
Graph-Based Discriminative Learning for Location Recognition

Song Cao Noah Snavely
Cornell University

Abstract

Recognizing the location of a query image by matching
it to a database is an important problem in computer vision,
and one for which the representation of the database is a key
issue. We explore new ways for exploiting the structure of a
database by representing it as a graph, and show how the
rich information embedded in a graph can improve a bag-
of-words-based location recognition method. In particular,
starting from a graph on a set of images based on visual
connectivity, we propose a method for selecting a set of sub-
graphs and learning a local distance function for each using
discriminative techniques. For a query image, each database
image is ranked according to these local distance functions
in order to place the image in the right part of the graph. In
addition, we propose a probabilistic method for increasing
the diversity of these ranked database images, again based
on the structure of the image graph. We demonstrate that our
methods improve performance over standard bag-of-words
methods on several existing location recognition datasets.

1. Introduction

Location recognition—determining where an image was

taken—is an important problem in computer vision. How-

ever, there is no single definition for what it means to be

a location, and, accordingly, a wide variety of representa-

tions for places have been used in research: Are places, for

instance, a set of distinct landmarks, each represented by a

set of images? [33, 16] Are places latitude and longitude

coordinates, represented with a set of geotagged images?

[11] Should places be represented with 3D geometry, from

which we can estimate an explicit camera pose for a query

image? [17, 25, 18] This question of representation has ana-

logues in more general object recognition problems, where

many approaches regard objects as belonging to pre-defined

categories (cars, planes, bottles, etc.), but other work repre-

sents objects more implicitly as structural relations between

images, encoded as a graph (as in the Visual Memex [19]).

Inspired by this latter work, our paper addresses the loca-

tion recognition problem by representing places as graphs

encoding relations between images, and explores how this

A (Center)

H

E

A (Center)

H

E

(C)

D

E

F

G

I

Query

?

?
?

B (Center)

C (Center)

Figure 1. A segment of an example image matching graph with
three clusters defined by representative images A, B and C.
Nodes in this graph are images, and edge connect overlapping

images. In order to match a new query image to the graph, our

method learns local distance functions for a set of neighborhoods

that cover the graph, for instance, the neighborhoods centered at

nodes A, B, and C, circled with colored boundaries. Given a query

image, we match to the graph using these learned neighborhood

models, rather than considering database images individually. Each

neighborhood has its own distinctive features, and our goal is to

learn and use them to aid recognition.

representation can aid in recognition. In our case, graphs

represent visual overlap between images—nodes correspond

to images, and edges to overlapping, geometrically consis-

tent image pairs—leveraging recent work on automatically

building image graphs (and 3D models) from large-scale

image collections [1, 7, 4, 3]. An example image graph for

photos of the town of Dubrovnik is shown in Figure 1. Given

an image graph, our goal is to take a query image and plug it

in to the graph in the right place, in effect recognizing its lo-

cation. The idea is that the structure inherent in these graphs

encodes much richer information than the set of database

images alone, and that utilizing this structural information

can result in better recognition methods.

We make use of this structural information in a bag-of-

words-based location recognition framework, in which we

take a query image, retrieve similar images in the database,

and perform detailed matching to verify each retrieved image

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.96

698

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.96

698

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.96

698

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.96

698

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.96

700

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.96

700

until a match is found. While others have used image graphs

in various settings before (especially in 3D reconstruction),

our main contribution is to introduce two new ways to ex-

ploit the graph’s structure in recognition. First, we build
local models of what it means to be similar to each neighbor-

hood of the graph (Figure 1). To do so, we use the graph’s

structure to define sets of images that are similar, and sets

that are different, and use discriminative learning techniques

to compute local distance functions tuned to specific parts

of the graph. Second, we use the connectivity of the graph

to encourage diversity in the set of results, using a proba-

bilistic algorithm to retrieve a shortlist of similar images that

are more likely to have at least one match. We show that

our graph-based approach results in improvements over bag-

of-words retrieval methods, and yields performance that is

close to more expensive direct feature matching techniques

on existing location recognition datasets.

2. Related Work

Image retrieval and supervised learning. As with other

location recognition approaches [27, 12, 14, 26], our work

uses an image-retrieval-based framework using a bag-of-

words model for a database of images. However, our goal

is not retrieval per se (i.e., to retrieve all related instances

of a query image), but instead recognition, where we aim

to determine where an image was taken (for which a single

correctly retrieved database image can be sufficient).

Our work uses supervised learning to improve on such

methods. Prior work has also used various forms of su-

pervision to improve bag-of-words-style methods for both

retrieval and recognition. One type of supervision is based

on geolocation; images that are physically close—on the

same street, say—should also be closer in terms of their

image distance than images across the city or the globe.

Geolocation cues have been used to reweight different vi-

sual words based on their geographic frequency [27, 14], or

to find patches that discriminate different cities [6]. Other

methods rely on image matching to identify good features,

as we do. Turcot and Lowe [31] perform feature matching

on database images to find reliable features. Arandjelovic

and Zisserman propose discriminative query expansion in

which a per-query-image distance metric is learned based

on feedback from image retrieval [2]. Mikulik et al. use

image matches to compute global correlations between vi-

sual words [21]. In contrast, we use discriminative learning

to learn a set of local distance metrics for the database as a

pre-process (rather than at query time), leveraging the known

graph structure of the database images.

Representing places. Places in computer vision are often

represented as sets of images (e.g., the Eiffel Tower can be

represented with a collection of photos [33]). However, many

other representations of places have been explored. Some

methods use iconic images to represent sets of images taken

from very similar viewpoints [15, 13]. Other approaches use

3D point clouds, derived from structure from motion, as a

richer geometric representation of a place [17, 24]. Closer

to our approach are methods that explicitly construct and

exploit image graphs. For instance, Torii et al. download

Google Streetview images to form a recognition database,

and leverage the underlying Street View image network; in

their approach, they take linear combinations of neighboring

images (in bag-of-words space) to more accurately recognize

the continuum of possible viewpoints [30]. Li et al. use a vis-

ibility graph connecting images and 3D points in a structure-

from-motion model to reason about point co-occurrence for

location recognition [18]. A main contribution of our ap-

proach is to combine the power of discriminative learning

methods with the rich structural information in an image

graph, in order to learn a better database representation and

to better analyze results at query time.

3. Graph-based Location Recognition
We base our algorithm on a standard bag-of-words frame-

work [29], with images represented as L2 normalized his-

tograms of visual words, using a large vocabulary trained

from SIFT descriptors. Our problem takes as input a database

of images I represented as bag-of-words vectors, and an im-

age graph G, with a node for each image a ∈ I, and edges

(a, b) connecting overlapping, geometrically consistent im-

age pairs. Our goal is to take a new query image and predict

which part of the graph this image is connected to, then use

this information to recognize its location.

To achieve this goal, we use the query to retrieve a short-

list of similar database images, and perform detailed match-

ing and geometric verification on the top few matches. Be-

cause our goal is recognition, rather than retrieval, we want

to have at least one correct match appear as close as possible

to the top of the shortlist (rather than retrieve all similar im-

ages). Towards that end, our method improves on the often

noisy raw bag-of-words similarity measure by leveraging

the graph in two ways: (1) we discriminatively learn local

distance functions on neighborhoods of the image graph

(Section 3.2), and (2) we use the graph to generate a ranked

list that encourages more diverse results (Section 3.3).

3.1. Image Matching Graphs

We construct an image graph for the database using a

standard image matching pipeline [1]: we extract features

from each image, and, for a set of image pairs, find nearest

neighbor features and perform RANSAC-based geometric

verification. These matches are sufficient for our method

(though to improve the quality of the matching, we can also

run structure from motion to obtain a point cloud and a

refined set of image correspondences). For each image pair

(a, b) with sufficient inliers matches, we create an edge in

699699699699701701

our graph G. We also save the number of inliers N(a, b)
for each image pair to derive edge weights for the graph. In

our experience, the graphs we compute have very few false

edges—almost all of the matching pairs are correct—though

there may be edges missing from the graph because we do

not exhaustively test all possible edges.

In parts of our algorithm, we will threshold edges by their

weights, discarding all edges below a threshold. The edge

weights we define are related to the idea of a Jaccard in-
dex; we define a weight J(a, b) = N(a,b)

N(a)+N(b)−N(a,b) , where

N(a) and N(b) denote the total number of points seen in

a and b respectively. This measures the similarity of the

two images as the number of features N(a, b) they have

in common, normalized by the union of their feature sets.

This measure ranges from 0 to 1; 0 if no overlap, and 1 if

every feature was matched. This normalization reduces bias

towards images with large numbers of features.

3.2. Graph-based Discriminative Learning

How can we use the information encoded in the graph

to better recognize the location of a query image? We first

address this problem as one of distance (or similarity) metric

learning. There are many possible ways to learn a metric

for the images in the graph. For example, one could take

all the connected pairs in the graph to be positive examples

and the other pairs as negative examples, to learn a single,

global distance metric for a specific dataset [3]. At the other

extreme, one could learn a distance metric for each image in

the database, analogous to how Exemplar SVMs have been

used for object detection [20].

We tried both approaches, but found that we achieved

better performance with approach somewhere in the middle

of these two extremes. In particular, we divide the graph

into a set of overlapping subgraphs, and learn a separate

distance metric for each of these representative subgraphs.

Our approach, then, consists of the following steps:

At Training Time
1. Compute a covering of the graph with a set of subgraphs.

2. Learn and calibrate an SVM-based distance metric for

each subgraph.

Ay Query Time
3. Use the models in Step 2 to compute the distance from

a query image to each database image, and generate a

ranked shortlist of possible image matches.

4. Perform geometric verification with the top database im-

ages in the shortlist.

We now describe each step in more detail. Later, in Sec-

tion 3.3, we discuss how we improve Step 3 by reranking

the shortlist based on the structure of the graph.

Step 1: Selecting representative neighborhoods. We start

by covering the graph with a set of representative subgraphs;

afterwards, for each subgraph, we will learn a local similarity

function, using the images in the subgraph as positive exam-

ples, and other, unrelated images in the graph as negative

examples. What makes a good subgraph? We want each

subgraph to contain images that are largely similar, so that

our learning problem has a relatively compact set of positive

example images that can be explained with a simple model.

On the other hand, we also want as many positive examples

as possible, so that our models have enough data from which

to generalize. Finally, we want our subgraphs to completely

cover the graph (i.e., each node is in at least one subgraph),

so that we can build models that apply to any image of the

location modeled in the database.

Based on these criteria, we cover the graph by selecting

a set of representative exemplar images, and defining their

(immediate) neighborhoods as subgraphs in a graph cover,

as illustrated in Figure 1. Formulated this way, the covering

problem becomes one of selecting a set of representative

images that form a dominating set of the graph. For a graph

G, and a set of exemplar images C, we say an image a ∈ I
is covered by C if either a ∈ C, or a is adjacent to an image

in C. If C covers all nodes, then C is a dominating set. We

would like C to be as small as possible, and accordingly, the

neighborhood of each node in C to be as large as possible.

Hence, we seek a minimum dominating set. Such sets have

been used before for 3D reconstruction [10]; here we use

them to define a set of classifiers.

Finding an exact minimum dominating set is an NP-

complete problem. We use a simple greedy algorithm to

find an approximate solution [9]. Starting with an empty set,

we iteratively choose the image that covers the maximum

number of as-yet uncovered images in the graph, until all

images are covered. Figure 2 shows an example image graph

for the Dubrovnik dataset [17] and the exemplar images

selected by our algorithm.

Step 2a: Discriminative learning on neighborhoods. For

each neighborhood selected in Step 1, the next step is to

learn a classifier that will take a new image, and classify it

as belonging to that neighborhood or not. We learn these

classifiers using standard linear SVMs on bag-of-words his-

tograms, one for each neighborhood, and calibrate the set

of SVMs as described in Step 2b; at query time, these clas-

sifiers will be used to define a set of similarity functions

for ranking the database images given a query image. This

use of classifiers for ranking has found many applications in

vision and machine learning, for instance in image retrieval

using local distance functions [8] or Exemplar SVMs [28].

First, for each neighborhood around an exemplar node

c ∈ C, we must define a set of positive and negative example

images as training data for the SVM. To define the positive

set, we simply use the images in the neighborhood. For

this task, we found that thresholding the edges in the graph

by their weight—applying a stricter definition of connec-

700700700700702702

Figure 2. Image matching graph for the Dubrovnik dataset.
This graph contains 6,844 images; the large, red nodes denote

representative images selected by our covering algorithm (478 im-

ages in total). Although the set of representative images is much

smaller than the entire collection, their neighborhoods cover the

matching graph. For each neighborhood, we learn a classifier for

determining whether a new image belongs to that neighborhood.

tivity, and yielding more compact neighborhoods—yielded

better classifiers than using all edges found by the image

matching procedure. To define the negative set for the neigh-

borhood around an exemplar c, we first find a small set of

hard negatives—images with high BoW similarities to c, but

not in its neighborhood. These hard negatives are combined

with other randomly sampled non-neighboring images in the

graph to form a negative set. Here we use the original, as

opposed to thresholded, graph to define connectivity, to mini-

mize the chances of including a false negative in the negative

set. In this way, the image graph G gives us the supervision

necessary to define positives and negatives for learning, just

as geotags have provided a supervisory cue for discrimina-

tive location recognition in previous work [27, 14].

Given the training data for each neighborhood, we learn

a linear SVM to separate neighborhood images from non-

neighborhood images, using the tf-idf weighted, L2 normal-

ized bag-of-words histograms for each image as features. We

randomly split the training data into training and validation

subsets for parameter selection in training the SVM (more

details in Section 4.2). For each neighborhood centered on

exemplar c, the result of training is an SVM weight vector

wc and a bias term bc. Given a new query image, represented

as a bag-of-words vector q, we can compute the decision

value wc · q+ bc for each exemplar image c.

�������	
����

�������	
���

���

���

���

���

�
����

�����

�
��

��

�

��
��

�
����

�����

�
��

��

�

��
��

Figure 3. Two example query images and their top 5 ranked
results of our method and raw tf-idf retrieval. For each result, a

green border indicates a correct match, and a red border indicates

an incorrect match. These two example query images are difficult

for BoW retrieval techniques, due to drastically different lighting

conditions (query image 1) and confusing features (rooftops in

query image 2). However, with our discriminatively learned simi-

larity functions, correctly matching images are ranked higher than

with the baseline method.

Step 2b: Calibrating classifier outputs. Since our classi-

fiers are independently trained, we need to normalize their

outputs before comparing them. To do so, we convert the de-

cision value of each SVM classifier into a probability value,

using Platt’s method [23] on the whole set of training data.

For a neighborhood around exemplar c, and a query image

vector q, we refer to this probability value as Pc(q).

Step 3: Generating a ranked list of database images. For

a query image represented as a BoW vector q, we can now

compute a probability of q belonging to the neighborhood of

each exemplar image c. Using these values, it is straightfor-

ward to generate a ranked list of the exemplar images c ∈ C
by sorting by Pc(q) in decreasing order. However, we found

that just verifying the query image against exemplar images

sometimes failed simply because the exemplar images rep-

resent a much sparser set of viewpoints than the full graph.

Hence, we would like to create a ranked list of all database

images. To do so, we take the sorted set of neighborhoods

given by the probability values, and then we sort the images

within each neighborhood by their original tf-idf similarity.

We then concatenate these per-neighborhood sorted lists;

since a database image can appear in multiple overlapping

neighborhoods (see Figure 1), in the final list it appears only

in list of the best-ranked neighborhood. This results in a

ranking of the entire list of database images.

Step 4: Geometric verification. Finally, using the ranking

of database images from Step 3, we perform feature match-

ing and RANSAC-based geometric verification between the

query image and each of the images in the shortlist in turn,

until we find a true match. If we have a 3D structure from

motion model, we can then associate 3D points with matches

701701701701703703

in the query image, and determine its pose [18]. If not, we

can associate the location of the matching database image as

the approximate location of the query image. Because fea-

ture matching and verification is relatively computationally

intensive, the quality of the ranking from Step 3 highly im-

pacts the efficiency of the system—ideally, a correct match

will be among the top few matches, if not the first match.

Using this simple approach, we observe improvements

in our ranked lists over raw BoW retrieval results, as shown

in the examples in Figure 3. In particular, the top image in

the ranked list is more often correct. However, when the

top ranked cluster is incorrect, this method has the effect

of saturating the top shortlist with similar images that are

all wrong—there is a lack of diversity in the list, with the

second-best cluster pushed further down the list. To avoid

this, we propose several methods to encourage a diverse

shortlist of images.

3.3. Improving the Shortlist

In this section, we first introduce a probabilistic method

that uses the graph to introduce more diversity into the short-

list, increasing the likelihood of finding a correct match

among the top few retrieved images. Second, we demon-

strate several techniques to introduce regularization using

BoW ranking to further improve recognition performance.

Probablistic Reranking. Our problem is akin to the well-

known Web search ranking problem (as opposed to standard

image retrieval). Rather than retrieve all instances relevant

to a given query, we want to retrieve a small set of results

that are both relevant and diverse (see Figure 4 for an ex-

ample), so as to cover multiple possible hypotheses—just

as a Web search for the term “Michael Jordan” might pro-

ductively return results for both the basketball player and

the machine learning researcher. While introducing diver-

sity in Web search has been studied in the machine learning

literature [32], we are unaware of it being used in location

recognition; in our problem, it is the automatic verification

procedure that is examining results, rather than a human.

To introduce diversity, we propose a probabilistic approach

for reranking the shortlist. The idea is, in some ways, the

converse of query expansion on positive matches to increase

recall in image retrieval. In our case, we use negative evi-
dence to increase the pool of diverse matches. For instance,

in the case where the first retrieved image is not a match to

the query, we want to select the second image conditioned

on this outcome, perhaps selecting an image dissimilar to

this first match (and similarly for the third image conditioned

on the first two being incorrect). How can we compute such

conditional probabilities? We again turn to the image graph.

First, some terminology. For a database image a, we

define a random variable Xa representing the event that the

query image matches image a; Xa = 1 if image a is a

match, and 0 otherwise. Thus, using the notation above,

Pc = P (Xc = 1) for an exemplar image c, and similarly

Pa = P (Xa = 1) for any database image, using the simple

heuristic above that a non-exemplar database image takes

the maximum probability of all neighborhoods it belongs

to. As before, we choose the database image a with the

highest Pa as the top-ranked image. However, to select the

second ranked image, we are instead more interested in the

conditional probability P ′b = P (Xb = 1|Xa = 0) than its

raw appearance-based probability P (Xb = 1) alone. We

can compute this conditional probability as:

P ′b = P (Xb = 1|Xa = 0) =
P (Xb = 1, Xa = 0)

P (Xa = 0)

=
P (Xb = 1)− P (Xb = 1, Xa = 1)

1− P (Xa = 1)

=
Pb − P (Xb = 1|Xa = 1)P (Xa = 1)

1− Pa

=
Pb − PbaPa

1− Pa
= Pb

(
1− Pba

Pb
Pa

1− Pa

)
(1)

where Pba = P (Xb = 1|Xa = 1) denotes the conditional

probability that image b matches the query given that image

a matches. The last line in the derivation above relates P ′b to

Pb via an update factor, (1− Pba

Pb
Pa)/(1−Pa), that depends

on Pa (the probability that the top ranked image matches)

and Pba (a conditional probability). We use the image graph

to estimate Pba, the intuition being that the more similar

b is to a—i.e., stronger the connection between a and b
in the graph—the higher Pba should be. In particular, we

estimate Pba as
N(a,b)
N(a) , the ratio of the number of shared

features between a and b divided by the total number of

feature points in a. Note that in general Pab �≡ Pba, i.e., this

similarity measure is asymmetric. These measures are pre-

computed, along with the Jaccard indices J(a, b) described

in Section 3.1.

The update factor in Eq. (1) has an intuitive interpretation:

if image b is very similar to image a according to the graph

(i.e., Pba is large), then its probability score is downweighted

(because if a is an incorrect match, then b is also likely

incorrect). On the other hand, if b is not connected to a, its

score will tend to be boosted. However, we do not want

to apply this update too quickly, for fear of downweighting

many images based on the evidence of a single mismatch. To

regulate this factor, we introduce a parameter α, and define

a regularized update factor (1 − αPba

Pb
Pa)/(1 − αPa). If

α = 0, the update has no influence on the ranking result,

and when α = 1, it has its full effect. We use α = 0.9 in

our experiments. We iteratively choose the image b with the

highest updated score P ′b and recalculate scores using (1).

BoW Regularization. Our learned discriminative models

often perform well, but we observed that for some rare query

images, our models consistently perform poorly (perhaps due

702702702702704704

�������	
��

���

���

�
���

��
���

��
	�
�

��
�

��

��
�

�
�������	��

���
�����

Figure 4. An example query image and the top 5 ranking re-
sults using our method with and without probablistic ranking.
Green borders indicate correct matches, and red borders incorrect

ones. Without probabilistic ranking, our algorithm outputs top 5

results that are similar, but incorrect. With probabilistic ranking,

more diversity is encouraged in the top ranking results, leading to

correct images in the top 5 results.

to sparser parts of the graph having relatively few training

examples, see Figure 2). For this reason, we found it helpful

to use the original tf-idf-based similarities as a way of “reg-

ularizing” our rankings, in case of query images for which

our models perform poorly. We do this in three ways. First,

as a simple strategy, for query images where all models give

a probability score below a minimum threshold Pmin (0.1 in

our tests), we fall back to tf-idf scores, as we found low prob-

ability scores unreliable for ranking. (In our experiments,

this occurs in ∼ 5% of queries.) Second, to regularize our

probability scores in case of overfitting, we take a weighted

average of our probability scores and a tf-idf-based proba-

bility value; this value is given by a logistic regressor fitted

using matching and non-matching image pairs in the image

graph. Finally, we found that our learned models and the

original tf-idf scores sometimes were complementary; while

our models work well for many queries, some query images

still performed better under tf-idf. Thus, as a way of intro-

ducing more diversity, and an alternative for the falling back

strategy, we interleave the results of the two rankings. The

order of interleaving is determined by the maximum value

of our probability outputs, which represents the confidence

of our original ranking. If this value is less than a threshold

(we use 0.1), then BoW ranking goes first, and vice versa.

In our experiments, we use the simple fall back strategy by

default, and separately evaluate a combination of averaging

and interleaving as a stronger form of tf-idf regularization.

4. Experiments
As discussed in Section 3.2, a key bottleneck of image

retrieval-based location recognition systems is the quality

of the image ranking—we want the first true match to a

query image to rank as high in the list as possible, so we

have to run the verification procedure on as few images

as possible. Hence, we evaluate the accuracies at top k
(k ∈ {1, 2, 5, 10}), i.e., the percentage of query images that

have at least one correct match in the top k results. Note

that all the methods we test are compared purely based on

Table 1. Summary of datasets and their neighborhoods used in
our experiments. The representative neighborhoods (clusters) are

found using graphs whose edge weights are defined using Jaccard
index and thresholded by value 0.01. The rightmost column shows

the average cluster size in each dataset.

Dataset # Queries # DB Imgs # Clusters Ave. Cluster Size

Dubrovnik [17] 800 6,044 188 206.7
Rome [17] 1,000 15,179 352 293.0

Aachen [26] 369 4,479 161 82.0

the shortlist they generate on an equal footing, without using

RANSAC-based verification before examining results. We

apply detailed verification in all cases by checking each

short-listed image sequentially until the first true match is

found, at which point a localization is achieved.

4.1. Datasets and Preprocessing

We evaluate our algorithm on the Dubrovnik and Rome

datasets [17] and the Aachen dataset [26]; these are summa-

rized in Table 1, along with statistics over the neighborhoods

we compute. To represent images as BoW histograms, we

learn two kinds of visual vocabularies [22]: one vocabulary

learned from each dataset itself (a specific vocabulary) and

another shared vocabulary learned from ∼20,000 randomly

sampled images from an unrelated dataset (a generic vocab-

ulary). Each vocabulary is of size 1M. As our ground truth,

we count an image pair as matching if they have at least 12

inlier matches.

4.2. Performance Evaluation

Baselines. For all datasets, we compare (a) standard tf-idf

image retrieval [22] and (b) its probabilistic reranked ver-

sion, (c) our learning-based technique, and (d) our learning

method using diversity reranking as well as (e) strong BoW

regularization. We note that our method is orthogonal to

many other improvements to bag-of-words models [2], as

we can generalize to more sophisticated feature representa-

tions. In addition, for one dataset (Dubrovnik, with a specific

vocabulary), we also compare to a range of other baselines,

including a more recent retrieval method using co-occuring

sets of visual words [5] and a GPS-based baseline inspired by

[14, 27]. For the latter, we randomly select a set of exemplar

images, define the nearest neighbors using GPS positions as

positives and the rest as negatives and use the same learning

and retrieval techniques described above thereafter. Finally,

we evaluate two alternative learning approaches: a global

distance metric learned using pairs of matching and non-

matching image pairs in the graph [3], and our technique but

trained using every database image as a center (i.e., learning

a per-image distance metric).

Experiment details. From a Jaccard index weighted image

graph (thresholded by 0.01), we choose exemplar images

703703703703705705

Table 2. Recognition accuracies on all datasets. “GBP” stands

for our graph-based probability ranking; “+RR” stands for our

probabilistic reranking; “+BoW” stands for strong regularization

using BoW ranking. Here we show results using both specific

and generic vocabularies for Dubrovnik dataset, and only using

specific vocabulary for others, whose generic cases show similar

trend (slightly worse) compared to specific cases.

Dubrovnik (Specific Vocab.)

Method top1 top2 top5 top10 mAP

BoW [29] 87.50% 92.75% 97.62% 98.50% 0.401
BoW+RR 87.50% 93.38% 96.63% 97.50% 0.058

Co-ocset [5] 87.50% 92.50% 97.50% 98.62% 0.389

GPS Model 87.87% 89.75% 91.75% 93.25% 0.367
Global Model [3] 85.37% 91.63% 95.87% 97.38% 0.643
Instance Model 90.00% 95.13% 98.12% 98.50% 0.643

GBP 94.38% 96.37% 98.25% 98.50% 0.626
GBP+RR 94.38% 96.25% 98.62% 99.13% 0.273

GBP+RR+BoW 94.25% 97.12% 99.37% 99.50% 0.122

Dubrovnik (Generic Vocab.)

Method top1 top2 top5 top10 mAP

BoW 75.88% 83.00% 90.88% 95.63% 0.512
BoW+RR 75.88% 83.62% 93.25% 96.25% 0.065

GBP 81.25% 85.13% 88.13% 90.00% 0.512
GBP+RR 81.25% 83.87% 89.88% 95.13% 0.151

GBP+RR+BoW 81.88% 90.00% 94.00% 96.00% 0.085

Rome

Method top1 top2 top5 top10 mAP

BoW 97.40% 98.50% 99.50% 99.60% 0.674
BoW+RR 97.40% 98.70% 99.10% 99.10% 0.047

GBP 97.80% 98.70% 99.30% 99.30% 0.789
GBP+RR 97.80% 98.80% 99.30% 99.70% 0.403

GBP+RR+BoW 97.90% 99.00% 99.70% 99.70% 0.259

Aachen

Method top1 top2 top5 top10 mAP

BoW 80.76% 83.47% 86.45% 88.35% 0.431
BoW+RR 80.76% 82.66% 86.45% 88.62% 0.069

GBP 82.38% 84.55% 86.72% 88.35% 0.459
GBP+RR 82.38% 83.74% 87.26% 88.89% 0.205

GBP+RR+BoW 82.38% 84.82% 88.08% 89.16% 0.185

(neighborhoods) and learning SVMs and logistic functions

as described in Section 3. For each cluster, we use all the

available positive examples (i.e. cluster sizes in Table 1),

and sample roughly 5 times more negative examples. 1
3 of

total training data is held out for validation, and all training

data is used for logistic regressor training. For each query

image, we compute the estimated probability of it matching

all clusters, and obtain the initial ranking of the database

images as described in Section 3.2. We show the results of

our method (a) ranking with just the probability scores, (b)

reranking using our diversity measure, and (c) strong BoW

regularization using tf-idf scores (through both averaging

the two scores, with a weight of 5
6 on our score, and 1

6 on the

tf-idf-based probability score, and interleaving two resulting

rankings as described in Section 3.3).

Results. The results are shown in Table 2. From Dubrovnik

(Specific Vocab.), we can see that the unsupervised methods

(BoW, BoW+RR and Co-ocset) perform similarly; the GPS

based model (GPS Model) performs better at top1 but worse

for others, probably due to less accurate choices of train-

ing examples compared to those based on image graph; the

globally trained classifiers (Global Model) actually perform

worse, in general, compared to the unsupervised methods,

at least as measured by how often a correct result is in the

top-k matches. Interestingly, however, it does improve the

mAP (mean average precision) score the most, suggesting

that they are better at globally ranking the images than they

are at our recognition task. The per-image classifiers (“In-

stance Model”) perform best among the baselines, but still

worse than our method. We believe this is due to the nature

of image graphs for unstructured collections, where some

nodes have many neighbors, and others (e.g. very zoomed-in

images) have only a few; training and calibration for these

low-degree nodes may result in models that overfit the data

and contaminate the global ranking. In addition, increasing

the diversity (+RR) and strong regularization using BoW

results (+BoW) both are beneficial in improving our original

ranking results (though these techniques result in a smaller

mAP score; this again suggests an interesting tradeoff be-

tween retrieval and recognition performance).

Similar trends follow for other datasets as well. The

generic vocabulary performs worse than the specific one in

general. Our cluster-based probability scores (GBP) alone

consistently improve results for the top1 and top2 rankings

(anywhere from a negligible amount for the Rome dataset, to

> 6% for the Dubrovnik dataset with a specific vocabulary

for the top1). However, the performance of GBP results

increases much more slowly than the baseline tf-idf ranking

as a function of k, and for the top10 rankings the learning

approach performs worse in some cases. However, once we

reintroduce diversity through probabilistic reranking (RR),

our results improve slightly in general for larger rankings

(1.68% on average across our datasets for top10). Additional

gains are seen when regularizing our learned results with the

tf-idf scores (0.38% on average for top10).

We note that the Dubrovnik dataset is more challeng-

ing than Rome, and has a more interesting graph structure

(Dubrovnik spans many connected viewpoints across a city,

while Rome mostly consists of distinct landmarks). Our im-

provement over the baselines, particularly for the top ranked

image, is more apparent for Dubrovnik. For both Dubrovnik

and Rome, our top 10 success rate (99.5% on Dubrovnik and

99.7% on Rome) is comparable to the results of [18] (100%

/ 99.7%), which uses direct 3D matching, requiring much

more memory and expensive nearest neighbor computations.

Our performance on Aachen dataset (89.16%) also rivals that

of [26], where their best result 89.97% is achieved with a

relatively expensive method, while we only use the compact

set of weights learned from neighborhoods. In all cases, we

improve the top k accuracies over BoW retrieval techniques,

resulting in a better ranking for the final step of geometric

consistency check procedure.

704704704704706706

5. Conclusions and Discussion
Locations are often complex and difficult to model using

discrete categories or classes. We argue instead for modeling

locations as graphs for recognition problems, and explore

using local neighborhoods of exemplar images for learning

local distance metrics. This idea could also have application

in other recognition problems. Compared to raw tf-idf based

location recognition, we demonstrate higher performance

with little extra overhead during query time. Compared to

direct matching approaches, we do not require a full 3D

reconstruction and a large set of descriptors to be stored in

memory. Since our approach uses a bag-of-words frame-

work, we require less memory and have good scalability.

One limitation of our approach is that we require more

memory than standard tf-idf methods, since we need to learn

and use discriminative models in the database (though the

number of neighborhoods we select is often an order of

magnitude smaller than that of the original images (Table 1)).

Another limitation is that care must be taken when training

and calibrating the neighborhood models. In general, the

clusters we create have relatively large variation in size,

which could lead to some variation in reliability in their

performance. Finding a way to automatically adjust learning

parameters or synthesize the results from different clusters

is an important issue, and an interesting direction of future

work.

Acknowledgements. This work was supported in part by the NSF

(grants IIS-0713185 and IIS-1111534) and Intel Corporation. We

also thank Flickr users for use of their photos.

References
[1] S. Agarwal, N. Snavely, I. Simon, S. Seitz, and R. Szeliski.

Building Rome in a day. In ICCV, 2009.

[2] R. Arandjelovic and A. Zisserman. Three things everyone

should know to improve object retrieval. In CVPR, 2012.

[3] S. Cao and N. Snavely. Learning to match images in large-

scale collections. In ECCV Workshop on Web-scale Vision
and Social Media, 2012.

[4] O. Chum and J. Matas. Large-scale discovery of spatially

related images. PAMI, 2010.

[5] O. Chum and J. Matas. Unsupervised discovery of co-

occurrence in sparse high dimensional data. In CVPR, 2010.

[6] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. A. Efros.

What makes Paris look like Paris? SIGGRAPH, 2012.

[7] J.-M. Frahm et al. Building Rome on a cloudless day. In

ECCV, 2010.

[8] A. Frome, Y. Singer, F. Sha, and J. Malik. Learning globally-

consistent local distance functions for shape-based image

retrieval and classification. In ICCV, 2007.

[9] S. Guha and S. Khuller. Approximation algorithms for con-

nected dominating sets. Algorithmica, 1998.

[10] M. Havlena, A. Torii, and T. Pajdla. Efficient structure from

motion by graph optimization. In ECCV, 2010.

[11] J. Hays and A. Efros. Im2gps: estimating geographic infor-

mation from a single image. In CVPR, 2008.

[12] A. Irschara, C. Zach, J. Frahm, and H. Bischof. From

structure-from-motion point clouds to fast location recog-

nition. In CVPR, 2009.

[13] E. Johns and G. Yang. From images to scenes: Compressing

an image cluster into a single scene model for place recogni-

tion. In ICCV, 2011.

[14] J. Knopp, J. Sivic, and T. Pajdla. Avoiding confusing features

in place recognition. In ECCV, 2010.

[15] X. Li, C. Wu, C. Zach, S. Lazebnik, and J. Frahm. Modeling

and recognition of landmark image collections using iconic

scene graphs. In ECCV, 2008.

[16] Y. Li, D. Crandall, and D. Huttenlocher. Landmark class-

ification in large-scale image collections. In ICCV, 2009.

[17] Y. Li, N. Snavely, and D. Huttenlocher. Location recognition

using prioritized feature matching. In ECCV, 2010.

[18] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua. Worldwide

pose estimation using 3d point clouds. In ECCV, 2012.

[19] T. Malisiewicz and A. Efros. Beyond categories: The visual

memex model for reasoning about object relationships. NIPS,

2009.

[20] T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of

exemplar-SVMs for object detection and beyond. In ICCV,

2011.

[21] A. Mikulik, M. Perdoch, O. Chum, and J. Matas. Learning a

fine vocabulary. In ECCV, 2010.

[22] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Ob-

ject retrieval with large vocabularies and fast spatial matching.

In CVPR, 2007.

[23] J. Platt et al. Probabilistic outputs for support vector machines

and comparisons to regularized likelihood methods. Advances
in Large Margin Classifiers, 1999.

[24] T. Sattler, B. Leibe, and L. Kobbelt. Fast image-based local-

ization using direct 2D-to-3D matching. In ICCV, 2011.

[25] T. Sattler, B. Leibe, and L. Kobbelt. Improving image-based

localization by active correspondence search. In ECCV, 2012.

[26] T. Sattler, T. Weyand, B. Leibe, and L. Kobbelt. Image re-

trieval for image-based localization revisited. In BMVC, 2012.

[27] G. Schindler, M. Brown, and R. Szeliski. City-scale location

recognition. In CVPR, 2007.

[28] A. Shrivastava, T. Malisiewicz, A. Gupta, and A. A. Efros.

Data-driven visual similarity for cross-domain image match-

ing. SIGGRAPH ASIA, 2011.

[29] J. Sivic and A. Zisserman. Video google: A text retrieval

approach to object matching in videos. In ICCV, 2003.

[30] A. Torii, J. Sivic, and T. Pajdla. Visual localization by linear

combination of image descriptors. In ICCV Workshops, 2011.

[31] P. Turcot and D. Lowe. Better matching with fewer features:

The selection of useful features in large database recognition

problems. In Workshop on Emergent Issues in Large Amounts
of Visual Data, ICCV, 2009.

[32] Y. Yue and C. Guestrin. Linear submodular bandits and their

application to diversified retrieval. In NIPS, 2011.

[33] Y.-T. Zheng et al. Tour the world: building a web-scale

landmark recognition engine. In CVPR, 2009.

705705705705707707

