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Abstract

In cameras with radial distortion, straight lines in space
are in general mapped to curves in the image. Although
epipolar geometry also gets distorted, there is a set of spe-
cial epipolar lines that remain straight, namely those that
go through the distortion center. By finding these straight
epipolar lines in camera pairs we can obtain constraints
on the distortion center(s) without any calibration object or
plumbline assumptions in the scene. Although this holds for
all radial distortion models we conceptually prove this idea
using the division distortion model and the radial funda-
mental matrix which allow for a very simple closed form so-
lution of the distortion center from two views (same distor-
tion) or three views (different distortions). The non-iterative
nature of our approach makes it immune to local minima
and allows finding the distortion center also for cropped im-
ages or those where no good prior exists. Besides this, we
give comprehensive relations between different undistortion
models and discuss advantages and drawbacks.

1. Introduction
In the last two decades there has been tremendous

progress in automatically reconstructing scenes and camera

trajectories from images. In particular the theories for auto-

calibration allowed to exploit uncalibrated images, making

it possible to register pictures from archives or photo col-

lections where the physical camera hardware is unknown

and unaccessible and thus no pre-calibration of imaging pa-

rameters is possible (cf. to [15] for an overview). How-

ever, these techniques usually assume ideal pinhole cam-

eras and do not consider lens distortion. To compen-

sate for such distortion present in many real lens systems,

∗This work was done while this author was employed by the Depart-

ment of Computer Science, ETH Zürich

Figure 1. Epipolar curves (li and l′i) are (degenerated) circles in

general, but those that go through the center of radial distortion

are straight lines (l2 and l′2). a) When the radial fundamental ma-

trix is obtained with respect to two other images (potentially with

different or no distortion) the intersection of the straight epipolar

lines reveals the CoD. b) In case the same camera is used to take a

pair of images the CoD has to lie on the straight epipolar curves in

both images.

most importantly radial distortion, several pre-calibration

techniques based on calibration objects have been pro-

posed [4, 24, 16, 14, 25, 22] that allow rectification of dis-

torted images prior to further processing. This is however

only an option in case the camera (and a calibration ob-

ject) are accessible. Only few work has addressed auto-

calibration of radial distortion and virtually all of this fo-

cuses on the distortion strength and assumes the distortion

center being known.

In this contribution we drop this assumption and show

how to estimate the center of distortion (CoD) from im-

age data of completely unknown scenes without a calibra-

tion object, given a perspective (single center of projection)

camera with strictly radial distortion. When projecting the

viewing ray of another camera to some point in space into

the view of such a camera, one does not obtain an epipolar

line, but more generally an epipolar curve. However - under

any radial distortion model - the epipolar curve that contains

the CoD must be a straight line, since the distortion happens
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in direction of the line1. Consequently, for a pair of images

we can simply search the set of all possible epipolar curves

in the second image and pick the one that is straight, the

CoD must lie on that line. Given a second straight epipolar

curve from a different epipolar geometry (e.g. from a third

camera) the CoD is uniquely defined (see also Fig. 1).

While these considerations apply to all radial distor-

tion models, we chose to demonstrate the auto-calibration

technique using the division distortion model proposed by

Fitzgibbon [10], however using the lifted formulation by

Brito et al. [3] where the CoD need not be known before-

hand. The main reason for this is that the set of all epipo-

lar curves is just the row space of the radial fundamental

matrix and the search for the straight line becomes a lin-

ear problem. This allows us to obtain the solution in closed

form, rather than performing a local optimization as per-

formed e.g. in calibration toolboxes. This is in particular

interesting for cropped images or those with digital zoom,

where the CoD may even lie outside the image and no good

prior guess is available. We also relate the model of Fitzgib-

bon [10], Barreto et al. [2] and Brito et al. [3] to the rational

function distortion by Claus et al. [8] and point out differ-

ences, advantages and drawbacks.

2. Previous Work

Lens distortion has been studied in photogrammetry and

computer vision for a long time (cf. to [5, 6] for a histori-

cal overview) and many procedures exist that can calibrate

the intrinsic parameters of a camera given some calibration

object [4, 24, 16, 14, 25, 22]. Here, radial distortion is one

of the dominant distortions [24] and can severely hurt image

registration, reconstruction or measurement in images when

not being considered. This is even more so since the advent

of digital consumer cameras and cheap lenses that were not

intended to almost perfectly obey a photogrammetric imag-

ing model but merely to produce nice pictures [6].

On the other hand, fully automatic systems have been

developed that can register video sequences (e.g. [20]),

archive imagery or online photo collections (e.g. [21]),

where the physical camera is no longer accessible or un-

known. For cameras that strictly obey the perspective pin-

hole camera model, the intrinsic parameters can be obtained

by means of self-calibration allowing again for metric mea-

surements. However, given significant distortion most of

these methods fail or require pre-rectification with known

distortion parameters.

Only few authors have considered to include distortion

into the self-calibration problem [10, 19, 2, 23, 8, 13, 3].

Among these, Thirtala and Pollefeys [23] assume the CoD

to be known and reason about the shape of the distortion in

1Any line through the CoD is a fixed line when radially distorting or

undistorting an image, although not a line of fixed points.

radial direction. Also Fitzgibbon [10] assumed the CoD to

be known and then introduced an undistortion model rather

than a distortion model allowing to work directly with dis-

torted coordinates. This led to the 4× 4 radial fundamental

matrix with known CoD by Barreto et al. [2] that has been

generalized to absorb an unknown CoD by Brito et al. [3].

After the division undistortion model of [10] also Claus

and Fitzgibbon [8] generalize the model, now to a rational

function undistortion where up to 17 distortion parameters

exist, allowing to represent more general distortion func-

tions, not just radial distortion. They also propose a local

optimization method, that - given a good initial value - can

obtain most of the parameters from images alone, although

some ambiguity remains. To remedy this, in a later paper [7]

they suggest to mark curves in the image that need to be

straight when undistorted, which in practice means exploit-

ing a known calibration object (the lines). This is an idea

that also Devernay and Faugeras had followed [9]. The re-

lations and differences of the models used in [10, 8, 7, 2, 3]

will be discussed in more detail later.

Micusik and Pajdla [19] use the center of the viewing el-

lipse in an omnidirectional camera to start and then linearize

the problem. This is not possible for (almost) perspective

images, since there is no visible image border. Geyer and

Daniilidis [11] formulated epipolar geometry for catadiop-

tric views and estimated the principal point (the CoD) using

the notion that such systems project lines into circles. As-

suming a known CoD, Barreto [1] later proposed a unifying

model that covers catadioptric and perspective cameras with

or without radial (barrel) distortion. Using a similar lifting

framework as in [1], our work extends Geyer and Daniilidis’

work [11] from catadioptric to perspective cameras with ra-

dial (barrel or pincushion) distortion.

Li and Hartley [18] point out it is important to estimate

the CoD accurately rather than using the image center. They

use the method of Hartley and Kang [13] to estimate it.

Essentially, their idea is that when observing a planar cal-

ibration pattern with a camera with radial distortion, then

the CoD will act like a focus of expansion or contraction

and consequently behave similarly as an epipole. Conse-

quently, it can be estimated by using a 3 × 3 fundamental

matrix between the planar pattern and the distorted image.

For the most general case that we also consider in this pa-

per (unknown, non-planar scenes), they argue that still each

corresponding point in the distorted images must lie on a

line towards the CoD. By using an 80-point algorithm in

four views they argue it would be possible to construct the

quadrifocal tensor, extract the cameras and then the CoDs.

While from a geometrical point of view this is a very nice

idea, in practice it would be very difficult and expensive

to find a non-degenerate, outlier-free set of 80 correspon-

dences across four views. Nevertheless, since this method is

the only that could find an arbitrary radial CoD without ini-
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tialization and without calibration object, we consider this

as the closest work to ours in the literature.

Our solution is based on the observation that lines that go

through the CoD are fixed lines under distortion and undis-

tortion. Consequently, we look for straight lines in the set

of all possible epipolar curves and argue that the CoD must

be on such a line. In order to obtain a parametric represen-

tation of the set of all possible epipolar curves, we use the

generalization of Fitzgibbon’s division distortion model by

Brito et al. [3], where all epipolar lines are representable

by quadratic curves. To the best of our knowledge, this is

the first work that can extract the CoD from a pair (with

same distortion) or triplet of unknown images (with differ-

ent or no distortion). On top, we also estimate the distortion

strength, which - in sum - is why we call this method radial

distortion self-calibration.

3. Relation between Undistortion Models
The traditionally used second-order distortion model in

computer vision (motivated in [4]) with CoD (dx, dy)
T ∈

R
2 describes the radial distortion as

(
xd

yd

)
=

(
xu

yu

)
+ λr̃2

((
xu

yu

)
−
(
dx
dy

))
, (1)

where (xd, yd)
T ∈ R

2 and (xu, yu)
T ∈ R

2 are the distorted

and the undistorted point, respectively, whereas λ ∈ R is the

distortion coefficient and r̃2 =
∥∥(xu, yu)

T − (dx, dy)
T
∥∥2

is the squared Euclidean distance between the CoD and the

undistorted point. Eq. (1) is a distortion model since it ac-

tually describes the distorted point in explicit form: given

the undistorted point (xu, yu)
T and the distortion parame-

ters λ and (dx, dy)
T , the distorted point can be computed

easily by evaluating the right-hand side of Eq. (1). For

auto-calibration, or for direct estimation based on distorted

measurements, an undistortion model rather than a distor-
tion model is required. We will now compare different such

models starting with the one proposed by Fitzgibbon [10].

The division undistortion model In [10], Fitzgibbon ar-

gues that an undistortion model can be equally powerful as a

distortion model and compares several (un-)distortion func-

tions. The basic equation expresses the undistorted point

with homogeneous coordinates as

pu =

⎛
⎝xu

yu
1

⎞
⎠ ∼=

⎛
⎝ xd

yd
1 + λr2

⎞
⎠ , (2)

with r2 = x2
d + y2d and where ∼= denotes equality up to a

scalar multiple. This is the model also used in the radial

fundamental matrix with lifted coordinates [2] and later by

minimal solvers with radial distortion like [17]. Since r2

Figure 2. The undistorted distance to the CoD is plotted as a func-

tion of the distorted distance d for different λ according to the

division distortion model (Eq.(2)). Please observe that for positive

λ (lower two curves) the undistorted radius is limited (the curves

have a maximum). This leads to interesting consequences: Al-

though every point can be undistorted according to this model,

only those close to the distortion center can be distorted. The

model implies a horizon beyond which undistorted points cannot

be distorted (their distorted coordinates become complex). This

can for instance happen when one wants to compute the distorted

epipole, when the undistorted epipole is outside the horizon. Sec-

ond, one can observe that in case of positive λ each undistorted

point has two distorted solutions to which it is compatible. How-

ever, since non-monotonic distortion curves do not make much

sense, the one closer to the distortion center is the interesting one,

since this is on the (useful) monotonic part of the curve and the

other one can be considered an artifact by the model.

represents the squared distance to the radial distortion cen-
ter, this center has to be known when working with these

models. All of these approaches can cover the same family

of radial distortion functions and thus the same family of

lenses. The function of undistorted radius versus distorted

radius is plotted for different values of λ in Fig. 2.

The rational function undistortion model An extended

family of functions has been introduced by Claus and

Fitzgibbon [8, 7]

pu =

⎛
⎝xu

yu
1

⎞
⎠ ∼= A

⎛
⎜⎜⎜⎜⎜⎜⎝

x2
d

xdyd
y2d
xd

yd
1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3)

A is a 3× 6 matrix of distortion coefficients (Eq.(3) in [8]):

pu =

⎛
⎝
A11x

2
d +A12xdyd +A13y

2
d +A14xd +A15yd +A16

A21x
2
d +A22xdyd +A23y

2
d +A24xd +A25yd +A26

A31x
2
d +A32xdyd +A33y

2
d +A34xd +A35yd +A36

⎞
⎠

(4)

Although not explicitly mentioned in [7, 8], that new model

is a generalization of the division model and includes it by

13681368136813701370



setting several coefficients to zero. This can be seen easily

when we choose

Ad =

⎛
⎝ 0 0 0 1 0 0

0 0 0 0 1 0
λ 0 λ 0 0 1

⎞
⎠ . (5)

Having 17 degrees of freedom (as the matrix A is defined

only up to scale), the rational function model can approxi-

mate a much broader range of distortions. Having different

coefficients for the x2 and y2 terms also means that is no

longer a radially symmetric distortion model. While being

much more powerful, the downside is the high number of

parameters to estimate in calibration approaches and Claus

and Fitzgibbon propose to start from a good prediction and

do a gradient descent (however, in appendix A we propose

a different method that does not depend on nonlinear op-

timization). On top, the parameters can be recovered only

up to a homography and in the end, although epipolar lines

are straightened, there is significant distortion left in their

example images.

Division undistortion with unknown center In [3] it has

been shown that the lifting and the radial fundamental ma-

trix can be reformulated such that one can work with (r′)2,

the squared distance to the origin of the image and thus need

not know the radial CoD in advance. Rather, it is absorbed

in the lifting matrix, or ultimately, in the radial fundamental

matrix. In the Claus and Fitzgibbon framework this would

mean that the second column of A is zero (no mixed terms),

the first and third column are equal and that all entries de-

pend only on the distortion center (dx, dy) and λ. More in

detail, adapting L from equation (9) of [3] we obtain

Ac =

⎛
⎝

1 dx λdx
1 dy λdy

1 λ

⎞
⎠

⎛
⎜⎜⎝

0 0 0 1 −dx
0 0 0 1 −dy
0 0 0 1

1 0 1 −2dx −2dy d2x + d2y

⎞
⎟⎟⎠ =

⎛
⎝

λdx 0 λdx 1− 2λd2
x −2λdxdy 1 + λdx(d

2
x + d2

y)

λdy 0 λdy −2λdxdy 1− 2λd2
y 1 + λdy(d

2
x + d2

y)

λ 0 λ −2λdx 2λdy 1 + λ(d2
x + d2

y)

⎞
⎠ .

(6)

Consequently, this model is in between the original di-

vision model and the rational function model. Since A
has only three degrees of freedom and the lifted space is

thus only 4-dimensional (rather than 6-dimensional) we will

stick to this model for the rest of the paper. As will be clear

later, the radial property will allow us to obtain the com-

plete parameters, in contrast to the rational function model.

Properties of the model are visualized in Fig. 3.

4. CoD From Straight Epipolar Lines
We now consider a pair of images A and B, at least one

of them (say image A) having radial distortion (but not nec-

essarily being described parametrically by any of the above

λ > 0 λ < 0
Figure 3. Visualization of the radial distortion due to the division

distortion model: The CoD is visualized in red. The distorted

points are given by the intersection of two circles (green: circles

for the epipoles; blue: circles for an arbitrary point). The dis-

torted epipolar line becomes an epipolar circle (orange). Note that

all four points (the two distorted epipoles and the two distorted

points) lie on this circle.

mentioned models). Let us now project the line of sight in

space for a point in image B into this distorted image and

we obtain an epipolar curve in A. When we knew the distor-

tion function we could undistort image A to image A’ and in

the latter image, all epipolar curves would be straight lines.

Recall that always all epipolar curves go through the

epipole and now we look at the one that also includes the

distortion center. Distortion happens in radial direction

from the center to the epipole and thus within the line, but

does not change the line as a whole. In the next section we

are going to obtain a parametric description of the set of all

epipolar curves, in which we can search for straight lines.

4.1. Radial Fundamental Matrix

We now choose the distortion model of Brito et al. and

compute the radial fundamental matrix [3] between our im-

age A and some other image (depending on the other image

this could be the single-sided or two-sided radial fundamen-

tal matrix). For image correspondences (p; q) between im-

age A and image B we obtain

qTFp = 0, (7)

where p is a lifted, 4D vector with distorted coordinates

(xd, yd, 1, x
2
d + y2d)

T . For any point q in the other image

(besides the epipole)

lA = qTF (8)

defines an epipolar curve in image A. More precisely, in this

model, this is a circle2, because of the special structure of

F . However, Eq. (8) is just a linear combination of the rows

of F , weighted by the entries of q. Since F , as a radial fun-

damental matrix, has a two dimensional rowspace, we can

2Including degenerate circles with infinite radius (line), zero radius

(point) or negative radius (no real point at all).
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easily extract two basis vectors {r1, r2} for this rowspace

and we can represent

lA = α1r1 + α2r2. (9)

We can set α1 to 1 since the problem is defined only up-

to-scale. lA is a straight line only if it does not depend on

quadratic entries, so its fourth entry must vanish. This pro-

vides a linear equation with a unique solution unless both

last entries of r1 and r2 are zero. In this case, since r1 and

r2 form a basis of the rowspace, the last column of F must

be entirely zero. We will come back to this case in the next

section. In all other cases we obtain a unique straight line

in the set of all possible epipolar curves. As argued before

the distortion center must be on that line.

4.1.1 Degenerate Cases

In case image A does not have distortion, then λ is zero and

consequently the last column of the radial fundamental will

be zero. In that case all epipolar curves are straight and the

distortion center is not defined. All epipolar curves are also

straight if the epipole coincides with the distortion center.

Interestingly, these two cases cannot be distinguished,

and this is again a property that is independent of the par-

ticular radial distortion function: under undistorted epipolar

geometry each position on the epipolar line corresponds to a

valid 3D point, so if we move a point away from the epipole

this could mean it is just further away from the camera. Or,

this could be by radial distortion. This typically happens

with forward motion. This case of an entirely zero column

or row can however easily be detected from the radial fun-

damental matrix.

4.2. CoD from three (different) images

As argued before, from a pair of images A and B, we

can constrain the position of the distortion center to a line

in the image plane. To obtain the full coordinates of the

distortion center we can intersect the line with another line.

For instance, if we have another image C, the epipole in

image A will in general be different. Consequently, the

straight epipolar curve will be different and by intersect-

ing the two straight epipolar curves we obtain the distortion

center. None of the three images used has to be calibrated,

but we must be able to compute the radial fundamental ma-

trix. For practical reasons, the lines should intersect ideally

at a right angle, so the epipoles should be at different di-

rections when viewed from the distortion center. This is

the case, e.g. for A-to-B horizontal camera motion (epipole

at x-infinity) and A-to-C vertical camera motion (epipole

at y-infinity). In contrast, all three camera centers being

collinear is typically a (close to) degenerate situation, where

the epipolar lines intersect at a small angle or fall entirely

together. The principle is visualized in Fig. 1(left).

4.3. CoD from two images of the same camera

In case we have a video or multiple images taken by the

same camera we can even extract the distortion center from

a pair of two images. In each of the images we obtain the

constraint that the distortion center must be on the straight

epipolar line. However, in case we know that it is the same

distortion center in both images, we can just intersect these

two lines. Again, the lines should meet ideally at a right an-

gle which is for instance the case for a pair of landscape and

portrait pictures where the camera was moved in horizontal

direction. The principle is again visualized in Fig. 1(right).

Note that this is a similar setting as studied by Fitzgib-

bon [10], however we also estimate the distortion center.

Once the center is known, one could plug everything into

the system proposed in [10] or, alternatively we show an

easier way of obtaining λ given the epipoles.

4.4. Other Settings

Homography between distorted and undistorted image
In case the observed, unknown scene is planar, then two

images are related by a homography. If only one of them

contains radial distortion, the relation is a single-sided 3×4
radial homography [3]. This single-sided homography is

relevant in sequential calibration algorithms, where one can

“chain” new images to calibrated ones. We briefly sketch

how the same algebraic construction can be exploited to ob-

tain the CoD. As before, straight lines in the image without

distortion are mapped to (circular) curves in the distorted

view. Again, all possible curves are actually defined by the

row space of H , which is now three-dimensional. When

looking for those curves that are straight lines, we obtain a

1D family of lines that all intersect at the distortion center.

In projective space this 1D family of lines spans a 2D sub-

space, and since the distortion center must lie on all of the

lines, it is the orthogonal complement of the 2D subspace.

More Images The methods presented here are meant as a

proof of concept and show minimum requirements. If more

images are available one could then of course intersect more

than two lines or find the closest point to all of these lines.

Practically, one would finally optimize over all parameters

in a bundle adjustment, however this is out of the scope of

this article and we focus on finding the initial values.

4.5. Obtaining λ

Once the CoD is known, we could in principle reformu-

late the whole problem and utilize one of the approaches for

known CoD. However, given that we know the CoD and the

two epipoles3, then, in the distorted image we are looking

3Because of the quadratic components there are in general two epipoles

in the distorted image. They can be extracted from the right null space of

F, as explained in Sec. 4.2 of [3].
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for a lambda and an undistorted epipole consistent with the

model. Since distortion happens in radial direction, we can

compute the distances d1, d2 of both distorted epipoles to

the distortion center and study the distortion as a 1D prob-

lem, where u is the undistorted distance:

u =
d1

1 + λd21
=

d2
1 + λd22

. (10)

Here u is the distance of the undistorted epipole to the dis-

tortion center. solving for λ yields

λ =
d2 − d1

(d1d22 − d2d21)
. (11)

4.6. Higher order distortion parameters

As long as we have a truly radially symmetric distortion

model, we can always play the same trick with the intersec-

tion of the straight epipolar curve to determine the distor-

tion center. Therefore the above mentioned algorithms for

extracting the distortion center remain valid even for higher

order radial distortion models and one can also think of a

higher order radial fundamental.

5. Experiments
In this section we present results from a proof-of-concept

implementation of the given approach. For all of the exper-

iments we estimate the (two-sided) radial fundamental ma-

trix using direct linear transformation on normalized feature

coordinates (similar to [12]) using all inliers.

Synthetic Data First, we verify whether it is actually pos-

sible to estimate the distortion center with synthetic data

(see Fig. 4). The approaches for two and three images do

not differ conceptually for the evaluation, so we present

only results for the case of same distortion. As can be seen,

in an ideal setting with no noise we can always extract the

distortion center, which proves our general idea of finding

straight epipolar curves. As we start to increase the noise of

the feature correspondences however, we observe an insta-

bility meaning that at more than one pixel noise the given

implementation produces very large errors, even when the

radial fundamental is non-linearly optimized. In principle

the displacement of correspondences is due to relative cam-

era rotation and a) effects from baseline (disparity), b) ef-

fects from distortion, c) effects from noise. It is clear that

in case the effects from noise come close to one of the other

phenomena then the radial fundamental estimate (and thus

the distortion center estimation) will be highly fragile.

5.1. Constant Distortion / Video

In this experiment we validate the approach with real

data of a GoPro-Hero video camera with 1920×1080 pixels

Figure 4. Synthetic experiments for stereo pairs of the same cam-

era with moderate distortion (|λ| = 0.1) and strong distortion

(|λ| = 1.0). We project a set of 3D points into two cameras

(1000 randomized poses) and add Gaussian noise of the specified

standard deviation to these coordinates. Then the two-sided radial

fundamental is estimated from 100 correspondences and the dis-

tortion center is extracted. Top: Deviation of the distortion center.

Bottom: Deviation of λ. The green plots for zero noise show zero

error and are thus hardly visible.

resolution and very wide angle lens showing strong distor-

tion. First we calibrate the distortion center using a chess-

board by the method from Hartley and Kang [13] . We then

take a video with the same camera of an office scene with

several books and boxes. In this video we move the camera

horizontally while rotating it around the optical axis4. We

then track on the order of thousand local features through

the video and compute radial fundamental matrices between

frames from the beginning to an image 300 frames later in

the sequence. From each pair we extract the distortion cen-

ter and distortion coefficient as plotted in Fig. 5. Although

we can see that the distortion centers cluster in a believ-

able position, there is still a substantial offset to the position

reported by the calibration-target-based method of Hartley

and Kang. Besides the issues already observed in the syn-

thetic data, here another reason for the deviation might be

4The rotation ensures epipolar lines will be horizontal in the beginning

of the sequence and more diagonal later, allowing for intersecting them.
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Figure 5. Video captured with a camera with strong distortion.

While moving horizontally, the camera has been rolled around its

optical axis. We compute the radial distortion center from pairs

of views, where one is from the start of the sequence and the

other from the end of the sequence. The centers cluster around

(1108;360) close to the center of the image (also visualized) while

we obtained a distortion center using the chessboard-based method

of [13] at (983;530). We do not show the distortion centers when

estimated without normalization here, because they are not useful

and often very far away from the image, however we do plot the

estimated λ showing that normalization is important. Coordinates

were normalized to [-1;1].

that the camera’s actual distortion curve does not fit to the

division distortion model.

Figure 6. Two rows of three images taken with different cameras

(with different amounts of radial distortion). For the center image

the estimated radial distortion center is visualized by showing the

two straight epipolar lines. As compared to a chessboard-based

calibration by the method of [13] the distortion center is 2.5%
away (top example) and 6.5% away (bottom example) from the

ground truth position (fraction given with respect to image size).

5.2. Different Distortions

We also present results how to use the approach for three

different cameras. Here we use two image triplets taken in

a small baseline setting (with three different physical cam-

eras). We then compute two radial fundamental matrices to

the center camera and obtain a distortion center that is 2.5%
resp. 6.5% away from the true distortion center (see Fig. 6).

6. Conclusion

Based on the observation that straight lines through the

distortion center are fixed lines under any radial distortion

model, we have derived constraints on the radial distortion

center from epipolar geometry. Essentially, by intersecting

two lines that must include the distortion center, its coordi-

nates are revealed. In practice however, in particular with

little distortion, circles with huge radius are difficult to dis-

tinguish from straight lines, so the procedure makes most

sense in settings with high distortion. For high distortion,

it is important to choose the appropriate distortion model,

maybe with more than one parameter or directly aim at a

parameter-free representation as in [13] (which then comes

at the cost of requiring more views and many more corre-

spondences). Consequently, while we could conceptually

show that the approach can reveal the center it is by far

not as reliable as chessboard-based methods [13], and fu-

ture work should improve on the sensitivity and investigate

on ways to robustify the algorithms to better cope with all

kinds of noise (or systematic errors like from a slightly in-

correct distortion model).
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A. Extraction of Lifting Matrix in Rational
Undistortion Model

Claus and Fitzgibbon [8] also consider the two-sided ra-

dial fundamental matrix arising from two images taken by

the same camera, i.e. the distortion parameters are the same

in both views. Their radial fundamental matrix is a 6-by-6
matrix, since the distorted points are lifted to R

6. Specifi-

cally, according to Eq. (3), the two-sided radial fundamen-

tal looks like F̂ = ATFA ∈ R
6×6, where F ∈ R

3×3 again

denotes the standard fundamental matrix. While equation

(23) in [8] suggests a non-linear optimization in order to

extract the lifting matrix A from a given radial fundamental

F̂, we argue that this can actually be done in closed-form.

Let F̂ ∈ R
6×6 be the two sided radial fundamental. Let

C ∈ R
6×2 and R ∈ R

6×2 denote the two-dimensional col-

umn and row space of F̂, respectively. Then, since the lift-

ing matrix A has a three-dimensional rowspace which is the

underlying space for both the row- and column-space of F̂,

we have dim (span ([C,R])) = 3. Hence, the three first left

singular vectors U = [u1,u2,u3] of [C,R] span the same

space as the rows of A, i.e. A = HUT . In the setting used

in [8], the radial distortion matrix A is only defined up to an

arbitrary projective mapping of the image plane. Hence, the

singular vectors in UT represents a perfectly valid solution

for the lifting coefficients in A.
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