a great example of the Rolling map importance in the multi-
class classification problem on general Riemannian mani-
folds. As argued by Tosato [27] in the case of Sym+ : the
operations referred above are only valid due to the fact that
all glk(·) functions live in the same Euclidean tangent space.
If the binary classification had been solved projecting each
class onto a different space, similarly to [31], the associa-
tion of the outputs would have been much more complex
and obscure [27]. The tangent space given by the Rolling
map constitutes a more appropriate solution for general Rie-
mannian manifolds than the simple local diffeomorphisms.

5. Experimental Results
The proposed paradigm was evaluated on synthetic (Sec.

5.1) and on real data (Secs. 5.2 and 5.3), using a multi-class
LogitBoost algorithm [27, 7] on the Grassmann manifold.
Specifically, we compare the projection of the data using the
Rolling map (RmI) versus two typical naive approaches, in
which the projection is done using the standard logarithmic
map (i.e. local diffeomorphism) at the identity (LogI) and
at the Karcher mean of all samples (LogM). This evalua-
tion, serve mainly as a proof of concept, which is reasonable
given the novelty of the idea. The main goal is to prove that
by considering the global structure of the space, the classi-
fication results are improved, i.e. the Rolling improves the

τ1 τ2
G Performance (%) Performance (%)

Scales Bins υ2 2s LogI LogM RmI LogI LogM RmI
C = 3 | P = 300

2 32 32 4 73.17 78.33 89.30 74.77 77.73 90.50
2 48 48 4 70.32 80.19 89.04 71.22 80.05 90.16
3 32 32 6 70.76 75.71 92.36 71.77 74.45 94.31

C = 3 | P = 350
2 32 32 4 67.96 82.26 88.22 68.01 82.39 88.90
2 48 48 4 73.91 82.77 95.31 75.45 83.02 97.76
3 32 32 6 70.88 75.88 93.34 71.67 74.41 95.29

C = 4 | P = 300
2 32 32 4 66.58 73.65 85.68 67.04 72.37 86.47
2 48 48 4 71.02 79.19 91.93 72.59 79.31 94.28
3 32 32 6 57.47 76.26 84.83 55.65 75.64 85.41

C = 4 | P = 350
2 32 32 4 68.53 74.83 88.17 69.72 74.10 89.84
2 48 48 4 72.65 68.87 83.21 74.88 66.65 83.64
3 32 32 6 66.20 75.91 93.48 66.82 75.45 96.47

Average 69.12 76.98 89.57 69.96 76.29 91.08
Table 2. Rates (%) : Real Data - Histograms (ETH-80)

results by reducing the distortion induced by local diffeo-
morphisms. Let C be the number of classes, P be the num-
ber of points per class and τ is a stopping rule of minimal
number of observations as in [27].

5.1. Simulations on Synthetic Data

We generate synthetic matrices on the Grassmann mani-
fold using the method presented in [6]. An orthogonal n×n
matrix S can be defined as a product of (0.5n2 − 0.5n) or-
thogonal matrices of the form Rνn(θ), for 1 ≤ ν ≤ n − 1
(refer to [6]). The orthogonal matrix S can be defined as
S =

∏n−1
ν=1 Sνn , with Sνn =

∏n−1
j=ν R

j
n(θν,j). For each

one of the C classes, we generated (0.5n2 − 0.5n) angles
{θν,j}. Each angle {θν,j} is randomly drawn from one of
(0.5n2 − 0.5n) bins in [0, π] [6]. Then the angles are cor-
rupted with random noise. Given the set of matrices {S}
for each class, we form the matrices X by taking the first
k orthonormal columns of each S. The projection matrices
are computed as P = XXT [6].

5.2. Real Data - Histograms

In our real tests using histograms we select two well-
known datasets, ETH-80 [18] and CIFAR-10 [17], typically
used in visual object categorization. In order to extract fea-
tures from an image and convert in Grassmann points, we
follow the method presented in [6]. The features were ob-
tained extracting the magnitude of the image gradient and
the Laplacian at three different scales. A maximum of five
different scales and two types of histograms were used, that
is, υ1 = {1, 2, 4, 6, 8} where υ1 is the variance of the Gaus-
sian filter and υ2 = {32, 48}where υ2 is the number of bins
of the histogram [6]. Let s be the number of scales used, for
each of the 2s images a υ2-bin histogram. Each histogram is
normalized such that the l2-norm is equal to 1 [6]. We form
a feature matrix by stacking the 2s aforementioned υ2-bin
histograms as columns and then we take the SVD (Singular
Value Decomposition) of the resulting υ2 × 2s matrix. Its
singular vectors span a subspace of dimension 2s in <υ2 .
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τ1 τ2
G Performance (%) Performance (%)

Scales Bins υ2 2s LogI LogM RmI LogI LogM RmI
C = 3 | P = 400

2 32 32 4 65.92 70.33 81.30 68.13 70.18 82.57
2 48 48 4 63.07 72.19 81.04 63.86 72.97 82.17
3 32 32 6 63.51 67.71 84.36 64.52 66.26 87.15

C = 3 | P = 500
2 32 32 4 60.71 74.26 80.22 59.82 75.57 80.45
2 48 48 4 66.66 74.77 87.31 68.74 76.34 91.09
3 32 32 6 63.63 67.88 85.34 64.20 66.01 88.12

C = 4 | P = 400
2 32 32 4 59.33 65.65 77.68 59.25 64.16 78.14
2 48 48 4 63.77 71.19 83.93 65.91 72.48 87.52
3 32 32 6 50.22 68.26 76.83 45.58 68.08 76.86

C = 4 | P = 500
2 32 32 4 61.28 66.83 80.17 62.67 66.43 82.38
2 48 48 4 65.40 60.87 75.21 68.85 57.50 74.94
3 32 32 6 58.95 67.91 85.48 59.18 68.05 90.34

Average 61.87 68.98 81.57 62.55 68.66 83.47
Table 3. Rates (%) : Real Data - Histograms (CIFAR-10)

5.3. Real Data - Illumination/Pose Invariance

Following the Hamm’s work [12, 11] in this section we
test with subspace representations using the Yale-Face [8],
CMU-PIE [23] and ETH80 [18] image datasets. In par-
ticularly, these datasets are suited to use with subspace-
based learning techniques since they contain naturally fac-
torized structures : illumination-invariant face recognition
for the Yale-Face / CMU-PIE datasets and pose-invariant
object categorization for the ETH-80 dataset. In the Yale-
Face/CMU-PIE databases [8, 23], a set comprises images
of all illumination conditions of a person at a fixed pose.
For the ETH-80 database [18], a set comprises images of
all possible poses of an object from a category. By con-
sidering each set as a point in the Grassmann manifold, it
is possible realize illumination-invariant and pose-invariant
learning tasks, respectively [12, 11]. Following the works in
[12, 11] we use as image features the pixel intensities (nor-
malised) and we compute subspaces using SVD. Let N be
the number of pixels in an image. Following the idea pre-
sented in [27], each image was divided in patches of 5 × 5
pixels (with some degree of overlapping) and it was learned
one classifier for each patch. LetNp = 25 be the number of
pixels in a patch and Ns be the number of elements in each
set (illumination/pose sets).

Let D be the Np × Ns data matrix containing all illu-
minations/poses of each set and patch. The k-dimensional
subspace of <Np is computed from the SVD of the matrix
D. In all these tests were used 4 classes C = 4 and extra

τ1 τ2
G Performance (%) Performance (%)

N k LogI LogM RmI LogI LogM RmI
504 2 59.87 63.53 75.04 61.56 62.48 76.93
504 4 61.27 66.02 77.86 63.65 66.21 78.66
504 6 57.91 61.87 82.02 58.61 60.00 84.90
504 8 58.73 65.20 79.82 59.84 64.99 81.60
896 2 58.66 70.45 84.00 58.24 71.37 86.37
896 4 63.12 65.28 83.31 64.93 63.61 85.34
896 6 60.85 65.17 81.18 61.53 63.44 82.14
896 8 65.07 70.49 81.51 67.85 71.42 82.63
Average 60.68 66.00 80.59 62.02 65.44 82.32

Table 4. Rates (%) : Real Data - Ilumination (Yale-Face)

τ1 τ2
G Performance (%) Performance (%)

N k LogI LogM RmI LogI LogM RmI
504 2 54.87 58.53 65.04 56.79 57.48 66.32
504 4 56.27 61.02 72.86 59.11 61.63 73.55
504 6 52.91 56.87 77.02 53.51 54.73 80.49
504 8 53.73 60.20 74.82 54.88 60.28 76.82
896 2 53.66 65.45 79.00 52.76 67.02 81.79
896 4 58.12 60.28 78.31 60.20 58.41 80.64
896 6 55.85 60.17 76.18 56.42 58.22 77.09
896 8 60.07 65.49 76.51 63.45 67.08 77.64
Average 55.68 61.00 74.96 57.14 60.60 76.79

Table 5. Rates (%) : Real Data - Ilumination (CMU-PIE)

training samples were generated using bootstrapping.
Illumination-Invariance - Yale-Face DataSet : Using
a special camera rig, it is feasible to obtain multi-view,
multi-lighting images simultaneously [12, 11]. This is the
case of the Yale-Face and the Extended Yale-Face datasets
[8]. These datasets together comprise pictures of 38 sub-
jects with 9 different poses and 45 different lighting con-
ditions. The original images are gray-valued and contain
background objects. Following [12, 11], face regions were
cropped/aligned from the original pictures, by manually se-
lect some key points (mouth, nose tip and center of eyes)
for each image. In order to obtain two different values for
N , after the cropped, the images were resized to 24 × 21
pixels (N = 504) and to 32×28 pixels (N = 896). Finally,
they were normalized to have the same variance. All the dif-
ferent 45 illumination conditions of a person under a fixed
pose were used to calculate subspaces (Ns = 45). The illu-
mination is modeled by subspaces of size k = {2, 4, 6, 8}.
Illumination-Invariance - CMU-PIE DataSet : The
CMU-PIE database [23] is also an example of a multi-view,
multi-lighting face dataset obtained with a camera rig [11].
This dataset comprises images from 68 subjects under 13
different poses and 43 different lighting conditions. The
original images are color-valued and contain background
objects. Following [11], the images were converted to gray
and face regions were cropped/aligned from the original
pictures, by manually select some key points (mouth, nose
tip and center of eyes) for each image.

In order to obtain two different values for N , after the
cropped, the images were resized to 24 × 21 pixels (N =
504) and to 32 × 28 pixels (N = 896) and normalized to
have the same variance. All the different 43 illumination
conditions of a person under a fixed pose were used to cal-
culate subspaces (Ns = 43). The illumination is modeled

τ1 τ2
G Performance (%) Performance (%)

N k LogI LogM RoI LogI LogM RoI
576 2 67.37 69.03 77.54 69.29 67.98 75.02
576 4 68.77 71.52 85.36 71.61 72.13 86.05
576 6 65.41 67.37 89.52 66.01 65.23 92.99
576 8 66.23 70.70 87.32 67.38 70.78 89.32

1024 2 66.16 75.95 91.50 65.26 77.52 94.29
1024 4 70.62 70.78 90.81 72.70 68.91 93.14
1024 6 68.35 70.67 88.68 68.92 68.72 89.59
1024 8 72.57 75.99 89.01 75.95 77.58 90.14
Average 68.18 71.50 87.46 69.64 71.1 88.81

Table 6. Rates (%) : Real Data - Pose (ETH-80)
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by subspaces of size k = {2, 4, 6, 8}.
Pose-Invariance - ETH-80 DataSet : The ETH-80 dataset
[18] was projected for testing techniques of object catego-
rization under varying poses [12, 11]. This dataset com-
prises pictures of 8 object categories and 10 object instances
for each category, captured under 41 different poses (ori-
entations). The original images are color-valued without
background objects. Following [12, 11], the images were
converted to gray and the background was kept. In order to
obtain two different values for N , after the cropped, the im-
ages were resized to 24×24 pixels (N = 576) and to 32×32
pixels (N = 1024) and normalized to have the same vari-
ance. All the different 41 poses of an object from a category
were used to calculate subspaces (Ns = 41). The illumina-
tion is modeled by subspaces of size k = {2, 4, 6, 8}.

6. Conclusions and Future Work
To the best of our knowledge, this is the first work that

propose an avenue that allows to generalize multi-class
models to general Riemannian manifolds. We introduce
for the first time in the vision community the Rolling map
paradigm. This map allows to solve some complex prob-
lems on manifolds, by simplifying them to simpler ones.

In the future we intend to explore other possible
paradigms to perform multi-class classification on the Rie-
mannian manifolds, namely nonparametric regression esti-
mators with manifold-valued input [14].

We believe that Rolling motions could be useful to solve
several other problems frequently occurring in vision. The
specific Rolling map on the Grassmann manifold could be
used to devise view-invariant techniques to analyse facial
human expressions [26]. Recently, the Grassmann mani-
fold has been also used with sucess in the domain adaptation
[9]. In this case the Rolling map combined with interpola-
tion techniques can be a promising solution to explore more
complex curves on that manifold and generalize to linear
classifiers. Interpolation on the Essential manifold, on the
Fundamental manifold, or on their generalization to higher
tensors is certainly useful. It would be interesting to de-
vise techniques that allow for the real-time computation of
additional virtual camera views.
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