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Abstract

We propose a comprehensive method using multiscale

and multicycle features for retinal vessel image registration

with a local and global strategy. The multiscale vessel maps

generated by multiwavelet kernels and multiscale hierarchi-

cal decomposition contain segmentation results at varying

image resolutions in different levels of vessel details. Then

the multicycle feature composed of various combinations

of cycle structures with different numbers of vertices is ex-

tracted. The cycle structure consisting of vessel bifurcation

points, crossover points of arteries and veins, and the con-

nected vessels can be found by our Angle-based Depth-First

Search (ADFS) algorithm. Local initial registration is im-

plemented by the matched Cycle-Vessel feature points and

global final registration is completed by the Cycle-Vessel-

Bifurcation feature points using similarity transformation.

Finally, our Skeleton Alignment Error Measure (SAEM) is

calculated for optimal scale and cycle feature selection,

yielding the best registration result intelligently. Experi-

mental results show that our method outperforms state-of-

the-art methods on retinal vessel image registration using

different features in terms of accuracy and robustness.

1. Introduction

Retinal vessel images contain valuable local and time

information as they are usually acquired from different

modalities over many years, which can be aligned to one

image by image registration to aid ophthalmologists for

analysis and diagnosis of various diseases such as diabetic

retinopathy, age-related macular degeneration, and glau-

coma. In this paper, we focus on accurate and robust

feature-based retinal image registration.

The registration methods can be classified into intensity-

based and feature-based [13]. Intensity-based methods

generally optimize a similarity measure based on cross-

correlation, phase correlation, and mutual information,

etc. [17], which will take great computation cost to find

the optimal solution, especially they need to incorporate the

whole image information to finish the registration. Also,

the intensity-based methods may fail to align the images if

the image quality is quite low or the overlapping region be-

tween the images is small. These motivate the exploitation

of robust features such as retinal vessel and optic disk in-

stead of intensity in retinal image registration [16]. Most

of the feature-based methods use bifurcation for registra-

tion since it is a prominent indicator of vasculature. Zana

and Klein [23] used bifurcation points with surrounding

vessel orientations for multimodal registration. Can and

Stewart [2] proposed a hierarchical algorithm using branch-

ing points and crossover points in the retinal vasculature to

avoid unmatchable image features and mismatches between

features, and then it was extended to Dual-Bootstrap Itera-

tive Closest Point (ICP) algorithm that iteratively decides

the optimal transformation model from simple to complex

and expands the bootstrap region from local to global [20].

The blood vessel bifurcations were also identified as control

points to evaluate the transformation types and the pixel-

level fusion techniques [11]. Chanwimaluang et al. [4]

proposed a hybrid retinal image registration approach that

combines both area-based and feature-based methods us-

ing crossover/bifurcation points of vascular tree as land-

mark points. And the RERBEE algorithm was presented

with BEES representing the vasculature structure (bifurca-

tions and segments) for registration [18]. These methods

largely depend on the branching angles of single bifurca-

tion/crossover point, and these features have coarse preci-

sion leading to matching which may not be unique and reli-

able for registration purpose.

Compared with the aforementioned point-matching

methods, structure-matching registration is favored to over-

come the possible mismatches. Chen et al. [6, 5] presented

a bifurcation structure composed of a master bifurcation

point and its three connected neighboring pixels or vessel

segments, with the normalized branching angle and length

as its characteristic vector. Shen et al. [19] then extended
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bifurcation structure-matching by a local fine registration.

However, bifurcation structure is still not unique and reli-

able enough for registration that may make the matching

missed if the vascular tree is detailed, especially followed

by the vessel segmentation result in one scale.

In view of this, we propose the cycle structure for

feature-based retinal image registration. The cycle struc-

ture, consisting of vessel bifurcation points, crossover

points of arteries and veins, and the connected vessels, is

more unique, reliable and invariant against translation, ro-

tation, and scaling, especially for the retina from the same

person over many years, so it can also be used in many other

applications such as retina identification [1] and verifica-

tion [10]. To overcome the dependence on the vessel seg-

mentation for registration, we use multiwavelet kernels and

multiscale hierarchical decomposition [22] to generate mul-

tiscale vessel maps at varying image resolutions in differ-

ent levels of vessel details and then adopt our Angle-based

Depth-First Search (ADFS) algorithm to extract the mul-

ticycle feature composed of various combinations of cycle

structures with different numbers of vertices. For regions

away from the matching cycles, we implement the two-

stage registration from local to global to construct the robust

Cycle-Vessel-Bifurcation feature for final registration using

similarity transformation. Finally, our Skeleton Alignment

Error Measure (SAEM) is calculated for optimal scale and

cycle feature selection, yielding the best registration result.

Figure 1 shows the framework of our proposed method.

The rest of the paper is organized as follows: Section 2

gives our multiscale segmentation and skeleton method for

retinal vessel images; the detection, extraction, description

and matching of our proposed cycle structure are presented

in Section 3; and Section 4 introduces our two-stage local-

to-global strategy for accurate registration; then our SAEM

is proposed in Section 5 to obtain the best registration result

automatically; Section 6 shows the qualitative and quantita-

tive experimental results and Section 7 concludes this paper.

2. Multiscale Segmentation and Skeleton

Due to hardware limitations, retinal images usually have

characteristics of uneven illumination, large numbers of

noise points, and low contrast between vessels and back-

ground, which lead to the challenge of automatic analysis.

Retinal vessel segmentation plays a key role on the accuracy

of registration.

In this work, multiwavelet kernels and multiscale hier-

archical decomposition method [22] is used for multiscale

vessel segmentation. And 14 vessel maps are generated at

varying image resolutions representing different levels of

vessel details to avoid the possible failed feature extraction

caused by single segmentation. We then remove the invalid

scales using a threshold of pixel number for the segmenta-

tion results with very few vessel pixels because they obvi-

ously miss the important vessel information.

The multiscale segmentation results are further pro-

cessed by the following procedures for better feature ex-

traction: 1) remove the connected regions with few pixels

recognized as non-vessel by a threshold for denoising; 2)

fill the vessel holes caused by the central light reflex of reti-

nal arteries and veins based on erosion and dilation method;

3) skeletonize the vessels to obtain one pixel width vascular

tree using the contour-pruned skeletonization method 1.

The reference image and the floating image for registra-

tion are both segmented and skeletonized by the above mul-

tiscale processing, yielding up to 14 vessel skeleton results

respectively (each Nj , j = 1, 2, · · · , 14 needs to be aligned

with each Mi, i = 1, 2, · · · , 14 as shown in Figure 1). Fig-

ure 2 shows an example of the multiscale vessel segmenta-

tion and skeleton results.

3. Multicycle Matched Structure

The retinal vasculature, consisting of arteries and veins,

and their end branches, forms capillary networks (see Fig-

ure 2), thus can be formally described as an unweighted

graph G [9]. We then design and construct the cycle struc-

ture using vessel bifurcation points, crossover points of ar-

teries and veins, and the connected vessels. Multicycle

means that various combinations of cycle structures are seg-

mented by multiscale hierarchical decomposition with dif-

ferent scales. In our work, the minimum cycles, defined as

a cycle basis where the sum of the weights of the cycles is

minimum [12], are selected for retinal image registration.

The minimum cycle bases of a graph encapsulate the entire

cycle space in a concise manner so that they are very use-

ful in many contexts, e.g., structural engineering [3], cycle

analysis of electrical networks [7], and chemical ring per-

ception [8].

3.1. Cycle Structure Detection and Extraction

The extraction procedure of cycle structures can be im-

plemented by two steps: searching feature points and find-

ing cycle structures.

3.1.1 Searching Feature Points

The feature points we used for cycle structure consist of

the bifurcation and crossover points in the binary skeleton

vascular network, and they can be searched as follows:

1. Label the pixels whose sum of 8-adjacent pixels is

greater than 2 into connected components, because the

pixels cannot be bifurcation or crossover points if the

sum of its 8-adjacent pixels is less than or equal to 2.

1http://www.cs.smith.edu/∼nhowe/research/code/
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Figure 1. The framework of retinal vessel image registration from local to global via multiscale and multicycle features.

(a) (b) (c)

(d) (e) (f)

Figure 2. Multiscale vessel segmentation and skeleton results of a

low contrast retinal image. (a), (b) and (c) are three segmentation

results in three different scales, (d), (e) and (f) are the correspond-

ing skeleton results, respectively.

2. Find the centroids of all the connected components and

label them as candidate feature points, and they can be

considered as vertices (nodes) while their connected

vessels can be considered as edges (links) in graph the-

ory.

3. Determine the feature points by removing the candi-

date vertices whose degree is equal to 1 iteratively, as

a vertex belongs to a cycle only if it has at least two

connected vertices.

(a) (b)

Figure 3. Searching feature points. (a) The candidate feature

points, and (b) the feature points.

Figure 3 gives an example showing the candidate feature

points and the feature points respectively.

3.1.2 Finding Cycle Structures

As mentioned above, finding the cycle structures from the

vascular network is equivalent to computing the minimum

cycle basis from the undirected and unweighted graph, but

with the difference of that the feature points have fixed spa-

tial position in the image while the vertices in the graph

usually don’t. Therefore, we take spatial information of fea-

ture points into consideration to develop the Angle-based

Depth-First Search (ADFS) algorithm (Algorithm 1) for

finding the cycle structures. Our ADFS algorithm can find
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the minimum cycle basis of the image-based undirected

and unweighted graph with 1 edge and n vertices effec-

tively and efficiently by reducing the time complexity from

O(n/ log n+n2) [12] to O(n2) due to the use of spatial (an-

gle) information. According to the characteristics of retinal

vasculature, only cycle structures composed of three, four

and five feature points are chosen for registration in our

work.

Algorithm 1 Angle-based Depth-First Search (ADFS)

Input: The feature points and their connectivities in the bi-

nary skeleton image.

Output: The cycle structures.

1: for all A such that A ∈ FeaturePointsSet(Pn) do

2: for all B such that B ∈ Pn and connects to A do

3: calculate the vector VBA

4: for all C such that C ∈ Pn and connects to B do

5: calculate the vector VBC

6: calculate the angle ΘABC = ∠ABC
7: end for

8: determine C such that min (ΘABC)
9: if C connects to A then

10: output CycleStucture(ABC)
11: continue

12: else

13: repeat for all [D ∈ Pn and connects to C]

14: output CycleStucture(ABCD) and continue

15: or iterate next connected feature point

16: until no connected feature point

17: end if

18: end for

19: end for

3.2. Cycle Structure Description and Matching

All the cycle structures found in the reference image and

the floating image need to be matched to determine the Cy-

cle feature points (on matched cycle structures) for transfor-

mation and further registration. In order to make the struc-

ture more unique and reliable for registration, we describe

a cycle structure using branch lengths, branch angles, and

angles between adjacent edges, among which branch an-

gles represent the connected relationship of vessels on each

feature point while angles between adjacent edges repre-

sent the relative position of feature points. Figure 4 shows

an example description of a four-point cycle structure. The

lengths are calculated based on the pixel distance and the

angles are calculated relying on the adjacent points in the

vessels or edges. Then we normalize all the lengths and

angles by Equation 1 and 2 to preserve scaling invariant

and guarantee rotation invariant respectively, yielding the

final feature vector given in Equation 3 as an example cor-

responding to Figure 4.

θ2

θ3
θ1

θ5

θ6

θ7
θ8

θ9

θ10 θ11

θ12

θ13 θ14

θ15

θ17

θ18

θ19

θ20

L1

L3

L2
L4

Figure 4. Cycle structure description. L1 ∼ L4, θ1 ∼ θ16 and

θ17 ∼ θ20 represent branch lengths, branch angles and angles be-

tween adjacent edges respectively in a four-point cycle structure.

LiNorm =
Li∑
L

(1)

θjNorm =
θj

360◦
(2)

ṽ = {lengths, angles} = {L1,L2,L3,L4, θ1, θ2, θ3,0, θ5,

θ6, θ7, θ8, θ9, θ10, θ11, θ12, θ13, θ14, θ15,0, θ17, θ18, θ19, θ20}
(3)

The number of feature vector elements varies with the

number of cycle feature points, and the number of branch

angles varies with the style of feature points, e.g., a bifur-

cation point usually has 3 branch angles while a crossover

point has 4 branch angles. To obtain consistent vector

length for further matching, we consider the feature points

of the cycle structure all as bifurcation or crossover points,

making maximum 4 branch angles for each point and then

the feature vector of three-, four- and five-point cycle struc-

ture becomes 18, 24, and 30 dimensions (the missing ele-

ments are set to 0 as demonstrated in Equation 3), respec-

tively.

Matching two cycle structures with the same number of

feature points can be implemented by minimizing the sim-

ilarity measure Dpq = mean(|Vp − Wq|), where Vp rep-

resents the p-th cycle structure in the reference image, Wq

represents the q-th cycle structure in the floating image and

the function mean(·) calculates the average value of vector.

To avoid the possible mismatches even with the minimum

D, a threshold is used to verify the matching again, so that

one or more of the three-, four- and five-point cycle struc-

tures may be ignored, e.g., the four-point cycle structure

is missed after the matching illustrated in Figure 1. This

method tries to find the most accurate matching cycle struc-

tures between the reference and the floating while misses

the others, so that the matched cycle feature points for reg-

istration are very accurate but not much in number. There-
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(a) (b)

Figure 5. Local initial registration. (a) is the skeleton image regis-

tration result, and (b) is the corresponding retinal image registra-

tion result.

fore, we combine all kinds of the matched cycle structures

up to 7 types Lk, k = 1, 2, · · · , 7 as shown in Figure 1,

yielding the multicycle matched structure.

4. Registration from Local to Global

In order to get a more accurate registration, we design

a two-stage local-to-global strategy using the Cycle-Vessel

and Cycle-Vessel-Bifurcation feature points respectively.

4.1. Local Initial Registration

The multicycle matched structure only contains limited

accurate cycle feature points, which may not be enough for

further transformation and then registration. So we also

extract the closest bifurcation points or ending points con-

nected to the cycle feature points along the vessels and the

midpoints of the vessels to constitute the Cycle-Vessel fea-

ture points for local initial registration.

It’s obvious that the cycle-vessel structure is invariant

against translation, rotation, and scaling, but is variant to

shearing because of the angles between vessels, therefore,

similarity transformation is the best choice. The similarity

transformation can be defined by

X = xs cosϕ− ys sinϕ+ â (4)

Y = xs sinϕ+ ys cosϕ+ b̂ (5)

where s denotes scaling, ϕ denotes rotational, and (â, b̂) de-

notes translational differences between the reference image

and the floating image. In our work, the least squares solu-

tion is adopted to obtain the transformation parameters [21].

Figure 5 shows the results of local initial registration using

the cycle-vessel feature points.

4.2. Global Final Registration

Although the cycle-vessel feature points are very accu-

rate for registration (Figure 5), it’s still not robust enough

because these points only cover vascular regions with intri-

cate capillary that may make some global regions far away

from them unaligned (Figure 6a and 6b). Therefore, we

(a) (b)

(c) (d)

Figure 6. Comparison of local initial registration and global final

registration. (a) and (b) are skeleton and retinal image results re-

spectively by local initial registration with unaligned vessels in

some local regions, while (c) and (d) are the comparative skeleton

and retinal image results respectively after global final registration

with better vessel alignment precisely.

extend the registration from local to global by finding the

unaligned bifurcation points from the local registration re-

sult to further constitute the final Cycle-Vessel-Bifurcation

feature points.

The unaligned bifurcation points are determined by bi-

furcation matching and distance thresholding: 1) find the

matching bifurcation point of each bifurcation point in the

floating local registration image among its 5 × 5 neighbor-

hood relying on the angles [23]; 2) regard the matched bi-

furcation points as unaligned if their pixel distance is greater

than 3 pixels. Then, similar to local registration, the similar-

ity transformation is adopted for final registration using the

cycle-vessel-bifurcation feature points. Figure 6c and 6d

show the global final registration results corresponding to

the local registration results Figure 6a and 6b, which can be

seen more precisely.

5. Skeleton Alignment Error Measure

One reference image and one floating image, also known

as one pair of images for registration, will produce up to

14× 14 multiscale vessel segmentation and skeleton results

with up to 7 multicycle matched structures, yielding at most

14×14×7 local-to-global registration results (Figure 1). We

then define the Skeleton Alignment Error Measure (SAEM)

and choose the optimal registration result automatically by

minimizing SAEM as follows:

1. Given a reference skeleton result Mi (i =
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1, 2, · · · , 14) and a floating skeleton result Nj (j =
1, 2, · · · , 14), Nj is aligned to Mi with one type of

multicycle matched structure Lk (k = 1, 2, · · · , 7)

under the local-to-global strategy, yielding the trans-

formed skeleton result NjMi
;

2. For each vessel point in NjMi
, calculate the pixel dis-

tance d of its nearest vessel pixel among its 7×7 neigh-

borhood in Mi, or mark this vessel point invalid if no

corresponding vessel pixel is found;

3. SAEM is defined by SAEMijk = (
∑

d) /Numv ,

where Numv is the number of valid pixels in NjMi

that d can be calculated;

4. Constraints: SAEM is considered valid only if

Numv/NumNj
≥ 50% and NumNjMi

/NumNj
≥

38%, where Num(·) denotes the number of pixels in

(·).

The constraints are necessary to exclude the extremely mis-

matching situations that may make the SAEM minimized

because of very few contributing pixels.

By using SAEM, the best registration result will be se-

lected intelligently, moreover, the registration method can

be evaluated. The overall framework of our proposed

method for retinal vessel image registration can be seen in

Figure 1.

6. Experiments

There exist rare public datasets of retinal images for reg-

istration purpose, so we use VARIA database [15, 14]2 that

contains a set of retinal images for authentication purpose

to evaluate and compare the performance of our method for

retinal image registration qualitatively and quantitatively.

The database currently includes 233 images from 139 dif-

ferent individuals that have been acquired with a TopCon

non-mydriatic camera NW-100 model and are optic disc

centered with a resolution of 768× 584, among which 155
pairs from 59 individuals (total 153 images from all 233
retinal images) can be constructed as a new dataset for reg-

istration purpose3.

6.1. Qualitative Results

Figure 7 shows two examples of our retinal vessel image

registration from local to global via multiscale and multi-

cycle features, among which (a)(b) and (f)(g) are two pairs

of original retinal images for registration, (c) and (h) are

the corresponding best registration results selected by our

2http://www.varpa.es/varia.html
3Only the two retinal images that belong to the same individual can be

considered as one pair for registration.

SAEM automatically, (d) and (i) are local initial registra-

tion results while (e) and (j) are global final registration re-

sults, respectively. Although the pairs of original retinal im-

ages are dramatically different with big deformation, it can

still be seen that the final results Figure 7(c) and (h) are

both well registered accurately by minimizing the SAEM

via multiscale and multicycle features and robustly through

the local-to-global strategy. The zoom-in regions on Fig-

ure 7(e) and (j) are shown obviously more precise of aligned

vessels than those corresponding regions on Figure 7(d) and

(i) respectively, indicating that the effectiveness and robust-

ness of our two-stage local-to-global registration strategy.

6.2. Quantitative Results

For quantitative comparison, the Success Rate (SR)

and Skeleton Alignment Error Measure (SAEM) are used

to evaluate our method and other methods on the 155
pairs of retinal images. The registration is regarded as

successful evaluated by the ophthalmologists considering

the real medical applications for SR calculation (SR =
(Successful Pairs)/155) and the failed registration will be

excluded to calculate SAEM .

First, the transformation models are important for dif-

ferent features of registration and have been discussed

by [20, 11], and Table 1 shows the registration results with

respect to our cycle structure using different transformation

models4: similarity, affine, and second-order polynomial.

Although the SAEM of polynomial transformation is mini-

mum with 0.231 pixel, it’s still not suitable for cycle struc-

ture due to the lowest SR (16.99%) because the failed regis-

trations will not contribute to SAEM, which may make the

SAEM very small based on very few successful registra-

tions. Therefore, because the proposed cycle-vessel struc-

ture is invariant against translation, rotation, and scaling,

but is variant to shearing due to the angles between vessels,

the similarity transformation for our cycle structure is the

best choice with the highest 96.73% SR and the acceptable

0.938 pixel SAEM for ophthalmologists.

Transformation models SR SAEM (pixel)

Similarity 96.73% 0.938
Affine 50.33% 1.010
Polynomial 16.99% 0.231

Table 1. Comparison of different transformation models.

Then, Table 2 shows the registration results by similar-

ity transformation using different features on the 155 pairs

of retinal images under the optimal MiNjLk with mini-

mum SAEMijk: Cycle, Cycle-Vessel, and Cycle-Vessel-

4Only Cycle features are used in this experiment, and the 155 pairs of

retinal images under the optimal MiNjLk with minimum SAEMijk are

selected for this experiment.
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(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Figure 7. The qualitative results of our proposed retinal image reg-

istration. (a)(b) and (f)(g) are two pairs of original retinal images

for registration, (c) and (h) are the corresponding best registration

results selected by our SAEM automatically, (d) and (i) are local

initial registration results while (e) and (j) are global final regis-

tration results, respectively. The zoom-in regions on (e) and (j)

are shown obviously more precise of aligned vessels than those

corresponding regions on (d) and (i) respectively, indicating that

the effectiveness and robustness of our two-stage local-to-global

registration strategy.

Bifurcation, which obviously indicates that the Cycle-

Vessel-Bifurcation feature is the most robust and accurate

for registration with the highest SR and the lowest SAEM.

Features SR SAEM (pixel)

Cycle 96.73% 0.938
Cycle-Vessel (local) 97.39% 0.903
Cycle-Vessel-Bifurcation

(local-to-global)

100% 0.858

Table 2. Comparison of different features.

At last, we compare our proposed method for retinal

image registration with state-of-the-art structure-matching

registration methods: Bifurcation structure [6, 5] and Bi-

furcation structure with global fine registration [19]. This

experiment is also applied on the 155 pairs of retinal im-

ages under the optimal MiNjLk with minimum SAEMijk.

Besides, we also implement our multiscale strategy with

SAEM optimal selection on the compared two methods.

The results are shown in Table 3, and it can be seen that our

method greatly outperforms the other methods in terms of

robustness and accuracy with the highest 100% SR and the

lowest 0.858 pixel SAEM respectively. Moreover, the pro-

posed mutiscale and SAEM strategy dramatically improves

the compared two methods, which also shows the effective-

ness and robustness of our intelligent registration based on

multiscale selection automatically.

Methods SR SAEM (pixel)

Bifurcation structure 50.32% 1.009
Bifurcation structure +

Global

59.35% 0.978

Bifurcation + Multiscale

+ SAEM

95.48% 0.938

Bifurcation Global +

Multiscale + SAEM

96.77% 0.877

Our method 100% 0.858

Table 3. Comparison of different methods.

7. Conclusion and Future Work

In this paper, we address the issues related to the de-

scription, matching as well as registration of the vascular

structure in retinal images. The contribution of this paper

is threefold: 1) a novel stable cycle structure is proposed

for retinal vasculature description and an effective and fast

Angle-based Depth-First Search algorithm is developed for

finding minimum cycle basis; 2) the cycle structure is ex-

tended from local to global for robust and accurate match-

ing; 3) the Skeleton Alignment Error Measure is defined to

measure and evaluate the registration intelligently. The pro-

posed feature and method can be used for other applications

such as retina identification and verification, and also other

vascular-related study.

In future work, we will test the method in larger and

more natural retinal image datasets, and tune the algorithm

for real applications helping the ophthalmologists to ana-

lyze and diagnose retina-related diseases.
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