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Abstract

Low-resolution, EPI-based Volumetric Navigators

(vNavs) have been used as a prospective motion-correction

system in a variety of MRI neuroimaging pulse sequences.

The use of low-resolution volumes represents a trade-off

between motion tracking accuracy and acquisition time.

However, this means that registration must be accurate on

the order of 0.2 voxels or less to be effective for motion

correction. While vNavs have shown promising results in

clinical and research use, the choice of navigator and reg-

istration algorithm have not previously been systematically

evaluated. In this work we experimentally evaluate the

accuracy of vNavs, and possible design choices for future

improvements to the system, using real human data. We

acquired navigator volumes at three isotropic resolutions

(6.4 mm, 8 mm, and 10 mm) with known rotations and

translations. The vNavs were then rigidly registered using

trilinear, tricubic, and cubic B-spline interpolation. We

demonstrate a novel refactoring of the cubic B-spline

algorithm that stores pre-computed coefficients to reduce

the per-interpolation time to be identical to tricubic inter-

polation. Our results show that increasing vNav resolution

improves registration accuracy, and that cubic B-splines

provide the highest registration accuracy at all vNav

resolutions. Our results also suggest that the time required

by vNavs may be reduced by imaging at 10 mm resolution,

without substantial cost in registration accuracy.

1. Introduction

Prospective motion detection and correction during an

MRI scan has been shown to allow the acquisition of clin-

ically useful images, even with substantial subject move-

ment [7, 15]. While many methods have been developed

to reduce the artifacts caused by motion during MRI scan-

ning, Volumetric Navigators (vNavs) use the MRI scanner

to track subject motion, requiring no additional equipment

or setup be added to the scanner or workflow to enable mo-

tion correction [4, 12]. vNavs are low-resolution, whole-

head volumes, acquired rapidly (∼ 300 ms), and inter-

spersed over the several minutes of a longer neuroimaging

sequence. Head motion information is recovered from these

volumes via registration, and the resulting estimates of head

position are used to update the MRI scanner’s imaging coor-

dinates, following the subject’s head to compensate. vNavs

are used in both clinical and neuroscientific studies to mea-

sure and correct motion.

While vNavs can be acquired frequently, they cost both

acquisition and processing time which must be found in

the MRI sequence being corrected (e.g. during pre-existing

dead-times). The effectiveness of the vNavs system relies

on the accuracy of the volume registrations, which can be

affected both by the choice of vNav resolution, and the in-

terpolation method used in the registration cost function.

The lowest-resolution navigator that provides acceptable

motion tracking would be preferred in practice due to it hav-

ing the shortest duration. Previous work with vNavs [4, 12]
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has mostly used 8 mm isotropic resolution volumes, and re-

lied on the PACE algorithm [10] for image registration on

the scanner. However, there has been no systematic evalua-

tion of the choice of resolution or registration algorithm.

In this work we address this gap, evaluating the regis-

tration accuracy of different interpolation methods at vari-

ous resolutions of vNavs. Three interpolation methods are

implemented and tested on the volumetric data: trilinear,

tricubic [6], and cubic B-spline interpolation [14, 11], and

a Gauss-Newton search algorithm was implemented to per-

form rigid registration using the 2-norm cost function. We

have acquired data in a human volunteer at three feasible

vNav resolutions: 6.4 mm, 8 mm, and 10 mm. Motions

detected from these low-resolution vNavs need to be accu-

rate enough for correcting high resolution MR imaging with

voxels on the order of 1 mm. Comparing this with the res-

olutions of our vNavs, we need registration accuracy on the

order of 1

10
of a vNav voxel.

2. Methods

2.1. Data Acquisition

Imaging was performed on a 3 T TIM Trio (Siemens

Healthcare, Erlangen, Germany) with all data acquired us-

ing the body coil to reduce spatial variations in signal inten-

sity. One human volunteer, having given informed consent,

was scanned with a custom pulse sequence that acquires a

series of vNavs. Data was acquired at three isotropic reso-

lutions: 6.4 mm, 8 mm, and 10 mm (acquisition parameters

are shown in Table 1). To ensure the subject remained as

still as possible during the scan, the acquisitions were bro-

ken into ∼ 30 s sets, during which the volunteer was in-

structed to hold his breath to minimize respiratory motion.

Each set consisted of a volume at iso-center and on-axis,

followed by volumes with a range of rotations from either

0.5◦ to 2.5◦ or 3◦ to 5◦ at 0.5◦ increments, and at each rota-

tion a series of 5 translations from 1 mm to 5 mm at 1 mm

increments. Rotations were performed around x, y, and z

axes, with z translations, and additional rotations around the

oblique x/y, x/z, and y/z axes with x/y translations. Volumes

within each set are registered to the first volume of the set.

A total of 432 volumes per resolution were acquired, from

which 420 pairs (one reference and one moved volume) can

be extracted for registration.

Our previous experiments have shown that larger rota-

tions/translations are easy to detect with any choice of res-

olution or interpolation method because there are enough

change in the volume. We chose to consider small rota-

tions/translations only on the assumption that gross regis-

tration can be performed by a variety of methods. We in-

stead are interested in the accuracy of registration near the

ground truth.

2.2. Masking

When an image is rotated, the higher frequency compo-

nents in the corners of the Fourier domain are aliased into

lower-frequency regions. Applying a circular mask to filter

out higher frequency components can reduce this effect [1].

In our work, masking was performed in both the Fourier and

spatial domains to remove corners in the cubic volumes that

cannot be extrapolated during rotation operations. The vol-

umes were preprocessed before registration by applying a

smoothed spherical mask in the Fourier domain. The mask

was defined using the window function

m(r′) =











1 r′ < 3

4

wcos(
8

3
r′ − 2) 3

4
≤ r′ ≤ 1

0 r′ > 1

, (1)

where r′ = r/R, r is the radius from the image center, R
is the radius of the volume, and wcos is the cosine window

function, defined as

wcos(t) =

{

cos(πt) − 1

2
≤ t ≤ 1

2

0 otherwise
. (2)

The same mask was applied again in the spatial domain, af-

ter the volumes were interpolated. Figure 1 shows sample

slices prior to and after masking in three different resolu-

tions.

6.4 mm 8 mm 10 mm

TR 15 ms 11 ms 10 ms

TE 6.7 ms 5.0 ms 4.1 ms

FA 3
◦

3
◦

3
◦

BW 4310 Hz/Px 4596 Hz/Px 4578 Hz/Px

FOV 256 mm 256 mm 260 mm

Total Scan Time 600 ms 352 ms 260 ms

Table 1. Sequence parameters for vNavs

2.3. Registration

2.3.1 Cost function

To perform prospective motion correction, navigator vol-

umes acquired throughout the longer MRI scan would be

registered to the first volume of the sequence, referred to as

the reference volume Vref : R
3 → R. Given a new moving

volume Vmov : R3 → R, we can describe our registration

as minimizing the error function

ǫ =
∑

i

(vref(xi)−Vmov(xi + di(P
−1)))2, (3)

where vref is the vector that represents the reference volume

sampled at Cartesian grid points. Vmov(xi + di(P
−1)) is

the function describing the moving volume evaluated at an
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Figure 1. Original and masked slices from vNavs, and the masks

used at different resolutions

unmeasured point xi + di(P
−1), and xi = (xi, yi, zi) is

the ith grid point of the volume. di(P
−1) is the estimated

displacement of xi from Vmov to Vref given the set of trans-

formation parameters P−1.

Our goal is real time registration, with total run-times on

the order of tens of milliseconds. Given that we expect our

volumes to have identical contrast and our noise variation to

be negligible (due to the large voxels being used), we have

chosen to use the 2-norm for our cost function.

We note that (3) requires resampling every incoming vol-

ume during the registration step, which can be computa-

tionally expensive. Registering the reference volume to the

incoming volumes produces the opposite transformation,

but only the reference volume needs to be resampled every

time [10]. This changes our error function to,

ǫ =
∑

i

(Vref(xi + di(P))− vmov(xi))
2, (4)

where P denotes the parameters for the inverse transfor-

mation of P−1 and vmov is the vector that represents the

moving volume sampled at Cartesian grid points. With (4),

we can register the reference volume to incoming volumes

instead and apply the opposite transformation for motion

correction, to reduce computation.

2.3.2 Interpolators

Voxels located on a Cartesian grid are measured by the scan-

ner, but to evaluate (4) we also need to evaluate the refer-

ence volume at points that have not been measured. We

approximate the values that would have been measured off-

grid using interpolators which have the linear form

Vref(xi + di(P)) ≈ I(xi + di(P),vref), (5)

where I(xi + di(P),vref) is an interpolation operator that

takes vref as input to estimate values of the reference vol-

ume at transformed point xi + di(P). The choice of in-

terpolator can significantly affect registration accuracy. Un-

smooth cost functions, which can result from interpolation

artifacts, can cause the minimization to be trapped in local

minima [1]. We have evaluated the accuracy of three inter-

polators: trilinear, tricubic [6], and cubic B-spline [14, 11].

Trilinear interpolation approximates the value of a vol-

ume V at an unknown point x = (x, y, z) (with coor-

dinates expressed in units of voxels) using the eight grid

points around (x, y, z) from v, which is sampled on Carte-

sian grid points. The algorithm first finds the nearest “base”

grid point x− = (x−, y−, z−), whose indices are the floor

of (x, y, z). From the “base” grid point, the relative off-

set ∆p = (∆px,∆py,∆pz) = (x − x−, y − y−, z − z−)
between the two points is computed. Since voxels are

isotropic in our data, the interpolation equation is then

Itrilinear(x,v) (6)

=

1
∑

i=0

1
∑

j=0

1
∑

k=0

[v(x− + i, y− + j, z− + k)×

|1− i−∆px||1− j −∆py||1− k −∆pz|] ,

Tricubic interpolation can be written in the form

Itricubic(x,v) (7)

=

3
∑

i=0

3
∑

j=0

3
∑

k=0

aijk(x−)(∆px)
i(∆py)

j(∆pz)
k ,

where aijk(x−) are the 64 coefficients of tricubic interpola-

tion at the “base” grid point. The choice of aijk is generally

defined by imposing continuity constraints on the interpo-

lated function at the grid points, and for which we have fol-

lowed a derivation by Lekien et al. [6]

First, we note that if we define a 64-vector atricubic(x−)
that contains all the aijk(x−, y−, z−) and similarly

a 64-vector k(∆p) that contains all the powers of

(∆px)
i(∆py)

j(∆pz)
k that appear in (7), we can rewrite our

interpolation equation as

Itricubic(x,v) = atricubic(x−)
Tk(∆p) . (8)

Lekien et al. showed that atricubic(x−) can be computed as

a linear combination of values from the point x− and the

the additional 7 grid points that can be reached by adding

1 to each of its indices. The values needed at each point

are the image, its three first derivatives, three second cross

derivatives, and one third cross derivative; we have used

central finite differences to compute the derivatives. These

source values can be put in a 64-vector btricubic(x−), which

can then by multiplied by a fixed matrix Btricubic giving [6]

atricubic(x−) = Btricubicbtricubic(x−) . (9)
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From an efficiency perspective, Lekien et al. observed

that, if many sample points with the same “base” grid point

are going to be interpolated, atricubic(x−) is heavily reused.

These vectors can then be precomputed and saved for every

point of the volume [6]. Using the reversed order of reg-

istration described in (4), the reference volume needs to be

resampled many times during the registration process, but

doesn’t change as each new moving volume arrives. There-

fore, the tricubic coefficients can be precomputed and saved

for the reference volume, reducing registration time at the

cost of a 64-fold increase in the memory required to store

the reference volume.

Cubic B-spline interpolation is an example of a gen-

eralized interpolator, as defined by Unser et al. [13] These

methods are “generalized” in that they first compute a vol-

ume of coefficients from the input image volume, and then

perform a linear operation on the coefficients, with the re-

sulting output being an interpolation of the original input

volume [11]. They have shown that cubic B-spline, among

many other families of interpolators, are an example of this

generalized formulation and demonstrated efficient algo-

rithms for the calculation of the coefficient volumes in the

cubic B-spline case [14].

Unser et al. introduced an efficient two-step procedure

for computing coefficient volumes by first computing an in-

termediate volume, c+, and then from this computing the

desired coefficients, c [14]. However, this algorithm as-

sumed mirror boundaries, and we have assumed circular

boundaries in all our algorithms (in part, because circular

wrap-around is expected to occur in MRI scans) giving the

following algorithm (applied first along the x, then y, and fi-

nally z axes, with each of these three stages taking as input

the previous step’s the output). With z0 = −2 +
√
3, com-

pute gi from fi (the signal, of length n) using the recursion

g0 = 6f0

gi = z0gi−1 + 6fi (i 6= 0, i 6= n− 1)

gn−1 =
z0gn−2 + 6fn−1

1− zn0
.

(10)

Then compute c+ from g using

c+n−1 = gn−1

c+i = gi + zi+1

0 gn−1 (i 6= n− 1) .
(11)

Now, we can compute hi from the c+i using the backwards

recursion

hn−1 = −z0c
+

n−1 (12)

hi = z0(hi+1 − c+i ) (i 6= 0, i 6= n− 1) (13)

h0 =
z0(h1 − c+0 )

1− zn0
. (14)

Finally, from h we can compute c using

c0 = h0 (15)

ci = hi − zn−i
0 h1 (i 6= 0) . (16)

After computing the coefficient volume, we interpolate

a point in 3D using the 64 surrounding values in the coeffi-

cient volume via the equation

IB-spline(x,v) =

2
∑

i=−1

2
∑

j=−1

2
∑

k=−1

β(∆px − i,∆py − j,∆pz − k)

c(x− + i, y− + j, z− + k) , (17)

where β(.) is the 3D cubic B-spline interpolator kernel,

which, being separable, can be written as the product of

three, 1D cubic B-spline interpolator kernels, as defined in

[11]

β(x) =











2

3
− 1

2
|x|2(2− |x|), 0 ≤ |x| < 1

1

6
(2− |x|)3, 1 ≤ |x| < 2

0, 2 ≤ |x|
. (18)

Equation (17) is structurally very similar to (7), in that, with

some rearrangement, it can be written as the inner prod-

uct of a 64-vector of coefficients, aB-spline(x−) and the 64-

vector of powers of ∆px, ∆py , and ∆pz , which we have

previously called k(∆p):

IB-spline(x) = aB-spline(x−)
Tk(∆p) . (19)

Mirroring the derivation for tricubic interpolation, we can

combine the 64 values of c that are used in interpolation

from “base” point x− into a vector bB-spline, and, from the

structure of (17), define a fixed matrix BB-spline such that

aB-spline(x−) = BB-splinebB-spline(x−) . (20)

We can thus use the same trade-off of memory for effi-

ciency in repeated interpolations as demonstrated in [6]. As

in tricubic interpolation, aB-spline(x−) can be precomputed

and saved for the reference volume. Given the “base” grid

point and the relative offset, evaluation of IB-spline(x) con-

sists of computing k(∆p), which takes 62 operations, and

performing a dot product with the appropriate precomputed

vector, requiring 127 operations. Thus a total of 189 floating

point operations are required to interpolate at an unknown

point. A naive implementation of the algorithm proposed

by Unser et al. requires at least 10 floating point operations

at each of the 64 neighboring point to evaluate β(x) and

multiply it with the coefficients. Hence our implementation

is at least three times faster than the naive implementation.
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2.3.3 Minimization

Given the time constraints of real time motion correction,

we have opted to use a Gauss-Newton minimization algo-

rithm, which requires only the first derivatives of the resid-

ual in our cost function. Formally, the Gauss-Newton algo-

rithm descends towards the minimum of the cost function

(4) with respect to the set of six rigid transformation param-

eters P through an iterative process.

Ps+1 = Ps −
(

Jr
TJr

)

−1

Jr
Tr(Ps) , (21)

where r(Ps) is the residual between the moving volume

and the reference volume interpolated with parameters Ps

and Jr is the Jacobian with respect to the transformation

parameters. Residual r(P) is defined at all grid points i via,

ri(P) = Vref(xi + di(P))− vmov(xi)

≈ I(xi + di(P),vref)− vmov(xi) . (22)

We approximate the Jacobian of the residual using a Taylor

series approximation of the residual evaluated at the (un-

known) true value of the parameters P0 as follows

(Jr)i = ∇Pri(P0 +P)

≈ ∇PVref(xi + di(P0) + di(P))

≈ ∇P [Vref(xi + di(P0))

+∇xi
Vref(xi + di(P0))di(P)]

= ∇xi
Vref(xi + di(P0))∇Pdi(P)

= ∇xi
Vmov(xi)∇Pdi(P)

≈ ∇xi
vmov(xi)∇Pdi(P) (23)

where we have used the fact that, by definition, Vref(xi +
di(P0)) = Vmov(xi) and used ∇xi

vmov(xi) to denote the

discrete approximation to the partial derivatives at voxel i
with respect to the three coordinate axes (we used central

differences in our implementation).

The rigid transformation parameter P is stored as a 6-

vector where the first three elements express translations

along the three coordinate axes and the next three elements

forms a vector that points along the axis of rotation whose

magnitude is the angle of rotation in radians [9]. With such

parametrization, we can use the fact that small rotations are

effectively translations to approximate ∇Pdi(P) with the

the linear relationship

∇Pdi(P) ≈ ∇PMiP

= Mi , (24)

where

Mi =





1 0 0 0 zi −yi
0 1 0 −zi 0 xi

0 0 1 yi −xi 0



 . (25)

Substituting this approximation back into equation (23)

gives us,

(Jr)i ≈ ∇xi
vmov(xi)Mi . (26)

Including all of our approximations, the steps defined in

equation (21) can sometimes increase the residual error. To

address this, we use a scaling factor to shrink our update

∆P; the factor starts at 1.0 and whenever a step increases

error we undo the update to P and multiply the scaling fac-

tor by 0.25. The minimization is terminated when either the

absolute difference between Ps and Ps−1 becomes negli-

gible or a maximum number of iterations is reached. In our

implementation, the former criterion is specified such that

iteration stops when the every element of |Ps − Ps−1| is

less than 10−5. The maximum number of iteration can be

set according to the time constraint of real time motion cor-

rection. In our implementation for experimental results, this

stopping criterion is never reached. Since we are registering

reference volume to source volume, when the iterative pro-

cess ends, P−1 gives the desired transformation from the

source volume to the reference volume.

2.4. Quantifying Registration Accuracy

Registration accuracy can be measured by comparing the

result from Gauss-Newton algorithm and the “ground truth”

transformation that was applied to the acquisition. Multi-

plying the inverse of the estimated rigid transform by the

known true rigid transform results in a rigid transforma-

tion describing the error. The six parameters of this rigid

transformation consist of three values describing transla-

tions, and three describing rotations, hence the error trans-

formation can be measured separately for translations and

rotations. Let R denote the rotation matrix of the differ-

ence in rotation between the approximated transformation

and “ground truth”, and t be the difference in translation

between the two (in mm). The natural measure of transla-

tion error is simply the 2-norm

Etrans =
√
tT t . (27)

The error in rotation can be summarized by the magnitude

of its angle in degrees, which can be derived from R via,

Erot = arccos

(

Tr(R)− 1

2

)

(28)

As a single summary metric, we have chosen to use the

RMS displacement that the error transformation would pro-

duce in a sphere that is centered at the middle of the refer-

ence volume. We are using the assumption, as in Maurer et

al., that the head is a sphere of radius 100 mm [8]. The tar-

get registration error for volume defined in [8] is a discrete

form of the RMS measure derived by Jenkinson [5] as,

ERMS =

√

1

5
r2Tr [(R− I)T (R− I)] + tT t (29)
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giving an error displacement in mm, where r is the radius

(in mm) of the sphere over which we average. In our com-

parisons, we have set r = 100 mm to represent an approx-

imate radius for a human head. Note that this naturally de-

fines a measure of rotation error, by taking just the first term

in (29), giving the RMS translation inside the sphere due to

error in rotation

trot-RMS =

√

1

5
r2Tr [(R− I)T (R− I)] (30)

In addition to the average error, we are also interested

in the worst-case error in a sphere of the same size. The

maximum translation on the sphere imposed by the rotation

error has magnitude (in mm)

trot-max = r
√

3− Tr(R) . (31)

Combining this with the displacement from translations

gives the maximum displacement (in mm) in the sphere,

Emax =
√

t2rot-max + 2trot-max|t− (tTuR)uR|2 + tT t ,

(32)

where uR is a unit vector that represents the axis of rota-

tion in angle-axis representation, which can be obtained by

normalizing the last three elements of the six rigid transfor-

mation parameters.

3. Results

In all of the data we processed, the Gauss-Newton algo-

rithm reached the stopping criterion roughly in 10 iterations

and all produced plausible estimation of rigid motion.

Rotation error and translation error, from equations (28)

and (27) respectively, are plotted in Figure (2). Cubic B-

splines performed marginally better than tricubic, and sig-

nificantly better than trilinear, for translations. However, as

expected, trilinear interpolation suffers significantly in esti-

mating rotations.

Figure (3) shows the RMS displacement, defined in (29),

from these registrations. The quantile values of the RMS

displacement are listed in Table 2. At all resolutions, we

find that cubic B-spline interpolation performs the best, fol-

lowed by tricubic interpolation, and then trilinear interpo-

lation. However, the results across resolutions are more

mixed. With tricubic interpolation, the median registration

accuracy is similar with 8 mm and 10 mm resolution, the

variability in accuracy is smaller with 10 mm, the lower

resolution. For cubic B-spline interpolation, the registra-

tion accuracy is reversed in that 10 mm resolution had the

smallest RMS displacement in most quantiles.

Figure (4) displays the maximum displacement of error

transformation. The quantile values of the maximum dis-

placement are also listed in Table 2. The trends in accuracy

Figure 2. Rotation (left, degrees) and translation (right, mm) er-

rors with cubic B-spline, tricubic and trilinear interpolation, with

each row representing a separate algorithm/resolution combina-

tion. Each of the 420 results is plotted as a dot in each row, colored

based on the ground truth axis of rotation. Quantiles are displayed

with vertical lines.

Figure 3. RMS error displacement from cubic B-spline, tricubic

and trilinear interpolation, with each row representing a separate

algorithm/resolution combination. Each of the 420 results is plot-

ted as a dot in each row, colored based on the ground truth axis of

rotation. Quantiles are displayed with vertical lines.

with resolution and algorithm are the same with this error

metric as in Figure (3).

To better understand these effects, we examined the con-

tribution of rotations and translations to the error transfor-

mations separately, to see whether one is dominating the

other. Figure (2) already shows the effect of translations,
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Figure 4. Maximum error displacement from cubic B-spline, tricu-

bic and trilinear interpolation, with each row representing a sepa-

rate algorithm/resolution combination. Each of the 420 results is

plotted as a dot in each row, colored based on the ground truth axis

of rotation. Quantiles are displayed with vertical lines.

Figure 5. Maximum (left) and RMS (right) displacement from ro-

tation error for cubic B-spline, tricubic, and trilinear interpolation,

with each row representing a separate algorithm/resolution com-

bination. Each of the 420 results is plotted as a dot in each row,

colored based on the ground truth axis of rotation. Quantiles are

displayed with vertical lines.

and Figure (5) shows maximum and RMS displacements

due to just the rotation component of the error, derived from

equations (31) and (30) respectively. Comparing Figure (2)

and Figure (5), it can be observed that the relative scale of

the RMS displacements in mm due to rotation and transla-

resolution trilinear tricubic cubic B-spline

quantile (mm) RMS Max RMS Max RMS Max

6.4 0.11 0.16 0.10 0.17 0.07 0.13

5% 8 0.15 0.24 0.16 0.25 0.12 0.19

10 0.19 0.31 0.22 0.34 0.13 0.22

6.4 0.22 0.34 0.16 0.25 0.14 0.22

25% 8 0.26 0.42 0.23 0.38 0.18 0.31

10 0.29 0.47 0.26 0.43 0.19 0.31

6.4 0.35 0.61 0.25 0.40 0.25 0.41

median 8 0.42 0.76 0.30 0.49 0.29 0.49

10 0.40 0.69 0.32 0.51 0.24 0.38

6.4 0.47 0.82 0.36 0.61 0.37 0.63

75% 8 0.55 1.00 0.41 0.71 0.43 0.76

10 0.53 0.94 0.39 0.64 0.33 0.54

6.4 0.7 1.27 0.5 0.90 0.51 0.89

95% 8 0.87 1.56 0.54 0.96 0.55 0.98

10 0.91 1.67 0.47 0.83 0.45 0.81

Table 2. Quantiles of RMS displacement and maximum displace-

ment (in mm) computed with trilinear, tricubic and cubic B-spline

interpolations across three different resolutions. These values are

depicted with vertical bars in Figures (3) and (4).

tion error are roughly the same, where as the scale of max-

imum displacements from rotation error is slightly larger

than the translation error.

We tested improvements across different resolutions and

interpolation methods using the Wilcoxon signed-rank test

on the RMS errors of the registrations. The test was per-

formed on each pair of resolutions or interpolation methods,

and the test statistic from all 420 registrations in each con-

dition was converted to a z-score. These z-scores from the

test are summarized in Tables (3) and (4).

These results support the observation that both tricubic

and cubic B-spline interpolation outperforms trilinear inter-

polation, and cubic B-spline interpolation produces more

accurate registration than tricubic interpolation at all reso-

lutions. The results for comparison across resolutions are

perhaps counter-intuitive; 10 mm resolution showed higher

accuracy with both trilinear and cubic B-spline interpola-

tion than 8 mm resolutions. However, there is an improve-

ment in registration accuracy from 6.4 mm resolution to

both 8 mm and 10 mm resolutions.

6.4 mm 8 mm 10 mm

Trilinear to Tricubic -15.52 -12.84 -12.34

Trilinear to Cubic B-spline -15.55 -15.93 -16.93

Tricubic to Cubic B-spline −2.61 -5.68 -15.63

Table 3. Wilcoxon signed-rank test for comparing registration ac-

curacy across interpolation methods. A negative score indicates

that there is an improvement in the pair from the first interpolation

method to the second, and a positive score indicates the opposite.

Bolded values in the table are z-scores that are not significant for

a one-sided difference at p < 0.01.
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10 to 8 mm 8 to 6.4 mm 10 to 6.4 mm

Trilinear 0.49 -11.62 -7.74

Tricubic -3.09 -12.11 -10.79

Cubic B-spline 5.54 -11.29 −0.71

Table 4. Wilcoxon signed-rank test for comparing registration ac-

curacy across resolutions. A negative score indicates that there is

an improvement in the pair from the first resolution to the second,

and a positive score indicates the opposite. Bolded values in the

table are z-scores that are not significant for a one-sided difference

at p < 0.01.

4. Discussion

Our accuracy goal was 1 mm error, based on the target

application of real time MRI motion correction. Our results

show that registration at all three vNav resolutions achieves

this goal when using cubic B-spline interpolation or tricubic

interpolation. In particular, the registration accuracy with

cubic B-spline interpolation at 10 mm resolution is accept-

able, which can be helpful in real time MRI motion correc-

tion since it is significantly faster to acquire and register this

data compared to the 8 mm navigators currently being used

in practice. We are working to acquire more data in order

to explore the counter-intuitive result that 10 mm resolution

were of higher accuracy than 8 mm resolution. There is also

measurable improvement in accuracy from using 6.4 mm

that may be worth the additional cost in acquisition and reg-

istration time in certain MRI applications, e.g., single-voxel

spectroscopy where there is more available dead-time [4].

Our results also indicate that, at all resolutions, cubic B-

splines provide more accurate results than either trilinear or

tricubic interpolation. This is consistent with the literature,

showing fewer artifacts in cubic B-spline interpolation com-

pared to the other two algorithms [11]. We have demon-

strated that, by paying a cost in memory, cubic B-spline

interpolation can be made as computationally efficient as

tricubic interpolation in our application.

Interestingly, we observed that registration accuracy

decreased with rotations involving the head foot (HF)

axis. This may be due to our scanning protocol’s axes

(HF/readout/z, AP/phase/y, LR/partition/x), where rotations

around the HF and LR axes cause the phase-encoded axis to

rotate. This will, in turn, cause the susceptibility distortions

around the sinuses to shift direction, potentially influencing

the accuracy of our results, as noted in previous work reg-

istering higher-resolution EPI volumes [2]. Figure 6 shows

an axial slice of the difference between a volume with no

rotation and known true 5◦ rotations around each imaging

axis. Comparing rotation around HF with that around AP,

we see the sinus much more prominently in the HF rota-

tion. Further work is needed to verify whether this hypoth-

esis is correct. If so, it may be possible to mask out these

regions, since they are localized to the sinuses and other in-

Figure 6. (a) Sample sagittal slice in the HF direction at 6.4 mm

resolution, with mask applied in the Fourier domain only. (b)-

(d) Difference between a volume with no rotation and volumes

acquired with 5
◦ rotations around the HF, AP and LR axes respec-

tively, masked in both Fourier and image domains.

ternal air/tissue interfaces.

5. Conclusion

We have evaluated the accuracy of vNavs for tracking

the human head using data with known ground-truth rigid

transformations. This application demands accurate sub-

voxel registration be performed as efficiently as possible on

the vNav data as it arrives. We have explored choices of

both vNav resolution, and derived and evaluated three ef-

ficient registration algorithms, to understand the trade-offs

between acquisition and registration time and accuracy of

motion tracking.

We demonstrated registration algorithms that perform

accurate sub-voxel volume registration on vNavs. Median

tracking errors from 6.4 mm, 8 mm and 10 mm vNavs using

either cubic b-spline or tricubic interpolation achieved our

goal of 1 mm. Our results show that improving vNav reso-

lution provides measurable improvement in registration ac-

curacy at the cost of acquisition time. Our algorithmic com-

parison shows that cubic B-spline interpolation provides

the best results at all vNav resolutions, in particular cubic

B-spline interpolation can achieve high accuracy, even at

10 mm resolution.

We have also presented a refactoring of the cubic

B-splines interpolation algorithm that reduces the per-

interpolation time by storing pre-computed interpolation

coefficients. This makes the computational cost of cubic

B-spline interpolation the same as tricubic interpolation in

our application.

We identified distortions in our MRI data due to field in-

homogeneity as a potential limitation to our current method

and plan to acquire further data to explore masking strate-

gies to mitigate their effects.

All image processing and analysis algorithms were im-

plemented in Python. However, our eventual goal is to de-

velop a new registration algorithm for use on-scanner with

vNavs. In the derivations of the algorithms explored in this

work, we have focused on the time-efficiency of our algo-

rithms, with the goal that the remaining speed-up in the on-
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scanner implementation will come from low-level memory

management, etc. in C++ and the potential for parallelizing

work, not fundamentally different algorithms. Our initial

prototype, single-threaded C++ implementation, using the

Eigen [3] library, has an average registration time of 25 ms

for an 8 mm vNav volume. Future work will involve par-

allelization of the algorithm and further optimization, along

with integration to the scanner environment.

Although PACE is currently implemented on the scan-

ner, the full algorithm is not publicly available. Addition-

ally, the on-scanner implementation cannot be used with all

of the resolutions we are evaluating. For these reasons, we

have not compared our results directly with PACE. How-

ever, a comparison of the current vNav+PACE system with

any new navigator/registration combination will be impor-

tant once the new system is implemented on the scanner.
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